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Motivation: Dark Matter (I)

Observation vs. theory

COMA Cluster in 2007

Temperature fluctuations in the CMB

Dark Matter in the CMB
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ow 1933: Fritz Zwicky's 

         “missing mass problem”

1966: Vera Rubin 
         Study of rotation curves

  …    Observation techniques development

2013: Planck Satellite mission
         Dark Matter in the CMB
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Motivation: Dark Matter (II)

Different theories for Dark Matter particles1)

What do we know from Cosmology?
● Dark Matter is stable/long-lived

● All known particles are ruled out!
(non-baryonic particle)

● It's “dark” → Electrically neutral

At least Dark Matter is a placeholder nowadays!

1) Gardner, Susan et al. Prog.Part.Nucl.Phys. 71 (2013)

The XENON Dark Matter Projects:

Look for Weakly Interacting Massive Particles (WIMPs)

Other hypothesis can be tested:
→ Axions and Axion-like particles
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Dark Matter Search (I):

● Direct Dark Matter search
● Search for nuclear recoils (WIMP-nucleon interaction)
● Search for electronic recoils (WIMP-electron interaction)
● NR/ER is also used for detector calibration

Indirect Dark Matter search:

Dark Matter production:

Χ

Xfermions

fermions

LHC

Nuclear Recoil (NR) Electronic Recoil (ER)
Elastic scatter:

Χ

fermion

Χ

fermion
Χ

X fermions

fermions

IceCube, ANTARES, H.E.S.S.
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Dark Matter Search (II):
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IonizationPhonon

Scintillation

Edelweiss
SuperCDMS

C
RESST-2

Dama/LIBRA, DM-Ice, XMASS, ...

Direct Dark Matter Detection
with different Experiments
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}d }

}d }

Xenon as Detection Material

WIMP scattering rates for different
detector materials

Increase interaction probability

Self-shielding properties
→ Definition of a fiducial volume

Detection medium: (liquid) xenon

● High density: ρ = 2.8 kg/l

● High mass number: A = 131 ( → σ ~ A2)
for coherent scatter 

● Even/odd (stable) isotopes.

● Radioactive impurities
(85Kr, 222Rn, 136Xe unstable → 2ν2β)

Test spin depended Dark Matter models

“Easy” to scale up!

   → Future detector design



 

Boris Bauermeister – JG|U 7

Operation Principle of a Two-Phase Time Projection Chamber (I)

S2:
→ Ionisation process frees electrons
→ Electrons drift upwards
→ Extracted in gaseous phase
→ Proportional scintillation light

S1:
→ Photons (λ = 178 nm)
      from scintillation process
→ Detected by PMTs

(neutron)

Nuclear recoil
(NR)

Electronic recoil
(ER)

Photomultiplier array

Photomultiplier array

S1
/S

2 
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Operation Principle of a Two-Phase Time Projection Chamber (II)

A
m

p
lit

ud
e 

[V
]

time [μs]

Δt

z position from
S1 to S2 differencePhotomultiplier array

Photomultiplier array
S2 hit-pattern for x/y position

3D position reconstruction!



 

Boris Bauermeister – JG|U 9

The XENON100 Time Projection Chamber (TPC)

XENON100 Time Projection Chamber
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242 (1”) Photomultiplier tubes (PMTs):
→ 98 PMTs on the top array
→ 80 PMTs on the bottom array
→ 64 PMTs in the veto

Top PMT array Bottom PMT array

Detection material: 161 kg liquid xenon (-91°C)
→ Target mass: ~ 62 kg

TPC: 30 cm height / 30 cm diameter

All used materials: Low radioactive

Multilayer passive shield:  Cu, PE, Pb, H
2
O
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The XENON Dark Matter Project

Laboratori Nationali del Gran Sasso
(Italy)

– World Wide Collaboration – 
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HowTo: Find Dark Matter

1) Take a TPC

4) Be sure what you measure!

NR calibration: AmBe
(before/after data taking)

ER calibration: 232Th, 60Co
(weekly)

2) Calibrate your PMTs
    Blue LEDs illuminate

             the TPC (weekly)

3) Estimate the electron life time

Source: 137Cs (weekly)

5) Waiting...

Dark Matter Data
(~ 5 days a week)

?
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HowTo: Find Dark Matter

Raw data Raw
Data

Processor

LED
calibration
software

LED

241AmBe
60Co
232Th

DM
137Cs

Gain spectrum of a single PMT

Many cuts & acceptancesER background model

Neutron response

Full detector simulation (MC)

Detector working
conditions

Signal model

Required: Dedicated data analysis!

Profile
Likelihood

Bayesian
Method

Results

Ongoing 
work

?

Test Dark Matter Models (e.g.): 
→ Spin in-/dependent WIMPs
→ Axions search

gain

Reduced
Data
Set
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XENON100: Energy Calibration

→ S1 and S2 signals correspond to a measured energy quantity in eV 

S1 signal: E=
S1

LY Leff

See

Snr

Relative scintillation efficiency:

Light yield → pe/keV
ee

Detector parameter in XENON100

E=
S2

Y Q y

S2 signal:

Single electron gain Charge yield → e- /pe

Energy calibration with e.g. 40 keV, 80 keV, 
164 keV line of activated xenon for S1 signals

* S1 and S2 signals are drift-time and 
volume corrected in further use

*

Relative scintillation efficiency from scattering experiments

*

Electric field suppression 
factor for ER/NR
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Data Matching: XENON100 (I)

– XENON100 Data Matching – 

→ Neutron calibration of XENON100 with 241AmBe

Idea: Get a proper description of XENON100 by a 
simulation

Ingredients:
● Measured AmBe source (160 +- 4 n/s) at the 

PTB/Germany
● Complete XENON100 description (detector + shield)
● Q

y
, Threshold, detection resolution and acceptance 

(S1) from XENON100 detector

How to do (I):
→ Take direct measured L

eff
 

→ Reproduce S2 spectrum
→ Best Fit Q

y

Conversion between Q
y
 ↔ keV

nr

S2 spectrum: Best Fit Q
y
 fits data

Q
y
 conversion to deposited (NR) energy

E=
S2

Y Q y
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Data Matching: XENON100 (II)

– XENON100 Data Matching – 

Best Fit Q
y
 repreduce S1 spectrum

Compare data and MC: L
eff

 fits XENON100

E=
S1

LY Leff

S ee

S nr

How to do (II):
→ Use Best Fit Q

y

→ Reproduce S1 spectrum
→ Get a new L

eff

● Fit the whole spectrum down to 2 PE
 (~5 keV)

● L
eff

 from best fit matches the previous

‘direct’ measurements
● Results of XENON100 remain unchanged

using this L
eff

E. Aprile, M. Alfonsi, K. Arisaka et al. , Phys. Rev. D 88, 012006 (2013)

http://prd.aps.org/abstract/PRD/v88/i1/e012006
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XENON100: Profile Likelihood

Profile
Likelihood

Full Likelihood function1) for m
χ
 and σ

χ

XENON100 measurement

Parameter of interest: σ
χ

Nuisance parameters are profiled out

Analysis is done in flatten space

Background predictions from
● Electronic recoil (data)
● Monte Carlo simulation (NR)

From no observation an upper
exclusion limit is calculated!

Additional uncertainties

Control measurements of signal and background data:
→ Determine the probabilities ε

b
 and ε

s
 to find an event

Relative scintillation efficiency L
eff

 not available below 3 keV
nr

1
) 
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Analysis: XENON100 (I)
Demand:
● Detector design: Careful material selection
● Low level 222Rn (62.9 µBq/kg) and  85Kr (19.4 ppt)

0.17−0.07
+0.12

E. Aprile et al. Phys. Rev. Lett. 109, 181301 (2012)

– Background Expectation for 225 days –

Background in XENON100: NR and ER  from 225 life days

Discrimination space:

Signal region
ER background: 
0.79±0.16 events

NR background:
events

Profile Likelihood analysis

is not limited to signal region!

→ Full discrimination space

ER calibration data: 232Th/60Co

NR calibration data: 241AmBe



 

Boris Bauermeister – JG|U 18

Analysis: XENON100 (II)

During 2011/2012: 225 live days of data

Total background expectation: 

Two observed events are not enough compared with
expected background.

→ Background fluctuation to two events
      is possible by 26.4%

Lowest WIMP-Nucleon Cross-section1:
m

χ
 = 55 GeV/c2

σ < 2.0 x 10-45 cm2 (90% C.L.)

Profile Likelihood
Analysis

Exclusion limit of 225 days of Dark Matter data taking

1) E. Aprile et al. Phys. Rev. Lett. 109, 181301 (2012)

Event distribution

– Spin-independent –
control region

1.0±0.2
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Analysis: XENON100 (III)

Odd xenon isotopes:
● 129Xe (26.2 %)
● 131Xe (21.8 %)

WIMP-Neutron cross-section1

m
χ
 = 45 GeV/c2

σ < 3.5 x 10-40 cm²
by using a nuclear model of  Menendez 2

1) E. Aprile et al, Phys. Rev. D 88, 012006 (2013)

2) J. Menendez, D. Gazit, and A. Schwenk,
    Phys.Rev. D86, 103511 (2012), arXiv:1208.1094

3) SNO Collaboration (C. Amole (Queen's U., Kingston) et al.).  
    e-Print: arXiv:1503.00008 (2015)

– Spin-dependent –

→ WIMP Dark Matter could couple in a 
     spin dependent way!

XENON (2
013)

COUPP

S
IM

P
LE

PICASSO

3)

http://inspirehep.net/search?p=collaboration:%27SNO%27&ln=de
http://inspirehep.net/author/profile/Amole%2C%20C.?recid=1346907&ln=de
http://inspirehep.net/search?cc=Institutions&p=institution:%22Queen%27s%20U.%2C%20Kingston%22&ln=de
http://inspirehep.net/record/1346907
http://arXiv.org/abs/arXiv:1503.00008
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Analysis: XENON100 (IV)

Axions and axion-like particles (ALPs) may
couple with:
● Photons (g

Aγ
)

● Electrons (g
Ae

)
● Nuclei (g

AN
)

Search:
Scattered electrons

e-
ALP

Axions ionize xenon Data selection for axion Dark Matter analysis1

Careful data selection from 225 days of data:

→ Select electronic recoil band

– Axion Search in XENON100 – Test different axion/ALP models:

→ Solar axions
→ Galactic ALPs

E. Aprile et al. Phys.Rev. D90 (2014) 6, 062009
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Axions and ALPs couple by axio-electric effect!

Solar axions:
● Production in the sun
● Compton-scattering
● Axio-recombination
● Axio-deexcitation

Galactic axions/ALPs:
● Non-thermal production mechanism

in the early universe
● Dark Matter (part of)

→ Axion/ALPs are „absorbed“

& =Axion flux ∞ g2

Ae

Solar axions:

Galactic ALPs:

& =

Analysis: XENON100 (V)

– Axion Search in XENON100 – 

dR solar

dER

∝gAe
4

dRDM

dmALP

∝g Ae
2

ΦALP=
cβρDM

mALP

Cross-section:
photo-electric
cross-section

Axion energy

fine structure constant electron mass

Axion velocity

σAe=σpe (EA)
g Ae

4

βA

3 EA
2

16 παEMme
2 (1−

βA
2 /3

3
)

E. Aprile et al. Phys.Rev. D90 (2014) 6, 062009
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Analysis: XENON100 (VI)

Solar Axions: Exclusion limit for g
Ae

 with XENON100

Solar axions with m < 1 keV/c2:
→ g

Ae 
> 7.7 x 10-12 excluded (90 % C.L.)

E. Aprile et al. Phys.Rev. D90 (2014) 6, 062009

Galactic Axions: Exclusion limit for g
Ae

 with XENON100

Galactic axions with m = 5 – 10 keV/c2:
→ g

Ae 
> 1 x 10-12 excluded (90 % C.L.)

(Assuming ALPs constitute all of the galactic Dark Matter.)

– Axion Search in XENON100 – 
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Status: 88YBe Calibration
– Low energetic neutron calibration – 

Calibration:
● Neutron energy: 152 keV
● Source strength: 170 n/s (5 MBq)
● Source is mounted in BeO housing

Lead shield is necessary:
● Neutron creation also includes γ with ~1.836 MeV 

→ Additional ER Background!

Data analysis is ongoing!

AmBe source:
→ Broad neutron recoil energy spectrum

Aim:
→ Test a mono-energetic neutron source

Photo disintegration process

88Y
 γ = 1.836 MeV

9Be
8Be  +  n 9Be

Q
Be

 = 1.666 MeV
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XENON1T: The next Level

No WIMP Dark Matter found yet!

Increase the target mass
→ Background reduction
→ Increase sensitivity

Outlook Exclusion limits

XENON100 → XENON1T → XENONnT XENON1T TPC with XENON100 TPC for size comparison

~ 1 m

~ 1 m

XENON100
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XENON1T: The TPC

→ Designed with ~ 3.3 tons LXe!
● Inside TPC: ~ 2 tons
● Fiducial volume: ~ 1 ton

→ Photomultipliers:
● 248 of 3” R11410-21 PMTs1)

● Low background + high QE (35 %)

→ Background reduction:
● Careful material selection/screening of cryostat and TPC

100x lower background!

1) JINST 8, P04026 (2013)

~ 1 m

~ 1 m
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● Water shields radioactivity
● 84 PMTs in the active muon veto
● Muon-induced neutrons fake

Dark Matter events
→ Detect Cherenkov light in the water

● Trigger efficiency (G4 simulation): 
● 99.8 % (muon inside water tank)
● 71.4 % (muon outside water tank)

µ

XENON1T: Water Cherenkov Muon Veto

– Active Muon Veto1) – 

10
 m

10 m

1
) 

E
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XENON1T: Current Status@LNGS – Hall B
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XENON1T: ReStoX

– Recovery and Storage of Xenon – 

St
or

ag
e

● 7.6 tons xenon (liquid or gaseous)
● Up to 72 bar!
● Liquid Nitrogen cooling system

● (two redundant)
● Store xenon at room temperature

R
ec

ov
er

y ● Recovery:
● TPC maintenance
● Emergency (~3 h)

● Keep xenon clean
● Pre-purified xenon for TPC filling

Slow Control
● Constant temperature control
● Control condenser
● Cooling power: > 2 kW

Status:
● Two cooling tests are finished

Next:
● Test with xenon in the sphere
● Test fast recovery of tons of LXe
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XENON1T: Intrinsic background reduction

85Kr impurity:
● Cryogenic distillation

column for Kr removal
● Removal system to achieve:

natKr/Xe < 0.2 ppt
● Aim: 3 kg/h xenon
● Fully integrated in XENON1T
● Column height: 5 m

Kr Column

Gas purification system for XENON1T

→ In between ReStoX and TPC
→ Detailed gas analysis possible

Future Upgrade: 222Rn removal system
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XENON1T: Cryogenic System

● Pulse tube refrigerators (PTRs) keep 
xenon at operation temperature (- 91° C)

● Heat load up to 50 W
(Not including the xenon gas circulation 
of the purification system)

● Two redundant PTR cooling systems
(200 W)

● Emergency liquid nitrogen (LN2) system 
for up to 48 hours of cooling
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XENON1T: The Outer Vessel & TPC

– Installation – 

Installation of the outer vessel was 
finished in February 2015!

→ Ongoing vacuum tests
      before the TPC is mounted

→ TPC design fixed

→ Construction started
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XENON1T: Xenon Cycle

ReStoX

Heat
exchanger

Circulation pump GetterG
X

e

GXe

Purification system

XENON1T
TPC

LX
e

LXe

Xenon cycle via:
● ReStoX
● Purification system
● XENON1T TPC

Heat exchanger measure the xenon flow

Xenon is cleaned with purification system

Recovery Line
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XENON1T: Background Estimations

Background calculated from MC simulations

● Full simulation of the XENON1T TPC
● Fiducial volume: 1t
● Electronic recoil rejection: 99.75%
● Background expectation in 4 – 70 pe window:

0.67 events/ton/year

Expected sensitivity (90% C.L.) for 50 GeV WIMP(PL)

Solar neutrinos:
 - Electronic recoil:                                        0.08
 - Nuclear recoil (coherent):                          0.55
2ν2β (136Xe):                                                    0.02
ER Materials:                                                 0.05
NR Materials:                                                0.24
Intrinsic (Xenon contamination):                 0.15            

Expected events in XENON1T
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XENONnT: Upgrade

Aim:

→ Increase amount of xenon  to ~7 tons

→ Sensitivity goal:  a few 10-48 cm2 @20ton-years

→ Start directly after XENON1T (~2018)

How to achieve:

→ Replace: TPC + Inner vessel

→ Remain unchanged: Cryostat, water tank         
                                        ReStoX 

→ Advantage: 
Low cost & faster update
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Summary

XENON100
→ Well tested and detailed understanding
      of the detector
→ Ready to test Dark Matter models

● Lowest exclusion limit in 2012 (SI)
● Lowest exclusion limit in 2013 for SD 

(neutrons)
● First results for Axions/ALPs interactions in 

XENON100
● AmBe source/MC matching results
● Develop and test alternative analysis 

methods, e.g. Bayesian approach
● Krypton removal technique tested for 

XENON1T
● Calibration with YBe source
● Further analysis topics are under 

investigation

XENON1T
→ XENON1T is under construction!
     

● Suppress background by a factor 100
● Increase detection probability by a larger 

amount of xenon
● Active muon veto
● Sensitive to 2x10-47cm2

● First data in 2015

Stay tuned!!!

The next level XENON - TPC for 
Dark Matter detection is coming!

                            XENONnT
→ Future upgrade for XENON1T
→ Sensitive to a few 10-48cm2
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Backup: Axion Dark Matter

Boris Bauermeister – JG|U

Event distributions: Solar axions & galactic ALPs

Solar axions Galactic ALPs

Current best limit (Edelweiss-II)

Background model Background model

Data: XENON100 Data: XENON100

Expected signal of various ALP masses for g
Ae

 = 4 x 10-12
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Backup: Correction

Electron life time of 225 days of data

Example: Light yield map from 225 days of data 137Cs
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Backup: Profile Likelihood
Full Likelihood function1) for m

χ
 and σ

χ

XENON100 measurement Additional uncertainties

Detailed view:

ε
b
 , ε

s
     – Probabilities to find an event

N
b
 , N

s
  – Expected number signal/background events

f
s
           – Normalized WIMP spectrum

f
b
          – ER background spectrum

                (Observation + MonteCarlo)

i i

Background with (k = 12) bands based on NR data 

j

Likelihood function over k-bands with nj entries each

Poisson distributed control
measurements:

Single nuisance parameter t (normal distributed) to take 
uncertainty into account:
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Backup: Water Cherenkov Muon Veto
 – Status of the water tank – 

● Water Tank construction finished

● Support building already constructed

● Increase reflectivity and wavelength shifting
● Wavelength of interest: λ < 380nm
● Foil inside the water tank
● Cladding finished

● PMT installation finished

● Calibration of the PMTs in the Muon veto:
● Diffuse light source → four diffuser balls
● Diffuser ball tests finished

● Each single PMT is calibrated by a fibre

global

individual
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