Dark-matter at colliders, and QCD

Emanuele Re

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

Effective Theories and Dark Matter Mainz, 25 March 2014 1. QCD effects in monojet searches

[Haisch,Kahlhoefer,ER '13]

2. the $jj + \not\!\!\!E_T$ signature

[Haisch, Hibbs, ER '13]

1. monojets and QCD corrections

Why NLO ?

- NLO predictions for signal & backgrounds will reduce theoretical uncertainties:
 - . <u>no excess</u>: with NLO, more precise bounds
 - . potential excess: knowledge of background relevant to draw a solid conclusion

[TH input might be needed]

- <u>established excess</u>: accurate predictions for signal and background helpful to "read out" parameters
- NLO corrections ("K-factor") can be sizeable

Dark Matter / SM interaction

- ▶ all I discuss here is limited to spin-0 and spin-1 "s-channel mediated" processes
- useful to classify interactions using effective operators

$$\mathcal{O}_{V} = \frac{1}{\Lambda^{2}} \left(\bar{q} \gamma_{\mu} q \right) \left(\bar{\chi} \gamma^{\mu} \chi \right) \quad , \quad \mathcal{O}_{A} = \frac{1}{\Lambda^{2}} \left(\bar{q} \gamma_{\mu} \gamma_{5} q \right) \left(\bar{\chi} \gamma^{\mu} \gamma_{5} \chi \right)$$

$$\mathcal{O}_{S} = \frac{m_{q}}{\Lambda^{3}} \left(\bar{q} q \right) \left(\bar{\chi} \chi \right) \quad , \quad \mathcal{O}_{P} = \frac{m_{q}}{\Lambda^{3}} \left(\bar{q} \gamma_{5} q \right) \left(\bar{\chi} \gamma_{5} \chi \right)$$

$$\mathcal{O}_{G} = \frac{\alpha_{s}}{\Lambda^{3}} G_{\mu\nu}^{a} G^{a,\mu\nu} \left(\bar{\chi} \chi \right) \quad , \quad \mathcal{O}_{\tilde{G}} = \frac{\alpha_{s}}{\Lambda^{3}} \tilde{G}_{\mu\nu}^{a} G^{a,\mu\nu} \left(\bar{\chi} \gamma_{5} \chi \right)$$

- these interactions arise from "integrating out" heavy mediators
- the EFT approach has several limitations

[Busoni et al., 1307.2253,...]

[Buchmueller, Dolan, McCabe, 1308.6799]

•••

- in 1310.4491, we focussed on EFT; comprehensive study possible also for "simplified models"
 - . for instance, for V/A mediators, public code was used in [Buchmueller,Dolan,Malik,McCabe, 1407.8257]

▶ main background $Z(\rightarrow \nu \bar{\nu}) + j$ known at NLO for a long time [Giele, Glover, '92] (and will be know at NNLO in the not-too-distant future)

monojet cross-sections first computed at NLO (parton-level only) more recently

[Fox,Williams, 1211.6390]

 if interested in full event simulation while keeping NLO accuracy, need to match to parton-showers

▶ main background $Z(\rightarrow \nu \bar{\nu}) + j$ known at NLO for a long time [Giele, Glover, '92] (and will be know at NNLO in the not-too-distant future)

monojet cross-sections first computed at NLO (parton-level only) more recently

- if interested in full event simulation while keeping NLO accuracy, need to match to parton-showers
 - problem are overlapping regions!

▶ main background $Z(\rightarrow \nu \bar{\nu}) + j$ known at NLO for a long time [Giele, Glover, '92] (and will be know at NNLO in the not-too-distant future)

monojet cross-sections first computed at NLO (parton-level only) more recently

- if interested in full event simulation while keeping NLO accuracy, need to match to parton-showers
 - problem are overlapping regions!

▶ main background $Z(\rightarrow \nu \bar{\nu}) + j$ known at NLO for a long time [Giele, Glover, '92] (and will be know at NNLO in the not-too-distant future)

monojet cross-sections first computed at NLO (parton-level only) more recently

- if interested in full event simulation while keeping NLO accuracy, need to match to parton-showers
 - problem are overlapping regions!

- ▶ main background $Z(\rightarrow \nu \bar{\nu}) + j$ known at NLO for a long time [Giele,Glover, '92] (and will be know at NNLO in the not-too-distant future)
- monojet cross-sections first computed at NLO (parton-level only) more recently

- if interested in full event simulation while keeping NLO accuracy, need to match to parton-showers
- there are well-established methods to consistently match these approximations
 [POWHEG,MC@NLO]
- will show example where important effects would be missed if using pure parton-level NLO

results: cuts and scale choice (CMS)

we studied both ATLAS and CMS cuts. For CMS setup:

[CMS-PAS-EXO-12-048]

- from QCD point of view, monojet production is a process with more than one typical scale $(E_{T,\text{miss}}, p_{T,j}, m_{\chi}, m_{\chi\bar{\chi}})$
- dynamic choice for factorization and renormalization scale:

$$\mu = \xi \frac{H_T}{2} \qquad \qquad H_T = \sqrt{m_{\chi\bar\chi}^2 + p_{T,j}^2} + p_{T,j}$$

and as usual ξ varied in [1/2, 2]

fixed order \rightarrow full simulation

- uncertainties reduced by a factor of 2. Constant K-factor of 1.1 for our scale choice
- for "inclusive cuts", PS & hadronization effects visible but small (R=0.4)
- for realistic cuts (i.e. with jet veto on 3rd jet), NLOPS cross section reduced by about 40 %
- notice that with fixed-order result you don't see this effect at all (no 3rd jet)

NLO+PS vs LO+PS: V case

LOPS vs NLOPS shows that NLO/LO K-factor is partially washed away from PS effects.

 \checkmark Theoretical uncertainty is still much smaller when NLO included.

. more reliable extraction of exclusion bounds

NLO+PS vs LO+PS: G case

LOPS vs NLOPS shows that NLO/LO K-factor is partially washed away from PS effects.

 \checkmark Theoretical uncertainty is still much smaller when NLO included.

. more reliable extraction of exclusion bounds

a closer look to "mono"-jet events

- large centre-of-mass energy: soft QCD radiation can easily generate additional jets with $p_{T,j} > 30 \text{ GeV}$
- large fraction of 2-jet events: reduces impact of genuine fixed-order NLO corrections
- similarly, 3 (or more) jet events are not that rare, hence jet-veto has large impact; more so for gluon-induced processes

structure of the interaction

- different interactions will give different total x-sections
- however, p_T spectrum of signal is featureless
 - . same masses (and widths)

Ų

same shape for different *s*-channel interactions

- it seems impossible* to distinguish between O_V, O_A, O_S, O_G, ... just by using monojets
- what about looking into 2-jets events?

^{*}distinguish between coupling to gluons or vectors trying to identify the jet flavour has been explored [Agrawal,Rentala,1312.5325]

DM + 2 jets (EFT)

 we looked at the case where DM-SM interactions take place via

$$\mathcal{O}_{S} = \frac{m_{t}}{\Lambda^{3}} \left(\bar{t}t \right) \left(\bar{\chi}\chi \right) \quad \text{or} \quad \mathcal{O}_{P} = \frac{m_{t}}{\Lambda^{3}} \left(\bar{t}\gamma_{5}t \right) \left(\bar{\chi}\gamma_{5}\chi \right)$$

▶ bounds from $j + E_{T,\text{miss}}$ and $t\bar{t} + E_{T,\text{miss}}$: $\Lambda \gtrsim 150 - 170 \text{ GeV}$ [$m_{\chi} = 50 \text{ GeV}$]

$$g$$
 $\mathcal{O}_{S,P}$ $\bar{\chi}$
 t χ
 g χ
 f χ
 g χ
 f χ
 χ
 χ
 χ
 χ
 f χ
 f

- (normalized) azimuthal correlation $\Delta \Phi_{jj}$:
 - distinguish between background and signal hypothesis
 - \mathbb{P} distinguish between \mathcal{O}_S and \mathcal{O}_P (and $\mathcal{O}_{V/A}$)
- ► LHC 14 TeV w/ CMS cuts + m_{jj} > 600 GeV: $\sigma(E_{T,\text{miss}} + jj) \simeq 0.3\sigma(E_{T,\text{miss}} + j), \sigma_S \simeq \sigma_B$

DM + 2 jets (EFT)

 we looked at the case where DM-SM interactions take place via

$$\mathcal{O}_{S} = \frac{m_{t}}{\Lambda^{3}} \left(\bar{t}t \right) \left(\bar{\chi}\chi \right) \quad \text{or} \quad \mathcal{O}_{P} = \frac{m_{t}}{\Lambda^{3}} \left(\bar{t}\gamma_{5}t \right) \left(\bar{\chi}\gamma_{5}\chi \right)$$

▶ bounds from $j + E_{T,\text{miss}}$ and $t\bar{t} + E_{T,\text{miss}}$: $\Lambda \gtrsim 150 - 170 \text{ GeV}$ [$m_{\chi} = 50 \text{ GeV}$]

$$g$$
 $\mathcal{O}_{S,P}$ $\bar{\chi}$
 χ
 g \mathcal{O}_{T} χ
 g \mathcal{O}_{T} χ
 j_1 j_2 $\Delta\phi_{j_1,j_2}$

- (normalized) azimuthal correlation $\Delta \Phi_{jj}$:
 - distinguish between background and signal hypothesis
 - \mathbb{P} distinguish between \mathcal{O}_S and \mathcal{O}_P (and $\mathcal{O}_{V/A}$)
- ► LHC 14 TeV w/ tighter cuts + m_{jj} > 600 GeV: $\sigma(E_{T,\text{miss}} + jj) \simeq 0.3\sigma(E_{T,\text{miss}} + j), \sigma_S \simeq \sigma_B$

DM + 2 jets (EFT)

 we looked at the case where DM-SM interactions take place via

$$\mathcal{O}_{S} = \frac{m_{t}}{\Lambda^{3}} \left(\bar{t}t \right) \left(\bar{\chi}\chi \right) \quad \text{or} \quad \mathcal{O}_{P} = \frac{m_{t}}{\Lambda^{3}} \left(\bar{t}\gamma_{5}t \right) \left(\bar{\chi}\gamma_{5}\chi \right)$$

▶ bounds from $j + E_{T,\text{miss}}$ and $t\bar{t} + E_{T,\text{miss}}$: $\Lambda \gtrsim 150 - 170 \text{ GeV}$ [$m_{\chi} = 50 \text{ GeV}$]

- (normalized) azimuthal correlation $\Delta \Phi_{jj}$:
 - distinguish between background and signal hypothesis
 - \mathbb{C} distinguish between \mathcal{O}_S and \mathcal{O}_P (and $\mathcal{O}_{V/A}$)
- ► LHC 14 TeV w/ tighter cuts + m_{jj} > 600 GeV: $\sigma(E_{T,\text{miss}} + jj) \simeq 0.3\sigma(E_{T,\text{miss}} + j), \sigma_S \simeq \sigma_B$
- pattern visible also in heavy-top limit [G_{µν}G^{µν} χ̄χ] (although x-section overestimated (factor 10))

DM + 2 jets (full theory)

- with previous settings, EFT validity questionable
- studied specific case with simplified s-channel model:

$$\mathcal{L}_{S} = g_{\chi}^{S}\left(\bar{\chi}\chi\right)S + g_{t}^{S}\frac{m_{t}}{v}\left(\bar{t}t\right)S$$

- (pseudo)-scalar mediator, $M_{P/S}$ = $500~{\rm GeV},$ m_{χ} = $200~{\rm GeV},$ g = 1
- all constraints from LHC and cosmology satisified
- width explicitly computed (here turns out $\Gamma/M \simeq 3-6\%$)

modulation pattern survives

3. Dark-Matter heavy-flavour at the LHC

dark-matter top-quark interactions

study spin-0 mediators and LHC discovery/exclusion potential

see also [Buckley et al., 1410.6497], [Harris et al., 1411.0535]

- if MFV assumed, the more relevant DM-SM interactions are those involving heavy quarks
- ▶ we wanted to look how searches in monojets and $t\bar{t} + E_T$ compare (and how they compare with direct-detection limits)

- simplified model

$$\mathcal{L} \supset g_{\rm DM}^{S}\left(\bar{\chi}\chi\right)S + g_{\rm SM}^{S}\sum_{q} \frac{m_{q}}{v}\left(\bar{q}q\right)S + ig_{\rm DM}^{P}\left(\bar{\chi}\gamma_{5}\chi\right)P + ig_{\rm SM}^{P}\sum_{q} \frac{m_{q}}{v}\left(\bar{q}\gamma_{5}q\right)P$$

- EFT description

$$O_S^q = \frac{m_q}{\Lambda_S^3} \,\bar{\chi}\chi \,\bar{q}q \,, \qquad O_P^q = \frac{m_q}{\Lambda_P^3} \,\bar{\chi}\gamma_5\chi \,\bar{q}\gamma_5q \qquad \Lambda = \left(\frac{vM^2}{g_{\rm SM}g_{\rm DM}}\right)^{1/3}$$

- unless stated, we always keep full top-mass dependence
- for simplicity, same factors for up-down type families: $g_{SM}^{P/S} \equiv g_{u,SM}^{P/S} = g_{d,SM}^{P/S}$

available searches

EFT analysis

- bands from scale uncertainties
- monojet search currently provide the (EFT) best constraints
- difference between P and S at low m_{χ} : $\Lambda_P \simeq (3/2)^{1/3} \Lambda_S$
- $m_{\chi} \gtrsim 100 \text{ GeV: } S$ bound falls faster because of scaling property of cross-section (P: β vs S: β^3 , where $\beta = \sqrt{1 4m_{\chi}^2/m_{\chi\bar{\chi}}^2}$)

simplified model

$$\mathcal{L} \supset g_{\rm DM}^{S}\left(\bar{\chi}\chi\right)S + g_{\rm SM}^{S}\sum_{q}\frac{m_{q}}{v}\left(\bar{q}q\right)S + ig_{\rm DM}^{P}\left(\bar{\chi}\gamma_{5}\chi\right)P + ig_{\rm SM}^{P}\sum_{q}\frac{m_{q}}{v}\left(\bar{q}\gamma_{5}q\right)P$$

- 4 free parameters: g_{DM} , g_{SM} , m_{χ} , $M_{S/P}$
- width always computed: include $S \rightarrow \chi \bar{\chi}, S \rightarrow t\bar{t}, S \rightarrow gg$ and $S \rightarrow b\bar{b}$
- · this is the minimal width, within the simplified model we are considering

- ▶ no approximate NLO/LO K-factor for monojet x-section, since NLO for H/A + j with top-mass dependence is not known (if $m_t \rightarrow \infty, K \simeq 1.6$)
- > PDF: MSTW2008LO $\mu=H_T/2, \text{ where } H_T=\sqrt{m_{\chi\bar{\chi}}^2+p_{T,j}^2}+p_{T,j}$ Pythia6

scalar: results

- left: m_{χ} = 100 GeV, M_S = 300 GeV.
- right: g = 4 (not very weak)
- LHC8 can exclude $g_{\rm SM}^S\gtrsim 3$ and $g_{\rm DM}^S\gtrsim 0.2$
- weakly-coupled scalar mediators seem hard to probe
- direct-detection (LUX) much more constraining

pseudoscalar: results

- left: m_{χ} = 100 GeV, M_P = 300 GeV.
- right: g = 4 (not very weak)
- ► can probe off-shell region $(M < 2m_{\chi})$: $|\mathcal{M}(P \to \chi \bar{\chi})|^2 \sim Q^2 \quad \text{vs.} \quad |\mathcal{M}(S \to \chi \bar{\chi})|^2 \sim (Q^2 - 4m_{\chi}^2)$
- no direct-detection (spin-dependent DM-nucleon x-section is momentum suppressed)

- depending on specific parameters, the 2 searches can have similar reaches and/or become complementary
- $t\bar{t} + E_T$ not tailored to DM searches

pseudoscalar: $\not\!\!\!E_T + j$ vs $t\bar{t} + \not\!\!\!E_T$

- depending on specific parameters, the 2 searches can have similar reaches and/or become complementary
- $t\bar{t} + E_T$ not tailored to DM searches

Conclusions

- QCD corrections are/will be relevant for background, and might be also important for the signal
- a full NLO+PS simulation is useful to describe important features (2-jets region, jet-veto,...)

- mono-jet searches good for discovery or to set bounds, not to characterise a signal
- if a signal found, angular correlations can tell a lot more than just monojets

- scalar/pseudoscalar mediators: probe only relatively large couplings. Possible to improve at 14 TeV ?
- simplified models more reliable
- complementarity between different LHC searches (although monojet searches seem so far the more competitive)

