Boost Dark Matter Discovery with a Mono-Z' Jet

Yang Bai

University of Wisconsin-Madison

Effective theories and dark matter program@MITP

March 25, 2015

In collaboration with:

Tongyan LinJames BourbeauKICP, Univ. of ChicagoUniv. of Wisconsin-Madison

I 504:xxxx

Hunt of Dark Matter

Indirect Detection

Direct Detection

Collider vs. Direct Detection

- more complicated detector
- know when to produce DM
- don't know whether it is the dark matter
- limited for very heavy mass

- less complicated detector
- wait for DM collision
- search for the dark matter
- limited for very light mass

Different Backgrounds

- Standard Model processes
- background-rich environment

- backgrounds for detectors
- cosmic rays
- small background

Model Independent Signature

Standard Signature: monojet+MET

Fermi-theory for Dark Matter

Standard Signature: monojet+MET

	— ————
$E_{\rm T}^{\rm miss}$ (GeV) \rightarrow	>500
$Z(\nu\nu)$ +jets	747 ± 96
W+jets	249 ± 22
tī	6.6 ± 3.3
$Z(\ell \ell)$ +jets	2.3 ± 1.2
Single t	
QCD multijets	1.0 ± 0.6
Diboson	36 ± 18
Total SM	1040 ± 100
Data	934

dominated by systematic errors

Historical "Discovery" of SUSY in Monojet

UAI, PLB, 139, 115 (1984)

Historical "Discovery" of SUSY in Monojet

SUSY

Channel	l Jet	2 Jets (a)	2 Jets (b)	Total
$Z \rightarrow \nu \vec{\nu}$	2.89	0.68	1.17	4.74
W + je	1.34	0.21	0.29	1.84
W + Já	0.03	0.008	0.005	0.04
W + T + e	0.35	0.10	0.15	0.60
$W + \tau + \mu$	0.12	0.03	0.05	0.20
W→τ→h	1.61	0.31	0.57	2.49
TOTAL	6.34	1.34	2.23	9.91

J. Ellis and H. Kowalski, NPB, 246, 189 (1984)

S. Ellis, R. Kleiss and W. Stirling, PLB, 158, 341 (1985)

other radiated particles from proton can be better measured UV-complete the EFT operators may lead to cleaner signatures

so far, we have considered only initial state radiation of visible particle

Dark sector could be more interesting:

- It may has its own dark U(I)'
- It may also have some nearby states

Probing Dark U(I)' at the LHC

 $\mathcal{O}_V = \frac{\overline{\chi}\gamma^\mu \chi \,\overline{u}\gamma_\mu u}{\Lambda \, 2}$

 $g_{\chi} Z'_{\mu} \overline{\chi} \gamma^{\mu} \chi$

take dark matter as a vector-like Dirac fermion

Dark matter final state radiated a Z', the signature depends on how Z' decay

Probing Dark U(I)' at the LHC

Given the fact that dark matter can be produced at the LHC and couple to Z'

Dark Z' Decay

Current-current interaction mediating Z' decays via a higher-dimensional operator

 $\frac{\tilde{c}}{\Lambda^2} \left(\phi'^{\dagger} D_{\mu} \phi' - \phi' D_{\mu} \phi'^{\dagger} \right) \left(\overline{u} \gamma^{\mu} u \right) \quad \longrightarrow \quad c \frac{M_{Z'}^2}{\Lambda^2} Z'_{\mu} \overline{u} \gamma^{\mu} u$

For a heavy Z', the signature is a 2j + MET with a dijet resonance

On the other hand, if the MET cut is stringent, we will have a boosted Z'. This Z' may just like a single Z' jet

The signature is still "mono-jet"+MET

Dark Z' Decay

 $p_T(Z') \approx M_{Z'}$

 $p_T(Z') \gg M_{Z'}$

Dark Z' Decay

For a light Z' at O(I GeV), the signature is more interesting M^2 .

$$c \, \frac{M_{Z'}^2}{\Lambda^2} \, Z'_\mu \, \overline{u} \gamma^\mu u$$

Using chiral Lagrangian

$$\overline{u}\gamma_{\mu}u \to \pi^{+}\partial_{\mu}\pi^{-} - \pi^{-}\partial_{\mu}\pi^{+} + K^{+}\partial_{\mu}K^{-} - K^{-}\partial_{\mu}K^{+}$$

$$\Gamma(Z' \to \pi^- \pi^+) = \frac{M_{Z'}}{48 \,\pi} \left(\frac{c \, M_{Z'}^2}{\Lambda^2}\right)^2 \left(1 - \frac{4 \, m_\pi^2}{M_{Z'}^2}\right)^{3/2}$$

 $c\tau_0 \approx 3 \text{ cm}$ $c = 1, M_{Z'} = 1 \text{ GeV} \text{ and } \Lambda = 1 \text{ TeV}$

Mono-Z' jet: fewer hadrons and could be long-lived

Axi-vector Interaction

Similarly for axi-vector like interaction

$$d' \, \frac{M_{Z'}^2}{\Lambda^2} \, Z'_\mu \, \overline{u} \gamma^\mu \gamma_5 u$$

Using chiral Lagrangian

$$\bar{u}\gamma_{\mu}\gamma_{5}u \to 2ig_{\rho\pi\pi} f_{\pi}(\rho_{\mu}^{+}\pi^{-} - \rho_{\mu}^{-}\pi^{+})$$

$$\Gamma(Z' \to \rho \pi) = 2 \, \Gamma(Z' \to \rho^+ \pi^-) = \frac{d'^2 \, g_{\rho \pi \pi}^2 \, f_\pi^2 \, M_{Z'}^2 \, p}{3\pi \Lambda^4} \, \left(3 + \frac{p^2}{m_\rho^2}\right)$$

 $c\tau_0 \approx 1.2 \text{ cm}$ $d' = 1, M_{Z'} = 1 \text{ GeV and } \Lambda = 1 \text{ TeV}$

it decays to three hadrons with two charged one Mono-Z' jet: fewer hadrons and could be long-lived

"Hadronic Tau"

20

Signal Efficiency

the band comes from different structures for the Z' coupling to light quarks

Signal and Background Efficiency

Production Cross Sections

Discovery Potential (Vector)

Tag-efficiency: 50% for signal, 2% for QCD

Discovery Potential (Axi-vector)

Tag-efficiency: 50% for signal, 2% for QCD

Spin-independent Cross Section

 $\sigma_{\rm SD-p}~(\rm cm^2)$

Spin-dependent Cross Section

Inelastic Dark Matter Model

Direct detection experiments are insensitive to inelastic dark matter models with a mass splitting above 1 MeV

Inelastic Dark Matter Model

U(I)' Models without Contact Interactions To have SM quarks charged under U(I)', a non-trivial anomaly cancelation is needed. Dobrescu, Frugiuele, 1404.3947 Tulin, 1404.4370

$$z_{u_R} = 1, \quad z_{d_R} = -1, \quad z_{\tau_R} = -1, \quad z_{\chi_R} = 1, \quad z_{\chi_L} = 0,$$

or
 $z_{u_R} = 1, \quad z_{d_R} = -1, \quad z_{\tau_R} = -1, \quad z_{\psi_R} = 1, \quad z_{\psi_L} = 0, \quad z_{\chi_R} = r, \quad z_{\chi_L} = r,$

$$\sigma_{\chi A}^{\rm SI} = \frac{(A - 2Z)^2}{\pi} \, \frac{g_q^2 \, g_\chi^2 \, \mu_{\chi A}^2}{4 \, M_{Z'}^4}$$

If dark matter is above 3 GeV, it is highly constrained by CRESST-II data.

Existing Bound at Tevatron

Tevatron still provides the current best constraint

Challenging for the LHC

also need to design a new mono-Z' trigger

Conclusions

- There are more collider signatures for discovering dark matter particles
- Dark matter can radiate its own charged Z' and have a mono-Z' jet
- Jet-substructure techniques can help us to tag the mono-Z' jet
- A dedicated search for mono-Z' jet events at the LHC can lead to an order-of-magnitude improvement in constraining dark matter-nucleon interactions

