Effectively Understanding Dark Matter Searches

William Shepherd UC Santa Cruz March 25, 2015

William Shepherd, UCSC

WIMP Miracle

• If DM was in 0.01 thermal 0.001 0.0001 10-5 equilibrium, then 10-6 Comoving Number Density 10-7 its current density 10-8 10-10 is easily calculable. 10-11

10-9

Increasing $\langle \sigma_{A} v \rangle$

WIMP Search Strategies

William Shep

What's in the Middle?

 Many, many models have been proposed to explain dark matter, each with its own stabilizing symmetry and interactions with ordinary matter

– Supersymmetry, Extra Dimensions, Inert Higgs...

- Analyses of each model are useful, but far from interchangeable
- We need a more general language for these translations between experiments

Effective Field Theory

- In this case, let's imagine that whatever physics is responsible for dark matter interactions is very heavy compared to the scale our experiments can probe
- This leaves us with contact interactions between dark and ordinary matter
- Can be scalar-like or vector-like with various spin structures, of form $\frac{1}{\Lambda^2} \bar{\chi} \Gamma \chi \bar{q} \Gamma q$

DM EFT

- Every interaction must have two DM particles in it, and it must respect the rules of the Standard Model
- This leaves a fair amount of freedom, but a manageable number of possibilities to explore
- The choice of interactions will impact the behavior of dark matter at each of our dark matter experiments

EFT at Colliders

 The goal at colliders is to produce a pair of dark matter particles

Once made they won't interact with the detector

- Something we can see will have to be produced along with the DM
- The class of searches that are used to constrain these models are generically called mono-X searches

EFT at Colliders

- All the particles involved in a collision are relativistic, so that spin structures are not very important
- Interactions with light quarks and gluons are most strongly constrained
 - Some prefer heavier quarks, those are much harder to see at colliders

Collider Results vs Direct Detection

The Effective Hooperon

- Within the EFT picture, there are two main requirements to fit the Hooperon
 - Must annihilate
 efficiently enough
 - Must be able to have right relic density

Alves, Profumo, Queiroz, WS 1403.5027

Gamma Ray Lines

- Couplings of WIMPs to ordinary matter leads to higher-order couplings of WIMPs to photons and other force-carriers of the SM
- Allows the annihilation of WIMPs directly to photons, giving rise to a new gamma-ray spectral line

Gamma Ray Lines

Coogan, Profumo, WS, in preparation

Positrons and Gamma Rays

- If cosmic ray positrons are due to DM annihilations we can predict the gamma-ray line flux
- This eliminates some coupling choices as possible explanations of the Pamela/AMS excess

 M_{γ} (GeV)

Coogan, Profumo, WS, in preparation

EFT Kinetic Decoupling

 Dark matter distribution through space is set by scattering interactions after the relic density is already set

- Akin to direct detection processes

 Calculating the scattering rate in the early universe, we can find the smallest size allowed for dark matter haloes for any assumed interaction

EFT Kinetic Decoupling

EFT Shortcomings

- We assumed we can't see any new particles other than the dark matter candidate, but that certainly doesn't have to be true
- If we can see the particle mediating interactions with dark matter then the rates we calculated can be changed
 - Biggest issue is at colliders, where we are probing high energies

Light Mediators

- Bringing the mediator mass down into range can have large effects!
- This is one possible cause of 'conflict' between different DM search techniques

Fox, Harnik, Kopp, Tsai 1109.4398

Simplified Models and Mappings

 Mediator can couple either to two or one dark matter particle at a time, giving very different behavior

Giorgio Busoni^{a,1}, Andrea De Simone^{a,b,2}, Enrico Morgante^{c,3}, Antonio Riotto^{c,4}

Beyond effective field theory for dark matter searches at the LHC

O. Buchmueller,^a Matthew J. Dolan,^b and Christopher McCabe^b

Beyond effective field theory for dark matter searches at the LHC

On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC Part II: Complete Analysis for the *s*-channel

Giorgio Busoni^{a,1}, Andrea De Simone^{a,2}, Johanna Gramling^{b,3}, Enrico Morgante^{b,4}, Antonio Riotto^{b,5}

Beyond effective field theory for dark matter searches at the LHC

On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC Part II: Complete Analysis for the *s*-channel

On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC Part III: Analysis for the *t*-channel

Giorgio Busoni^{a,1}, Andrea De Simone^{a,2}, Thomas Jacques^{b,3}, Enrico Morgante^{b,4}, Antonio Riotto^{b,5}

Beyond effective field theory for dark matter searches at the LHC

On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC Part II: Complete Analysis for the *s*-channel

On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC Part III: Analysis for the *t*-channel

Characterising dark matter searches at colliders and direct detection experiments: Vector mediators

Oliver Buchmueller,^a Matthew J. Dolan,^b Sarah A. Malik^a and Christopher McCabe^{c,d}

Beyond effective field theory for dark matter searches at the LHC

On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC Part II: Complete Analysis for the *s*-channel

On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC Part III: Analysis for the *t*-channel

Characterising dark matter searches at colliders and direct detection experiments: Vector mediators

Simplified Models for Dark Matter and Missing Energy Searches at the LHC

Jalal Abdallah,¹ Adi Ashkenazi,² Antonio Boveia,³ Giorgio Busoni,⁴ Andrea De Simone,⁴ Caterina Doglioni,⁵ Aielet Efrati,⁶ Erez Etzion,² Johanna Gramling,⁵ Thomas Jacques,⁵ Tongyan Lin,⁷ Enrico Morgante,⁵ Michele Papucci,^{8,9} Bjoern Penning,^{3,10} Antonio Walter Riotto,⁵ Thomas Rizzo,¹¹ David Salek,¹² Steven Schramm,¹³ Oren Slone,² Yotam Soreq,⁶

^{3/25/2} Alessandro Vichi,^{8,9} Tomer Volansky,² Itay Yavin,^{14,15} Ning Zhou,¹⁶ and Kathryn Zurek^{8,9}

Conclusions

- These EFTs are useful tools for understanding the interplay between different searches for dark matter
- It gives sensible and attainable targets for present and future experiments
- Guides us to understand what signals and phenomena are very difficult to obtain from generic dark matter dynamics
 - Either require more subtle model building or are less likely to be truly due to dark matter dynamics
- While EFT predictions are subject to very important caveats, any violation of the expectations they lead us to would be very exciting for future experiments