Search for Dark Matter in CMS at the LHC

Yong Yang (University of Zurich) on behalf of CMS collaboration

17 Mar 2015, MITP, Mainz "Effective theories and dark matter"

Outline

- Motivation and Introduction
 Dark matter and EFT
- CMS detector
- Dark Matter results
 - □ mono-jet, mono-lepton
 - □ tops (and relation with mono-jet)
 - □ Higgs-DM
- Outlook of RunII in CMS

Dark Matter (DM)

Many evidence for DM
 One is to explain stars' velocity
 galaxy must be more massive
 we can not see the matter → "dark matter"

DM makes up 27% of our universe

Detecting dark matter

Indirect detection Direct detection Collider experiment

Key question: How does DM interact with SM particles ?

Effective Field Theory (EFT)

EFT: Contact interaction

One step beyond EFT

When momentum transfer is << M

A short list of operators

Name	Initial state	Type	Operator
D1	qq	scalar	$rac{m_q}{M_\star^3} ar{\chi} \chi ar{q} q$
D5	qq	vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$
D8	qq	axial-vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q$
D9	qq	tensor	$\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_s(G^a_{\mu\nu})^2$

Searches at LHC have been focused on Dirac fermion

□ With the above five representative operators

Dark matter can be Majorana Fermi, Complex / Real scalar.

Covered in this talk

The CMS Detector

Total weight 14000 tons Overall diameter 15 m Overall length 28.7 m

High Field (3.8 T) **Modular Design** Exceptional **Pixel+Track** +Crystal ECAL and Muon **Systems** Particle Flow based **Reconstruction:** Electron Muon Photon Jet MET

Particles in CMS detector

Collected data and detector performance in Run I

~20 fb⁻¹ 8 TeV data for searches in this talk >96% channels of sub-detectors are good

MET performance

Events above 600 GeV, misfire of HCAL laser calibration. Above 1.5 TeV, electronic noise of HCAL

JINST 10 P02006 (2015)

- Event mis-reconstruction can cause large MET
 - Mis-functional detector channels
 - Anomalous signals (not produced by pp collisions)

Cleaning algorithms are developed to ensure control data is well described by simulation.

CMS monojet + DM search

1408.3583 (submitted to EPJC)

- Event selections:
 - \Box Leading jet p_T > 110 GeV
 - \Box At most one more jet $p_T > 30 \text{ GeV}$
 - \Box topological cuts $\Delta \phi(j_1, j_2) < 2.5$ to reduce QCD
 - Veto events with isolated leptons
- Primary bkg. estimated from data: $\Box Z(\nu\nu)$ +jets from $Z(\mu\mu)$ +jets \Box W(lv)+jets from W(µv)+jets
- Best limits with MET> 500 GeV
- Also sensitive to ADD and unparticle model

CMS Experiment at LHC, CERN Data recorded: Fri Oct 5 20:41:32 2012 CEST Run/Event: 204553 / 26729384 Lumi section: 31

Mono-jet +MET

Limits on M_{*} from DM+monojet

Set 90% CL limits on effective operator scale M* for 3 couplings for different DM mass hypotheses

DM-nucleon cross section limits from DM+monojet

Very strong limits for low DM mass scenarios for SI and SD operators

One step beyond EFT

Assume a mediating particle, s-channel Z'

DM+ monolepton

DM can couple to up and down-type quark Different $\zeta = \lambda_u \lambda_d$ are considered:

- □ =±1 maximizing interference
- □ =0, only up or only down-type coupling

Monolepton selections

Event selections:

D One electron(muon) with $p_T > 100$ (45) GeV

- **Δ**φ(I,MET) > 0.8 π
- □ 0.4< p_T / MET < 1.5

Limits on $\Lambda(M_*)$ from DM+ monolepton

Results depends strongly on ζ = λ_uλ_d
 Comparable limits to monojet search for ζ = 1

Dark matter + top-quark pairs

For (pseudo)scalar mediator, DM couples stronger to heavier quarks.

Search for DM + top-quark pairs can be beneficial

$$\frac{m_q}{M_*^3}\chi\bar{\chi}q\bar{q}$$

CMS top pair + DM (single-lepton)

CMS-PAS-B2G-14-004

Event selections:

- One isolated lepton (electron or muon)
- \square N_{jet} \ge 3, at least one b-tagged
- □ MET > 320 GeV
- □ Transverse mass M_T > 160 GeV
- $\Box \min \Delta \phi(j_{1,2} \text{ MET}) > 2.0$
- □ M^W_{T2} > 200 GeV to reduce remaining tt→2l background

Backgrounds estimated from simulation

Primary backgrounds of tt+jets and w +jets adjusted to match data in control regions

CMS top pair + DM (single-lepton) selection results

SR: MET >320 GeV

Background Source	Yield
tī	$8.2 \pm 0.6 \pm 1.9$
W	$5.2 \pm 1.7 \pm 0.6$
Single top	$2.3 \pm 1.1 \pm 1.1$
Di-boson	$0.5 \pm 0.2 \pm 0.2$
Drell-Yan	$0.3 \pm 0.3 \pm 0.1$
Total Bkg	$16.4 \pm 2.2 \pm 2.7$
Data	18
Signal	$38.3 \pm 0.7 \pm 2.1$

(Signal: $M\chi = 1 \text{ GeV}$, $M_* = 100 \text{ GeV}$)

Data agrees with expected background

CMS top pair + DM: Limits

□ First limit from CMS on scalar (quark) operator

Significant improvement compared to other type of search on the same operator

□ 30 (65) GeV for low mass DM from ATLAS monojet (W/Z) search

EFT validity

EFT is valid given Q << M (mediator mass)
 Depends on details of new physics: the mediator(s), the couplings between mediator(s) and SM/DM particles

one s-channel mediator
 largest allowed couplings $(4\pi)^{-1} \sqrt{M_*^3/m_t} > M_{\chi}/2\pi$

EFT validity

 Under assumption of one schannel mediator
 Q = M(χ,χ)

Minimal requirement on EFT validity (maximal coupling = 4π):

$$M_{\chi\chi} < 4\pi \sqrt{M_*^3/m_t}$$

90% low-mass DM (<10 GeV) events meet this.</p>

Results are more applicable to large couplings

Monojet and tops + DM

Adding top box : monojet +DM can probe the same coupling as tops + DMs

1503.00691 (Ulrich Haisch, Emanuele Re)

Monojet and tops

Higgs-portal dark matter 1404.1344 (EPJC)

- Consider Higgs boson mediating ordinary and DM particles
- Exploit VBF and associated ZH 2 jets with high M_{jj} + MET
 - ♦ Z→ (II, or bb) + MET

95% CL BR(H→inv) Obs(Exp)

VBF	0.65(0.49)	
ZH	0.81(0.83)	
VBF+ZH	0.58(0.44)	

for m_H=125 GeV

Η

Outlook for RunII

- EFT will be serving as benchmark for dark matter search.
 - $\hfill\square$ Two parameters: M_* and $M\chi$
 - Need to consider improved treatment of DM production (e.g the box-diagram in monojet)
 - □ Issue of validity of EFT remains.
- A list of simplified models are being proposed by the ATLAS/CMS dark matter forum, with lots of input from theory communities.
 - $\hfill\square$ New parameters: $M_{med\,,}\,W_{med\,,}\,M_{\chi}$ and couplings

Summary

Presented a selected lists of dark matter searches in CMS

EFT plays important roles
 Greatly simplifies the DM production
 Allow easy comparison with direct searches
 However, caveat on EFT validity

Dark matter continues to be an important new physics program at the LHC