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WIMP Miracle
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indirect detection (now)
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What’s in the Middle?

* Many, many models have been proposed to
explain dark matter, each with its own
stabilizing symmetry and interactions with
ordinary matter

— Supersymmetry, Extra Dimensions, Inert Higgs...

* Analyses of each model are useful, but far
from interchangeable

 We need a more general language for these
translations between experiments



Effective Field Theory

* |n this case, let’s imagine that whatever
physics is responsible for dark matter
interactions is very heavy compared to the
scale our experiments can probe

 This leaves us with contact interactions
between dark and ordinary matter

e Can be scalar-like or vector-like with various
. 1 . _
spin structures, of form F)(F)(qf‘q



DM EFT

* Every interaction must have two DM particles
in it, and it must respect the rules of the
Standard Model

* This leaves a fair amount of freedom, but a
manageable number of possibilities to explore

* The choice of interactions will impact the
behavior of dark matter at each of our dark
matter experiments



EFT at Colliders

 The goal at colliders is to produce a pair of
dark matter particles

— Once made they won’t interact with the detector

* Something we can see will have to be
produced along with the DM

* The class of searches that are used to
constrain these models are generically called

mono-X searches I
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EFT at Colliders

* All the particles involved in a collision are

relativistic, so that spin structures are not very
Important

* |[nteractions with light quarks and gluons are
most strongly constrained

— Some prefer heavier quarks, those are much
harder to see at colliders



Collider Results vs Direct Detection
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The Effective Hooperon
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Gamma Ray Lines

* Couplings of WIMPs to ordinary matter leads
to higher-order couplings of WIMPs to
photons and other force-carriers of the SM

* Allows the annihilation of WIMPs directly to
photons, giving rise to a new gamma-ray

spectral line
x @-_J'-"”.h
x ."._.-' "h_.-




Gamma Ray Lines
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Positrons and Gamma Rays

* If cosmic ray positrons

are due to DM Coogan, Profumo, WS, in preparation
annihilations We Can o | Gamma raylpredictionijorAR: PAME.L‘A
predict the gamma-ray =
line flux v om

* This eliminates some
coupling choices as
possible explanations of w '
the Pamela/AMS excess




EFT Kinetic Decoupling

* Dark matter distribution through space is set
by scattering interactions after the relic
density is already set

— Akin to direct detection processes

* Calculating the scattering rate in the early
universe, we can find the smallest size allowed
for dark matter haloes for any assumed
Interaction



EFT Kinetic Decoupling
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EFT Shortcomings

 We assumed we can’t see any new particles
other than the dark matter candidate, but that
certainly doesn’t have to be true

* |f we can see the particle mediating
interactions with dark matter then the rates
we calculated can be changed

— Biggest issue is at colliders, where we are probing
high energies



Light Mediators

* Bringing the mediator
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Simplified Models and Mappings

 Mediator can couple either to two or one dark
matter particle at a time, giving very different
behavior
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Conclusions

These EFTs are useful tools for understanding the
interplay between different searches for dark matter

It gives sensible and attainable targets for present and
future experiments

Guides us to understand what signals and phenomena
are very difficult to obtain from generic dark matter
dynamics

— Either require more subtle model building or are less likely
to be truly due to dark matter dynamics

While EFT predictions are subject to very important
caveats, any violation of the expectations they lead us to
would be very exciting for future experiments



