the hadronic running of α from the lattice

Marco Cè

based on JHEP08(2022)220 [arXiv:2203.08676]

with

A. Gérardin, G. von Hippel, H. B. Meyer, K. Miura, K. Ottnad A. Risch, T. San José, J. Wilhelm, H. Wittig

17 November 2022

The Evaluation of the Leading Hadronic Contribution to the Muon g - 2: Toward the MUonE Experiment workshop at MITP Mainz

the running of the electromagnetic coupling α

the QED coupling $\alpha = g^2/(4\pi)$ runs with energy

• in the Thomson limit $(q^2 \rightarrow 0)$, the fine-structure constant is known at 0.23 ppb $\alpha^{-1} = \alpha(0)^{-1} = 137.035\,999\,139(31)$

• at the
$$Z$$
 pole, $\hat{\alpha}^{(5)}(M_Z)^{-1}=127.955(10)$ (in the $\overline{\rm Ms}$ scheme)

$$\alpha(q^2) = \frac{\alpha}{1 - \Delta\alpha(q^2)} \qquad \Delta\alpha_{\text{had}}(q^2) = 4\pi\alpha \operatorname{Re}\bar{\Pi}(q^2), \qquad \bar{\Pi}(q^2) = \Pi(q^2) - \Pi(0)$$

main uncertainty in the Z-pole value: the hadronic contribution to the running, proportional to the subtracted hadronic vacuum polarization (HVP) function $\overline{\Pi}(q^2)$

• extracted from the exp. R-ratio data via dispersive integral (data-driven method) [Erler 1999; Davier et al. 2017; PDG 2018]

$$\operatorname{Re}\bar{\Pi}(q^{2}) = \frac{q^{2}}{12\pi}P\int_{m_{\pi}^{2}}^{\infty}\frac{R(s)}{s(s-q^{2})}\,\mathrm{d}s\,,\qquad\operatorname{Im}\bar{\Pi}(q^{2}) = \frac{R(q^{2})}{12\pi},\qquad R(s) = \frac{\sigma_{e^{+}e^{-}\to\mathrm{hadrons}}(s)}{4\pi\alpha^{2}/(3s)}$$
$$\Delta\alpha_{\mathrm{had}}^{(3)}(4\,\mathrm{GeV}^{2}) = 58.71(50)\times10^{-4},\qquad\Delta\alpha_{\mathrm{had}}^{(5)}(M_{Z}^{2}) = 0.027\,64(7),\qquad(\text{on-shell scheme})$$

or computed on the lattice

[Burger et al. 2015; Francis et al. Lattice 2015; Borsanyi et al. 2018; MC et al. Lattice 2019; MC et al. 2022]

$$\bar{\Pi}(-Q^2) = -\frac{1}{3} \int \mathrm{d}^4 x \,\mathrm{e}^{\mathrm{i}Q \cdot x} \left\langle j_\mu^\gamma(x) j_\mu^\gamma(0) \right\rangle$$

the leading-order HVP contribution to a_{μ}

• extracted from the exp. *R*-ratio data via dispersive integral (data-driven method)

$$a_{\mu}^{\text{HVP,LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} \frac{\hat{K}(s)}{s^2} R(s) \, \mathrm{d}s$$
$$\hat{K}(4m_{\pi}^2) \approx 0.63, \quad \lim_{s \to \infty} \hat{K}(s) = 1$$

• or computed on the lattice

$$a_{\mu}^{\rm HVP,LO} = 4\alpha^2 \int_0^\infty \mathrm{d}Q^2 f(Q^2) \bar{H}(-Q^2)$$

with $f(Q^2) \ge 0$ a known QED kernel

⇒ tension between lattice and data driven stronger evidence on the intermediate $a_{\mu}^{\text{HVP,LO}}$ window

[previous talks by G. Colangelo and D. Giusti]

[MC et al. (Mainz/CLS) 2022; Alexandrou et al. (ETMc) 2022]

[Lehner (RBC/UKQCD) at 5th pl. workshop Edinburg 2022; Gottlieb (Fermilab/HPQCD/MILC) at Benasque 2022]

motivation - the HVP connection

if the lattice QCD confirms the larger value of $a_{\mu}^{\rm HVP,LO}$

$$a_{\mu}^{\text{HVP,LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \frac{\hat{K}(s)}{s^2} R(s), \qquad \bar{\Pi}(-Q^2) = \frac{Q^2}{12\pi^2} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \frac{R(s)}{s(s+Q^2)}$$

with $0.63 \leq \hat{K}(s) < 1 \Rightarrow R(s)$ is larger for some s, $\bar{\Pi}(-Q^2)$ is also larger!

\Rightarrow depending on the energy bin of the increase, also $\varDelta lpha_{ m had}(M_Z^2)$ is affected

[Passera, Marciano, Sirlin 2008; Crivellin, Hoferichter, Manzari, Montull 2020; Keshavarzi, Passera, Marciano, Sirlin 2020; Colangelo, Hoferichter, Stoffer 2021]

Marco Cè (AEC & ITP, Universität Bern)

motivation - global Standard Model fits

if the hadronic cross-section increases [Keshavarzi, Passera, Marciano, Sirlin 2020]

- at higher \sqrt{s} :
 - the increase in $\Delta \alpha^{(5)}(M_Z)$ is in tension with global SM fits $\Rightarrow M_W, \sin^2 \theta_{\rm eff}^{\rm lep}, M_H$ exclude shifts for $\sqrt{s} > 0.7 \,{\rm GeV}$ at 95 % C.L.
- below 0.7 GeV (ρ-resonance region):

no significant change in $\Delta \alpha_{had}$, no tension in global SM fits, a 9% increase of the integrated cross-section would solve the $(g-2)_{\mu}$ discrepancy

⇒ tension with the experimental hadronic cross-section data!

can we use lattice computations to say something more about this?

yes, by studying the running with energy of the electromagnetic coupling!

motivation - global Standard Model fits

if the hadronic cross-section increases [Keshavarzi, Passera, Marciano, Sirlin 2020]

- at higher \sqrt{s} :
 - the increase in $\Delta \alpha^{(5)}(M_Z)$ is in tension with global SM fits $\Rightarrow M_W, \sin^2 \theta_{\rm eff}^{\rm lep}, M_H$ exclude shifts for $\sqrt{s} > 0.7 \,{\rm GeV}$ at 95 % C.L.
- below 0.7 GeV (ρ-resonance region):

no significant change in $\Delta \alpha_{had}$, no tension in global SM fits, a 9% increase of the integrated cross-section would solve the $(g-2)_{\mu}$ discrepancy

 \Rightarrow tension with the experimental hadronic cross-section data!

can we use lattice computations to say something more about this?

yes, by studying the running with energy of the electromagnetic coupling!

motivation -t-channel scattering

the leading hadronic contribution to $(g-2)_{\mu}$ from the running of α

[Lautrup, Peterman, de Rafael 1972]

$$a_{\mu}^{\text{HVP,LO}} = \frac{\alpha}{\pi} \int_{0}^{1} \mathrm{d}x \, (1-x) \Delta \alpha_{\text{had}}(-Q^2), \qquad Q^2 = \frac{x^2 m_{\mu}^2}{1-x},$$

with the integrand peaked at $x \approx 0.914$, $Q^2 \approx 0.108 \,\text{GeV}^2$.

the MUonE experiment @ CERN: measure the energy dependence of α at space-like Q^2

- independent determination of $a_{\mu}^{\text{HVP,LO}}$
- kinematic range 0 < x < 0.932, corresponding to $Q^2 \lesssim 0.14 \,\text{GeV}^2$
- 0.932 < x < 1 or $Q^2 \gtrsim 0.14 \,\text{GeV}^2$ accounts for 13 % of $a_{\mu}^{\text{HVP,LO}}$

lattice computation in intermediate region $Q^2 = 0.14 - 4 \,\text{GeV}^2$ is complementary to MUonE kinematics

[Carloni Calame et al.2015]

[Abbiendi et al.2017]

the time-momentum representation (TMR) method

uses the zero-momentum-projected Euclidean-time correlator

$$G(t) = -\frac{1}{3} \int \mathrm{d}^3 x \sum_{k=1}^3 \langle j_k(x) j_k(0) \rangle,$$

and known kernel functions $K(t, Q^2)$ and w(t)

[Bernecker, Meyer 2011; Francis et al. 2013]

$$\bar{\Pi}(-Q^2) = \int_0^\infty dt \, K(t, Q^2) G(t), \qquad K(t, Q^2) = t^2 - \frac{4}{Q^2} \sin^2\left(\frac{Qt}{2}\right),$$
$$a_\mu^{\text{HVP,LO}} = \int_0^\infty dt \, w(t) G(t), \qquad w(t) = 4\pi^2 \int_0^\infty dQ^2 \, f(Q^2) K(t, Q^2)$$

w.r.t. the traditional approach

- same statistical power
- better understanding of the systematics
 - finite-size effects correction
 (improved) bounding method
- in principle, $\bar{\Pi}(-Q^2)$ can be computed for any Q^2

similar alternative approach: time moments

[Chakraborty 2014]

the TMR method - the kernel

• the $a_{\mu}^{\rm HVP,LO}$ kernel is very long range • the $\bar{\Pi}(-Q^2)$ kernel has a shorter range depending on Q^2

$$\bar{\Pi}(-Q^2): K(t,Q^2) = t^2 - \frac{4}{Q^2} \sin^2\left(\frac{Qt}{2}\right), \qquad a_{\mu}^{\text{HVP,LO}}: w(t) = 4\pi^2 \int_0^\infty \mathrm{d}Q^2 f(Q^2) K(t,Q^2)$$

controlling the tail of the correlator \Rightarrow main source of statistical uncertainty

- the bounding method is used
- crucial to control the statistical error on $a_{\mu}^{\rm HVP,LO}$, less critical for $\bar{\Pi}(-Q^2)$

simulations of finite-size lattices \Rightarrow correction of finite-size effects

- computing FSE on the zero-momentum correlator G(t) [Lüscher 1991; Lellouch, Lüscher 2000; Meyer 2011]
- with $m_{\pi}L \approx 4$ ($L \approx 6 \, {\rm fm}$ at the physical point), about 1 % shift fully under control

extrapolation to the continuum limit, extra- or interpolation to physical meson masses

- ensembles around physical meson masses are used by almost all collaborations
- continuum-limit extrapolation with $\sim a^2$ and $\sim a^3$ effects at $Q^2 \gtrsim 2.5 \,{
 m GeV}^2$

QED and strong isospin breaking corrections

- only available on a few ensembles, work in progress \Rightarrow included as systematics [Risch, Wittig Lattice 2019; Lattice 2021]
- pprox 0.3 %, small contribution to the total error

scale setting systematics

• a 1 % uncertainty on the scale is a ≈ 2 % systematic error on $a_{\mu}^{\text{HVP,LO}}$, ≈ 1 % on $\overline{\Pi}(-1 \text{ GeV}^2)$ (Q^2 dependent) \Rightarrow a per-mille level scale determination is needed

[Lehner LGT2016; Gérardin, MC et al. 2019]

bounding method - example

$$0 \le G(t_{\text{cut}}) e^{-E_{\text{eff}}(t_{\text{cut}})(t-t_{\text{cut}})} \le G(t) \le G(t_{\text{cut}}) e^{-E_0(t-t_{\text{cut}})}, \quad \text{for } t \ge t_{\text{cut}},$$

with $aE_{eff}(t) = \log(G(t)/G(t+a))$ and E_0 ground state in the channel

Marco Cè (AEC & ITP, Universität Bern)

controlling the tail of the correlator \Rightarrow main source of statistical uncertainty

- the bounding method is used
- crucial to control the statistical error on $a_{\mu}^{\rm HVP,LO}$, less critical for $\bar{\Pi}(-Q^2)$

simulations of finite-size lattices \Rightarrow correction of finite-size effects

- computing FSE on the zero-momentum correlator G(t) [Lüscher 1991; Lellouch, Lüscher 2000; Meyer 2011]
- with $m_{\pi}L \approx 4$ ($L \approx 6 \, {\rm fm}$ at the physical point), about 1 % shift fully under control

extrapolation to the continuum limit, extra- or interpolation to physical meson masses

- ensembles around physical meson masses are used by almost all collaborations
- continuum-limit extrapolation with $\sim a^2$ and $\sim a^3$ effects at $Q^2 \gtrsim 2.5 \,{
 m GeV}^2$

QED and strong isospin breaking corrections

- only available on a few ensembles, work in progress \Rightarrow included as systematics [Risch, Wittig Lattice 2019; Lattice 2021]
- pprox 0.3 %, small contribution to the total error

scale setting systematics

• a 1 % uncertainty on the scale is a ≈ 2 % systematic error on $a_{\mu}^{\text{HVP,LO}}$, ≈ 1 % on $\overline{\Pi}(-1 \text{ GeV}^2)$ (Q^2 dependent) \Rightarrow a per-mille level scale determination is needed

[Lehner LGT2016; Gérardin, MC et al. 2019]

controlling the tail of the correlator \Rightarrow main source of statistical uncertainty

- the bounding method is used
- crucial to control the statistical error on $a_{\mu}^{\rm HVP,LO}$, less critical for $\bar{\Pi}(-Q^2)$

simulations of finite-size lattices \Rightarrow correction of finite-size effects

• computing FSE on the zero-momentum correlator G(t)

[Lüscher 1991: Lellouch, Lüscher 2000: Mever 2011]

[Lehner LGT2016; Gérardin, MC et al. 2019]

• with $m_{\pi}L \approx 4$ ($L \approx 6 \, \text{fm}$ at the physical point), about 1 % shift fully under control

extrapolation to the continuum limit, extra- or interpolation to physical meson masses

- ensembles around physical meson masses are used by almost all collaborations
- continuum-limit extrapolation with $\sim a^2$ and $\sim a^3$ effects at $Q^2 \gtrsim 2.5 \, {
 m GeV}^2$

QED and strong isospin breaking corrections

- only available on a few ensembles, work in progress \Rightarrow included as systematics [Risch, Wittig Lattice 2019; Lattice 2021]
- pprox 0.3 %, small contribution to the total error

scale setting systematics

• a 1 % uncertainty on the scale is a ≈ 2 % systematic error on $a_{\mu}^{\text{HVP,LO}}$, ≈ 1 % on $\overline{\Pi}(-1 \text{ GeV}^2)$ (Q^2 dependent) \Rightarrow a per-mille level scale determination is needed

correction of finite-size effects

added to the I = 1 correlator $G^{33}(t)$, with two different strategies and $t_i = (m_{\pi}L/4)^2/m_{\pi}$ [Gérardin, MC *et al.* 2019] $t < t_i$: HP method with $\vec{n}^2 \le 3$, with the size of the $\vec{n}^2 = 3$ level included as a systematic error $t > t_i$: average of MLL-GS and HP methods, with the half-difference included as an extra systematic error \Rightarrow a model is used only for the small correction $G^{33}(t, L) - G^{33}(t, \infty)$

explicit check of FSE with two pair of ensembles at different volume and otherwise identical simulation parameters

- H105 and N101 at $m_{\pi} \approx 280 \, {\rm MeV}$
- H200 and N202 at the SU(3)-symmetric point

we observe a good agreement between the MLL-GS and HP methods, especially for $t \ge 2 \text{ fm}$, with the two methods relying on very different input \Rightarrow robustness of the evaluation of finite size effects

correction of finite-size effects – Hansen-Patella (HP) method

series expansion in $\exp\{-|\vec{n}|m_{\pi}L\}, \vec{n}^2 = 1, 2, 3, 6, ...$

[Hansen, Patella 2019; 2020]

- implementation by K. Miura
- neglects $\exp\{-1.93m_{\pi}L\}$ contributions fast convergence at short and medium distances
- input: forward Compton amplitude, $F_{\pi}(Q^2)$ monopole ansatz with $M^2 = 0.517(23) \,\text{GeV}^2 + 0.647(30) m_{\pi}^2$

[[]Brommel et al. 2007]

controlling the tail of the correlator \Rightarrow main source of statistical uncertainty

- the bounding method is used
- crucial to control the statistical error on $a_{\mu}^{\rm HVP,LO}$, less critical for $\bar{\Pi}(-Q^2)$

simulations of finite-size lattices \Rightarrow correction of finite-size effects

• computing FSE on the zero-momentum correlator G(t)

[Lüscher 1991: Lellouch, Lüscher 2000: Mever 2011]

[Lehner LGT2016; Gérardin, MC et al. 2019]

• with $m_{\pi}L \approx 4$ ($L \approx 6$ fm at the physical point), about 1 % shift fully under control

extrapolation to the continuum limit, extra- or interpolation to physical meson masses

- ensembles around physical meson masses are used by almost all collaborations
- continuum-limit extrapolation with $\sim a^2$ and $\sim a^3$ effects at $Q^2 \gtrsim 2.5 \, {
 m GeV}^2$

QED and strong isospin breaking corrections

- only available on a few ensembles, work in progress \Rightarrow included as systematics [Risch, Wittig Lattice 2019; Lattice 2021]
- pprox 0.3 %, small contribution to the total error

scale setting systematics

• a 1 % uncertainty on the scale is a ≈ 2 % systematic error on $a_{\mu}^{\text{HVP,LO}}$, ≈ 1 % on $\overline{\Pi}(-1 \text{ GeV}^2)$ (Q^2 dependent) \Rightarrow a per-mille level scale determination is needed

controlling the tail of the correlator \Rightarrow main source of statistical uncertainty

- the bounding method is used
- crucial to control the statistical error on $a_{\mu}^{\rm HVP,LO}$, less critical for $\bar{\Pi}(-Q^2)$

simulations of finite-size lattices \Rightarrow correction of finite-size effects

- computing FSE on the zero-momentum correlator *G*(*t*)
- with $m_{\pi}L \approx 4$ ($L \approx 6 \, \text{fm}$ at the physical point), about 1 % shift fully under control

extrapolation to the continuum limit, extra- or interpolation to physical meson masses

- ensembles around physical meson masses are used by almost all collaborations
- continuum-limit extrapolation with $\sim a^2$ and $\sim a^3$ effects at $Q^2 \gtrsim 2.5 \, {
 m GeV}^2$

QED and strong isospin breaking corrections

- only available on a few ensembles, work in progress \Rightarrow included as systematics (Risch, Wittig Lattice 2019; Lattice 2021)
- pprox 0.3 %, small contribution to the total error

scale setting systematics

a 1 % uncertainty on the scale is a ≈ 2 % systematic error on a^{HVP,LO}_μ, ≈ 1 % on Π
(-1 GeV²) (Q² dependent) ⇒ a per-mille level scale determination is needed

[Lehner LGT2016; Gérardin, MC et al. 2019]

[Lüscher 1991: Lellouch, Lüscher 2000; Mever 2011]

Marco Cè (AEC & ITP, Universität Bern)

extrapolation results

at $Q^2 = 1.0 \,\mathrm{GeV}^2$

controlling the tail of the correlator \Rightarrow main source of statistical uncertainty

- the bounding method is used
- crucial to control the statistical error on $a_{\mu}^{\rm HVP,LO}$, less critical for $\bar{\Pi}(-Q^2)$

simulations of finite-size lattices \Rightarrow correction of finite-size effects

- computing FSE on the zero-momentum correlator G(t)
- with $m_{\pi}L \approx 4$ ($L \approx 6 \, \text{fm}$ at the physical point), about 1 % shift fully under control

extrapolation to the continuum limit, extra- or interpolation to physical meson masses

- ensembles around physical meson masses are used by almost all collaborations
- continuum-limit extrapolation with $\sim a^2$ and $\sim a^3$ effects at $Q^2 \gtrsim 2.5 \, {
 m GeV}^2$

QED and strong isospin breaking corrections

- only available on a few ensembles, work in progress \Rightarrow included as systematics [Risch, Wittig Lattice 2019; Lattice 2021]
- pprox 0.3 %, small contribution to the total error

scale setting systematics

• a 1 % uncertainty on the scale is a ≈ 2 % systematic error on $a_{\mu}^{\text{HVP,LO}}$, ≈ 1 % on $\overline{\Pi}(-1 \text{ GeV}^2)$ (Q^2 dependent) \Rightarrow a per-mille level scale determination is needed

[Lehner LGT2016; Gérardin, MC et al. 2019]

[Lüscher 1991: Lellouch, Lüscher 2000; Mever 2011]

Marco Cè (AEC & ITP, Universität Bern)

controlling the tail of the correlator \Rightarrow main source of statistical uncertainty

- the bounding method is used
- crucial to control the statistical error on $a_{\mu}^{\rm HVP,LO}$, less critical for $\bar{\Pi}(-Q^2)$

simulations of finite-size lattices \Rightarrow correction of finite-size effects

- computing FSE on the zero-momentum correlator G(t)
- with $m_{\pi}L \approx 4$ ($L \approx 6 \, \text{fm}$ at the physical point), about 1 % shift fully under control

extrapolation to the continuum limit, extra- or interpolation to physical meson masses

- ensembles around physical meson masses are used by almost all collaborations
- continuum-limit extrapolation with $\sim a^2$ and $\sim a^3$ effects at $Q^2 \gtrsim 2.5 \, {\rm GeV}^2$

QED and strong isospin breaking corrections

- only available on a few ensembles, work in progress \Rightarrow included as systematics [Risch, Wittig Lattice 2019; Lattice 2021]
- pprox 0.3 %, small contribution to the total error

scale setting systematics

• a 1 % uncertainty on the scale is a ≈ 2 % systematic error on $a_{\mu}^{\text{HVP,LO}}$, ≈ 1 % on $\overline{\Pi}(-1 \text{ GeV}^2)$ (Q^2 dependent) \Rightarrow a per-mille level scale determination is needed

[Lehner LGT2016; Gérardin, MC et al. 2019]

[Lüscher 1991: Lellouch, Lüscher 2000; Mever 2011]

controlling the tail of the correlator \Rightarrow main source of statistical uncertainty

- the bounding method is used
- crucial to control the statistical error on $a_{\mu}^{\rm HVP,LO}$, less critical for $\bar{\Pi}(-Q^2)$

simulations of finite-size lattices \Rightarrow correction of finite-size effects

- computing FSE on the zero-momentum correlator G(t)
- with $m_{\pi}L \approx 4$ ($L \approx 6 \, \text{fm}$ at the physical point), about 1 % shift fully under control

extrapolation to the continuum limit, extra- or interpolation to physical meson masses

- ensembles around physical meson masses are used by almost all collaborations
- continuum-limit extrapolation with $\sim a^2$ and $\sim a^3$ effects at $Q^2 \gtrsim 2.5 \, {\rm GeV}^2$

QED and strong isospin breaking corrections

- only available on a few ensembles, work in progress \Rightarrow included as systematics [Risch, Wittig Lattice 2019; Lattice 2021]
- pprox 0.3 %, small contribution to the total error

scale setting systematics

• a 1 % uncertainty on the scale is a ≈ 2 % systematic error on $a_{\mu}^{\text{HVP,LO}}$, ≈ 1 % on $\overline{\Pi}(-1 \text{ GeV}^2)$ (Q^2 dependent) \Rightarrow a per-mille level scale determination is needed

[Lehner LGT2016; Gérardin, MC et al. 2019]

[Lüscher 1991: Lellouch, Lüscher 2000; Mever 2011]

running with energy - results

running with energy - rational approximation

the running is obtained varying Q^2 in the TMR kernel \Rightarrow each Q^2 choice is a different fit we present the results

- tabulated for selected values of Q^2 up to $7\,{
 m GeV}^2$
- with a rational approximation that interpolates to other values of Q^2

$$\bar{\Pi}(-Q^2) \approx R_M^N(Q^2) = \frac{\sum_{j=0}^M a_j Q^{2j}}{1 + \sum_{k=1}^M b_k Q^{2k}}$$

with M = N = 3 and $a_0 = 0$, by solving the over-constrained system via a least-squares fit for 0.1 < x < 7

$$\bar{\Pi}(-Q^2) \approx \frac{0.109\,4(23)\,x + 0.093(15)\,x^2 + 0.003\,9(6)\,x^3}{1 + 2.85(22)\,x + 1.03(19)\,x^2 + 0.016\,6(12)\,x^3}\,, \qquad x = \frac{Q^2}{\mathrm{GeV}^2}$$

- the correlation between coefficients is provided
- the rational approximations are provided also for the derivatives w.r.t. the meson masses

running with energy – lepton-inspired two-parameter approximation for $Q^2 = -t > 0$,

$$\bar{\Pi}(-Q^2) \approx \frac{k}{4\pi\alpha} \left\{ -\frac{5}{9} + \frac{4M}{3Q^2} + \left(\frac{4M^2}{3Q^4} - \frac{3M}{Q^2} - \frac{1}{6}\right) \frac{2}{\sqrt{1 + 4M/Q^2}} \log \left| \frac{1 - \sqrt{1 + 4M/Q^2}}{1 + \sqrt{1 + 4M/Q^2}} \right| \right\}$$

PRELIMINARY!

uncorrelated fit describes the data within better than $\pm 1\,\%$ for $0.1\,{\rm GeV^2} < Q^2 < 7\,{\rm GeV^2}$ with

$$k = 0.006\,96(12)$$

 $M = [0.212\,2(35)\,\text{GeV}]^2$

rational approximation with N = M = 3 (six parameters) is more precise

running with energy - summary of systematics

running with energy - comparison

running with energy – as function of x

where $Q^2 = rac{x^2 m_\mu^2}{1-x}$

running to M_{7}

we use the Euclidean split technique (or Adler function approach)

[Chetyrkin et al. 1996; Eidelman et al. 1999, Jegerlehner 2008]

)

$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = \Delta \alpha_{\rm had}^{(5)}(-Q_0^2) + \left[\Delta \alpha_{\rm had}^{(5)}(-M_Z^2) - \Delta \alpha_{\rm had}^{(5)}(-Q_0^2)\right] + \left[\Delta \alpha_{\rm had}^{(5)}(M_Z^2) - \Delta \alpha_{\rm had}^{(5)}(-M_Z^2)\right]_{\rm pQCD}$$

• $\Delta \alpha_{had}^{(5)}(-Q_0^2)$ with Q_0^2 between 3 and 7 GeV² is evaluated on the lattice

$$\Delta \alpha_{\rm had}^{(5)}(-5\,{\rm GeV^2}) = 0.007\,16(9)$$

•
$$\left[\Delta \alpha_{\text{had}}^{(5)}(-M_Z^2) - \Delta \alpha_{\text{had}}^{(5)}(-Q_0^2)\right]$$
 from either pQCD or *R*-ratio data (KNT18)
 $\left[\Delta \alpha_{\text{had}}^{(5)}(-M_Z^2) - \Delta \alpha_{\text{had}}^{(5)}(-5 \,\text{GeV}^2)\right] = 0.020\,53(11)$ or $0.020\,66(9)$

• $[\Delta \alpha_{\text{had}}^{(5)}(M_Z^2) - \Delta \alpha_{\text{had}}^{(5)}(-M_Z^2)]_{\text{pQCD}} = 0.000\,045(2)$ has a negligible error

[Jegerlehner 1986, 2020]

using pQCD \Rightarrow result independent from *R*-ratio input

$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = 0.027\,73(15)$$

running to $M_{Z}\,{\rm -}\,{\rm results}$

running to M_Z – results and comparison

conclusions

we computed on the lattice the HVP contribution to the running of α

- with sub-percent statistical errors
- bounding method helps at small Q^2 correction for finite-size effects is essential

$$\Delta \alpha_{\text{had}}^{(5)}(-Q^2) = 0.007\,16(9)$$
 at $Q^2 = 5\,\text{GeV}^2$

- approaching the precision of the data-driven estimate up to 3.5σ tension with the data-driven estimate
- consistent with the lattice results for the intermediate $a_{\mu}^{\rm HVP,LO}$ window
- precision limited by current scale setting on CLS ensembles

full correction for isospin breaking effects still missing

[work in progress: Risch, Wittig Lattice 2019; Lattice 2021]

and the running up to M_{Z}

$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = 0.027\,73(15)$$

- employing the Euclidean split technique and pQCD for the running at large $Q^2 \Rightarrow$ no R-ratio data dependency
- lattice contributes to $pprox 25\,\%$ of the value and up to $50\,\%$ of the error
- the result agrees with ones based on the R-ratio within the uncertainties
- lattice input does not introduce a tension in global EW fits

conclusions

we computed on the lattice the HVP contribution to the running of α

- with sub-percent statistical errors
- bounding method helps at small Q^2 correction for finite-size effects is essential

$$\Delta \alpha_{\text{had}}^{(5)}(-Q^2) = 0.007\,16(9)$$
 at $Q^2 = 5\,\text{GeV}^2$

- approaching the precision of the data-driven estimate up to 3.5σ tension with the data-driven estimate
- consistent with the lattice results for the intermediate $a_{\mu}^{\rm HVP,LO}$ window
- precision limited by current scale setting on CLS ensembles
- full correction for isospin breaking effects still missing [work in progress: Risch, Wittig Lattice 2019; Lattice 2021] and the running up to M_Z

$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = 0.027\,73(15)$$

- employing the Euclidean split technique and pQCD for the running at large $Q^2 \Rightarrow$ no *R*-ratio data dependency
- lattice contributes to ≈ 25 % of the value and up to 50 % of the error
- the result agrees with ones based on the R-ratio within the uncertainties
- lattice input does not introduce a tension in global EW fits

outlook

implement changes already used for the muon g - 2 window result

- mostly the same dataset
- two extra ensembles at the finer lattice spacing ($a \approx 0.039$ fm)
- alternative set of renormalization and improvement coefficients
- variety of fits combined with the Akaike Information Criterion (AIC)

and add full isospin breaking corrections, improve the scale setting

computing higher Q^2 (up to M_Z^2) directly on the lattice? using the discrete Adler function $\Delta_2(Q^2) = \Pi(-Q^2) - \Pi(-Q^2/4)$

- naively, $\Lambda \ll |Q| \ll a^{-1}$
- thermal effects are $\sim (\pi T/Q)^4 \Rightarrow$ using finite-temperature ensembles at $T = Q/8\pi$
- such that only $T \ll |Q| \ll a^{-1}$ needs to be satisfied
- different from step scaling with a finite-volume scheme \Rightarrow the volume is parametrically large, e.g. $L \approx 4/T$
- similar proposal from BMWc

[Heitger, Joswig 2021: Fritzsch 2018]

[work in progress: Risch, Wittig Lattice 2019; Lattice 2021] [e.g. Bali et al. (RQCD) arXiv:2211.03744]

[MC, Harris, Meyer, Toniato, Török 2021; Harris Lattice 2021]

[Frech Lattice 2021; Lattice 2022]

[MC et al. (Mainz/CLS) 2022]

thanks for your attention!

questions?

backup slides

the running of the electroweak mixing angle

the electroweak mixing (Weinberg) angle θ_W parametrizes the mixing between the SU(2)_L and U(1)_Y sectors of the Standard Model. At tree level,

$$\sin^2 \hat{\theta}_{\rm W} = \frac{{g'}^2}{g^2 + {g'}^2}, \quad {\rm or} \quad \sin^2 \theta_{\rm W} = 1 - \frac{M_W^2}{M_Z^2},$$

where g and g' are the $SU(2)_L$ and $U(1)_Y$ coupling respectively

- Z vector coupling $v_f = T_f 2Q_f \sin^2 \theta_f^{\text{eff}}$
- weak charge of the proton $Q_W(p) \sim 1 4 \sin^2 \theta_{\rm W}(0)$

like the couplings, the mixing angle is renormalization scheme and energy dependent

$$\sin^2 \theta_{\rm W}(Q) = \sin^2 \theta_{\rm W}(0) \left[1 + \Delta \sin^2 \theta_{\rm W}(Q^2) \right],$$

and the leading hadronic contribution to the running

[Jegerlehner 1986; 2011]

$$\Delta_{\rm had} \sin^2 \theta_{\rm W}(Q^2) = -\frac{4\pi \alpha}{\sin^2 \theta_{\rm W}} \bar{\Pi}^{Z\gamma}(Q^2), \qquad \bar{\Pi}^{Z\gamma}(Q^2) = \Pi^{Z\gamma}(Q^2) - \Pi^{Z\gamma}(0),$$

is proportional to the subtracted $Z\gamma$ -mixing HVP function

Marco Cè (AEC & ITP, Universität Bern)

the running of the electroweak mixing angle

the running to the Thomson limit is affected by non-perturbative QCD physics that

can be extracted from hadronic cross-section data

$$\sin^2 \hat{\theta}_{\rm W}(0) = 0.238\,68(5)(2), \qquad ({\rm \overline{MS}\ scheme})$$

cheme)

[Burger et al. 2015; Francis et al. 2015; Gülpers et al. 2015]

with additional input for flavor separation

- or can be computed on the lattice
 - \Rightarrow lattice easily provides flavour separation

Marco Cè (AEC & ITP, Universität Bern)

[Erler, Ferro-Hernández 2017]

he running of the electroweak mixing angle - results

the running of the electroweak mixing angle - conclusions

we present a result for the $Z\gamma$ -mixing HVP contribution to the running of $\sin^2 \theta_{\rm W}$

$$\bar{\Pi}^{08}(-Q^2) = \frac{0.0217(11)x + 0.0151(12)x^2}{1 + 2.93(8)x + 2.15(12)x^2}, \qquad x = \frac{Q^2}{\text{GeV}^2}$$

that has a finite limit for large Q^2

$$\bar{II}^{08}(-Q^2) = 0.007\,04(17) \quad \text{for } Q^2 \gtrsim 7\,\mathrm{GeV}^2$$

- using flavor separation on the lattice
- most precise determination to date

ensembles

from the CLS initiative

[Bruno et al. 2015, Bruno, Korzec, Schaefer 2017]

tree-level Lüscher-Weisz gauge action, non-perturbatively $\mathcal{O}(a)$ -improved Wilson fermions, open BCs in time, except B450, N451, D450, and E250 that have periodic BCs in time,

	T/a	L/a	t_0^{sym}/a^2	<i>a</i> [fm]	<i>L</i> [fm]	$m_{\pi}, m_K [{ m MeV}]$		$m_{\pi}L$	#cnfg (con., dis.)	
H101	96	32	2.860	0.086	2.8	415		5.8	2 000	-
H102	96	32			2.8	355	440	5.0	1 900	1 900
H105	96	32			2.8	280	460	3.9	1 000	1 000
N101	128	48			4.1	280	460	5.8	1 1 5 5	1155
C101	96	48			4.1	220	470	4.6	2 000	2 000
B450	64	32	3.659	0.076	2.4	415		5.1	1 600	-
S400	128	32			2.4	350	440	4.3	1 720	1720
N451	128	48			3.7	285	460	5.3	1 000	1 000
D450	128	64			4.9	215	475	5.3	500	500
H200	96	32	5.164	0.064	2.1	420		4.4	1 980	-
N202	128	48			3.1	410		6.4	875	-
N203	128	48			3.1	345	440	5.4	1 500	1 500
N200	128	48			3.1	285	465	4.4	1 695	1 6 9 5
D200	128	64			4.1	200	480	4.2	2 0 0 0	1 000
E250	192	96			6.2	130	490	4.1	485	485
N300	128	48	8.595	0.050	2.4	420		5.1	1 680	-
N302	128	48			2.4	345	460	4.2	2 1 9 0	2190
J303	192	64			3.2	260	475	4.2	1 0 4 0	1 0 4 0
E300	192	96			4.8	175	490	4.3	600	600

ensemble landscape

lattice correlators

on $N_{\rm f} = 2 + 1$ ensembles from the CLS initiative

[Bruno et al. 2015, Bruno, Korzec, Schaefer 2017]

with $SU(3)_F$ notation, in the isospin-symmetric limit (light quark ℓ : either *u* or *d*):

$$I = 1 \text{ contribution:} \qquad G_{\mu\nu}^{33}(x) = \frac{1}{2} C_{\mu\nu}^{\ell,\ell}(x),$$
$$I = 0 \text{ contribution:} \qquad G_{\mu\nu}^{88}(x) = \frac{1}{2} \left[C_{\mu\nu}^{\ell,\ell}(x) + 2 D_{\mu\nu}^{\ell-s,\ell-s}(x) \right]$$

$$Z_{-\gamma \text{ mixing:}} \qquad \qquad G_{\mu\nu}^{08}(x) = \frac{1}{2\sqrt{3}} \Big[C_{\mu\nu}^{\ell,\ell}(x) + 2C_{\mu\nu}(x) + D_{\mu\nu}^{2\ell+s,\ell-s}(x) \Big],$$

where the connected and disconnected Wick's contractions are

$$C^{f_1,f_2}_{\mu\nu} = -\left\langle \begin{array}{c} \gamma_{\mu} & & \\$$

and the relevant correlators are given by

(note: $G_{con}^{\ell} = 2G^{33}$ and $G_{con}^{s} = 3G_{con}^{88} - G^{33}$)

$$G^{\gamma\gamma} = G^{33} + \frac{1}{3}G^{88} + \frac{4}{9}C^{c,c},$$
$$G^{Z\gamma} = \left(\frac{1}{2} - \sin^2\theta_{\rm W}\right)G^{\gamma\gamma} - \frac{1}{6\sqrt{3}}G^{08} + \frac{4}{9}\left(\frac{3}{8} - \sin^2\theta_{\rm W}\right)C^{c,c}.$$

Marco Cè (AEC & ITP, Universität Bern)

renormalization and $\mathcal{O}(a)$ improvement

for the local current

[Bhattacharya et al. 2006, [...], Gérardin, Harris, Meyer 2018]

$$\begin{split} V_{\mu,R}^{3} &= Z_{V} \Big(1 + 3\bar{b}_{V}am_{q}^{\text{av}} + b_{V}am_{q,\ell} \Big) V_{\mu}^{3,I} = Z_{3}V_{\mu}^{3,I}, \\ & \left(\begin{matrix} V_{\mu}^{8} \\ V_{\mu}^{0} \end{matrix} \right)_{R} = Z_{V} \begin{pmatrix} 1 + 3\bar{b}_{V}am_{q}^{\text{av}} + b_{V}\frac{a(m_{q,\ell} + 2m_{q,s})}{3} & \left(\frac{b_{V}}{3} + f_{V}\right)\frac{2a(m_{q,\ell} - m_{q,s})}{\sqrt{3}} \\ & r_{V}d_{V}\frac{a(m_{q,\ell} - m_{q,s})}{\sqrt{3}} & r_{V}1 + (3\bar{d}_{V} + d_{V})am_{q}^{\text{av}} \end{pmatrix} \begin{pmatrix} V_{\mu}^{8} \\ V_{\mu}^{0} \end{pmatrix}^{I} = \begin{pmatrix} Z_{8} & Z_{80} \\ Z_{08} & Z_{0} \end{pmatrix} \begin{pmatrix} V_{\mu}^{8} \\ V_{\mu}^{0} \end{pmatrix}^{I} \end{split}$$

where

$$V^{a,I}_{\mu} = V^{a}_{\mu} + ac_{\nu}\partial_{0}T^{a}_{0\mu}, \qquad V^{0,I}_{\mu} = V^{0}_{\mu} + a\bar{c}_{\nu}\partial_{0}T^{0}_{0\mu}.$$

while for the conserved current

$$V^{a}_{\mu,R} = V^{a}_{\mu} + ac^{cs}_{V}\partial_{0}T^{a}_{0\mu}, \qquad V^{0}_{\mu,R} = V^{0}_{\mu} + a\bar{c}^{cs}_{V}\partial_{0}T^{0}_{0\mu}$$

 \Rightarrow we use only the conserved vector current for the flavor-singlet component, and we set

$$f_V = 0, \qquad \bar{c}_V = c_V \qquad \bar{c}_V^{\rm cs} = c_V^{\rm cs}.$$

bounding method

$$G(t) = \sum_{n=0}^{\infty} \frac{Z_n^2}{2E_n} e^{-E_n t}$$

for a correlator with positive spectral decomposition, and $t > t_c$

$$0 \le G(t_{\rm c}) {\rm e}^{-E_{\rm eff}(t_{\rm c})(t-t_{\rm c})} \le G(t) \le G(t_{\rm c}) {\rm e}^{-E_0(t-t_{\rm c})},$$

where $E_{\rm eff}(t) = -(1/a) \log G(t+a)/G(t)$ is the effective mass and E_0 is the ground state in the given channel, depending on the volume L^3 and on m_{π} • for I = 1, $E_0 = m_{\rho}$ or $E_{2\pi}$, • for I = 0, $E_0 = m_{\omega} \approx m_{\rho}$ or $E_{3\pi}$

(

improved bounding method:

[Lehner LGT2016; Gérardin, MC et al. 2019]

if $E_0, \ldots E_N$ and $Z_0, \ldots Z_{N-1}$ are available, one can bound the subtracted correlator

$$\tilde{G}(t) = G(t) - \sum_{n=0}^{N-1} \frac{Z_n^2}{2E_n} e^{-E_n t},$$

that approaches zero faster \Rightarrow dedicated spectroscopy effort

Marco Cè (AEC & ITP, Universität Bern)

extrapolation to the physical point

a combined fit of $\bar{\varPi}^{33}$, $\bar{\varPi}^{88}$ and $\bar{\varPi}^{08}$, with two discretization each (one discr. for $\bar{\varPi}^{08}$) is used

$$\begin{split} \bar{\Pi}^{33,X}(a^2/t_0^{\rm sym},\phi_2,\phi_4) &= \bar{\Pi}^{\rm sym} + \delta_2^X a^2/t_0^{\rm sym} + \gamma_1^{33}(\phi_2 - \phi_2^{\rm sym}) + \gamma_{\log}^{33}\log\phi_2/\phi_2^{\rm sym} + \eta_1(\phi_4 - \phi_4^{\rm sym}), \\ \bar{\Pi}^{88,X}(a^2/t_0^{\rm sym},\phi_2,\phi_4) &= \bar{\Pi}^{\rm sym} + \delta_2^X a^2/t_0^{\rm sym} + \gamma_1^{88}(\phi_2 - \phi_2^{\rm sym}) + \gamma_2^{88}(\phi_2 - \phi_2^{\rm sym})^2 + \eta_1(\phi_4 - \phi_4^{\rm sym}), \\ \bar{\Pi}^{08,{\rm CL}}(a^2/t_0^{\rm sym},\phi_2,\phi_4) &= \lambda_1(\phi_4 - 3/2\phi_2), \end{split}$$

where X = CL or LL, $\phi_2 = 8t_0 m_{\pi}^2$, $\phi_4 = 8t_0 (m_K^2 + m_{\pi}^2/2)$.

- we add also a $\delta_3^X a^3 / (t_0^{\text{sym}})^{3/2} \Rightarrow$ better fit at large $Q^2 \Rightarrow$ smooth transition around $Q^2 = 2.5 \,\text{GeV}^2$
- $\sim a^2 \log a$ term? [MC, Harris, Meyer, Toniato, Török 2021] \Rightarrow assuming free theory coefficient, up to 0.4 % downward shift, within the statistical error
- extrapolation of the charm contribution done separately

definition of the isosymmetric QCD world

we set the scale with

[Bruno, Korzec, Schaefer 2015]

$$\sqrt{8t_0} = 0.415(4)(2) \,\mathrm{fm}$$

and we define the isospin symmetric point as

[discussion at the 4th Muon g - 2 workshop at KEK (virtual), 2021]

$$m_{\pi} = m_{\pi^0} = 134.976 \,8 \,\mathrm{MeV}$$
$$m_K^2 - \frac{m_{\pi}^2}{2} = \frac{m_{K^{\pm}}^2 + m_{K^0}^2 - m_{\pi^{\pm}}^2}{2} \implies m_K = 495.011 \,\mathrm{MeV}$$

and the valence charm quark mass is tuned to reproduce the physical D_s meson mass

[Gérardin et al. 2019]

we also publish the derivatives w.r.t. ϕ_2 and $\phi_4 \Rightarrow m_{\pi}, m_K$