DISCUSSION ON DM AT COLLIDERS

Yang Bai Caterina Doglioni William Shepherd Emanuele Re JoAnne Hewett + e-mail input from Antonio Boveia (ATLAS/CMS DM Forum)

25/03/2015 – MITP "Effective Theories for Dark Matter"

Questions for discussion:

1) is a comparison on this plane reasonable?

2) what uncertainties (e.g. production uncertainties) uncorrelated with non-collider results should be included in the EFT limits, and how?

3

Proposal slides from Bristol workshop (1407.8257)

Discussion on DM @ colliders - MITP Dark Matter

SIMP. MODEL REINTERPRETATION (FEEDBACK FROM DARK MALT WORKSHOP)

Discussion on DM @ colliders – MITP Dark Matter

EFT VALIDITY, TRUNCATION AND USE

Commonly used benchmark at colliders: Contact Interaction (Effective Field Theories)

Cl approximation valid if $Q_{\rm tr} < M_{\rm med}$

(minimal constraint)

Truncation procedures available (see backup, slides from this morning)

Question for discussion:

 Is this EFT/CI still a viable/useful benchmark for colliders? If so, how to make sure its caveats are known → Can/should we do something about its validity?

Discussion on DM @ colliders - MITP Dark Matter

Question for discussion:

what about experimentalists only give an EFT-like limit coming from simplified models with very high mass mediators?

MAPPING OF SIMPLIFIED MODELS AND EFTS

Question for discussion:

Is it easy for theorists to map simplified model back to an EFT?

Commonly used operators for collider searches (distinct kinematics/ SD/ID differences)

Name	Initial state	Type	Operator
C1	qq	scalar	$rac{m_q}{M_\star^2}\chi^\dagger\chiar q q$
C5	gg	scalar	$\frac{1}{4M_\star^2}\chi^\dagger\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$
D1	qq	scalar	$rac{m_q}{M_\star^3}ar\chi\chiar q q$
D5	qq	vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$
D8	qq	axial-vector	$\frac{1}{M_{\star}^2}\bar{\chi}\gamma^{\mu}\gamma^5\chi\bar{q}\gamma_{\mu}\gamma^5q$
D9	qq	tensor	$\frac{1}{M_\star^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$

Discussion on DM @ colliders - MITP Dark Matter

PRIORITIZED LIST OF SIMPLIFIED MODELS FOR ATLAS/CMS

Prioritized list of models for jet+MET search

More models for ttbar+MET searches, single top+ MET searches

Discussion on DM @ col

Further questions for discussion:

1) Should we constrain the **initial state partons** to light quarks only (done so far) or turn on heavy quarks?

2) is it useful to draw a distinction between mq-dependent / Yukawa EFT coefficients and those without (→ MFV)? Are the variants well-motivated?

> 3) what about **spin-2 mediators**? Is this covered by combinations of tensor EFT?

4) if we see **no signal**, are there **higher dimension** mono-jet-like operators that would become well-motivated?

5) how do we **proceed in case of signal** (see Emanuele's talk, other ideas?)

ATLAS Exotics Searches* - 95% CL Exclusion Status: March 2015 **ATLAS** Preliminary $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$

•Question for discussion:

Is what we provide to theorists sufficient for reinterpretation? Example: <u>http://hepdata.cedar.ac.uk/view/ins1308524</u>

signal cut-flow (not always provided)
 tabulated lists of backgrounds (different variables)
 tabulated limit plots for benchmarks

On wishlist:

4) bin-to-bin background correlations

*Only a selection of the available mass limits on new states or phenomena is shown.

Caterina Doglioni – Dark Matter at ATLAS – MITP Dark Matter

BACKUP SLIDES

EFT OPERATORS FOR MET+X SEARCHES

Name	Initial state	Type	Operator
C1	qq	scalar	$rac{m_q}{M_\star^2} \chi^\dagger \chi \bar{q} q$
C5	gg	scalar	$\frac{1}{4M_\star^2}\chi^\dagger\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$
D1	qq	scalar	$\frac{m_q}{M_\star^3} \bar{\chi} \chi \bar{q} q$
D5	qq	vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$
D8	qq	axial-vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$
D9	qq	tensor	$\frac{1}{M_\star^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_\star^3}\bar{\chi}\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$

Caterina Doglioni – Dark Matter at ATLAS – MITP Dark Matter

MONO-JET PROSPECTS AND EFT VALIDITY ATL-PHYS-PUB-2014-007

Early DM searches: what do we gain/lose from CoM increase?

- Current monojet analysis: systematically limited at low MET, statistically limited at high MET \rightarrow How high can we reach in M* at 14 TeV?
- Will we have problems with the EFT validity at a higher CoM energy?

Somehow counterintuitive results! Competing effects: $Q_{tr} < \sqrt{g_{SM}g_{DM}}M^*$ • Higher MET \rightarrow higher Q_{tr} (weak correlation: MET smeared by detector)

• Increase of reach in $M^* \rightarrow$ higher limits to start with \rightarrow increased validity

EFT VALIDITY: IS TRUNCATING A SOLUTION?

and have conservative limits at all times?

"I suppose nothing hurts you." "Only pain truncations."

EFT VALIDITY TRUNCATION PROPOSAL (ATLAS)

ATLAS: arXiv:1502.01518

q DM	Valid if
Ť.	$Q_{\rm tr} < M_{\rm med}$
	(minimal constraint)

Connect mediator mass and EFT scale ∧: need information on theory completion → coupling-dependent condition, precise and well-defined within choices

Operator(s)	Relation between $\rm M_{med}$ and $\rm M_{*}$	Coupling term range
D1	$M_{med} = \sqrt{y_q g_\chi} \sqrt{M_*^3/m_q}$	$0 < \sqrt{y_{ m q}g_\chi} < 4\pi$
C1	$M_{med} = y_q \lambda_\chi \zeta_\lambda M_*^2 / m_q$	$0 < y_{ m q} \lambda_\chi \zeta_\lambda < (4\pi)^2 \zeta_\lambda$
D5, D8, D9	$M_{med} = \sqrt{g_q g_\chi} M_*$	$0<\sqrt{g_{ m q}g_\chi}<4\pi$
D11	$M_{med} = \sqrt[3]{ag_{\chi}} M_*$	$0<\sqrt[3]{ag_\chi}<\sqrt[3]{16\pi}$
C5	$M_{med} = \sqrt{a\lambda_{\chi}\zeta_{\lambda}} M_{*}$	$0 < \sqrt{a\lambda_\chi \zeta_\lambda} < 4\sqrt{\pi \zeta_\lambda}$

Key parameter for truncation: ${\it R}_{M_{med}}^{tot}$ = fraction of events passing ${
m Q_{tr}}$ < ${
m M_{med}}$

Two equivalent procedures:

cross-section truncation, corresponding only to valid events(used in 8 TeV papers) iterative rescaling of M* limits after determining R (used in 14 TeV studies)

Antonio Boveia, Caterina Doglioni – ATLAS/CMS DM Forum – Exotics Plenary

$$\sigma^{
m signal}_{
m true\ model} > \sigma^{
m signal}_{
m corresp.\ EFT} \Big|_{E_{
m cm} < M_{
m cur}}$$

Thus we obtain conservative but reliable limits.

Davide Racco

Robust collider limits on heavy-mediator Dark Matter

 \rightarrow

3 / 11

16

Antonio Boveia, Caterina Doglioni – ATLAS/CMS DM Forum – Exotics Plenary

Comparison with the simplified model

• Blue line: from model-independent limit, with the identification

$$M_* = \frac{2\widetilde{m}}{g_{\text{DM}}}, \qquad M_{\text{cut}} = \widetilde{m}.$$

• Red lines: only from the resonant production of the mediator. The EFT limit is complemented by the limit from the resonant production.

MODELS WITH DIRECT BOSON-DM COUPLING FOR DIRAC DM

Dimension-7 operators related by gauge invariance → choose benchmark points for k1/k2 that are easy to reinterpret

1. Dimension-5 model

 $\frac{m_W^2}{\Lambda_5^3} \ \bar{\chi}\chi \ W^{+\mu}W^-_\mu + \frac{m_Z^2}{2\Lambda_5^3} \ \bar{\chi}\chi \ Z^\mu Z_\mu \qquad \mbox{Possible choice of initial benchmark}$

2. Dimension-7 models

$$\begin{aligned} \mathcal{L} &= \frac{1}{\Lambda_{C1,2}^3} \ \bar{\chi}\chi \ \sum_i k_i F_i^{\mu\nu} F_{\mu\nu}^i + \\ &\frac{1}{\Lambda_{C3,4}^3} \ \bar{\chi}\chi \ \sum_i k_i F_i^{\mu\nu} F_{\mu\nu}^{\tilde{i}} \end{aligned}$$

$$\begin{aligned} \mathcal{L} &= \frac{1}{\Lambda_{C5,6}^3} \; \bar{\chi} \gamma^5 \chi \; \sum_i k_i F_i^{\mu\nu} F_{\mu\nu}^i + \\ &\frac{1}{\Lambda_{C7,8}^3} \; \bar{\chi} \gamma^5 \chi \; \sum_i k_i F_i^{\mu\nu} F_{\mu\nu}^{\tilde{i}}, \end{aligned}$$

Possible choice of initial benchmark scalar

pseudoscalar, (can be reweighted from scalar)

$$g_{gg} = \frac{k_3}{\Lambda_7^3}$$

$$g_{WW} = \frac{2k_2}{s_w^2 \Lambda_7^3}$$

$$g_{ZZ} = \frac{1}{4s_w^2 \Lambda_7^3} \left(\frac{k_1 s_w^2}{c_w^2} + \frac{k_2 c_w^2}{s_w^2} \right)$$

$$g_{\gamma\gamma} = \frac{1}{4c_w^2} \frac{k_1 + k_2}{\Lambda_7^3}$$

$$g_{Z\gamma} = \frac{1}{2s_w c_w \Lambda_7^3} \left(\frac{k_2}{s_w^2} - \frac{k_1}{c_w^2} \right)$$

Monophoton/monoZ: no different in kinematics from choice of k1, k2 \rightarrow choose favourable x-sec point

UV-completion is possible, but not covered in Forum Validity criteria under discussion – input?

Caterina Doglioni – Dark Matter at ATLAS – MITP Dark Matter