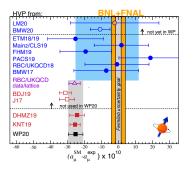


Lattice and Dispersive Models Input for MUonE Analysis

Javad Komijani

With: Anian Altherr, Roman Gruber, Marina Marinkovic, & Paola Tavella



Contribution	value $\times 10^{11}$	
QED	116584718.931(104)	
Electroweak	153.6(1.0)	
HVP	6845(40)	
HLbL	92(18)	
Total SM value	116591810(43)	
Difference: $a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}}$	251(59)	
[arXiv:{2104.03281, 2006.04822, 2203.15810}]		

- HVP is the main contributor to the total theory uncertainty
- Lots of activities in lattice QCD to improve the precision
- • •
- Lattice QCD, strong isospin breaking & QED:
 - direct effects in HVP of order 1%, yet need to be measured precisely...
 - indirect effects through scale setting quantities
- MUonE experiment as an alternative method

JK (ETH)

2 Analysis of a mock data for HVP using Padé based fit functions

Data Driven Approach: Dispersive Methods

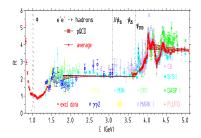
• Relation between the $\mathcal{R}e \Pi(Q^2)$ and $\mathcal{I}m \Pi(Q^2)$:

$$\Pi(Q^2) - \Pi(0) = \frac{Q^2}{\pi} \int_0^\infty ds \frac{\mathcal{I}m \, \Pi(s)}{s(s-Q^2)}$$

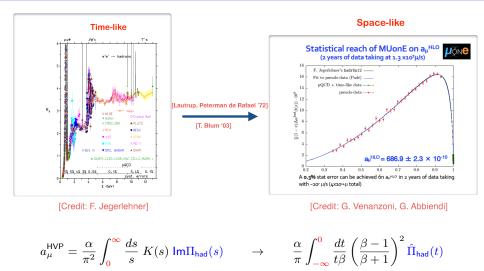
• Imaginary part of $\Pi(s)$ is related to the experimental total cross-section in e+e- annihilation:

$$\mathcal{I}m \Pi(s) = \frac{\alpha}{3}R(s)$$

- Important contributions : $ho, \omega, \phi, J/\psi$
- O(1000) channels
- · Model calculations had to be used for some channels
- [Keshavarzi, Nomura, Teubner, Phys.Rev. D97 (2018) no.11]



Time-like vs Space-like Evaluation of a_{μ}^{HVP}

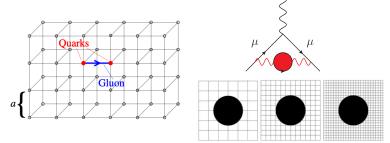


- $\bullet~\Pi_{\text{had}}$ is the hadronic part of the photon vacuum polarization
- $Im\Pi_{had}(s)$ is related to the experimental total cross-section in e^+e^- annihilation

JK (ETH)

Space-like Evaluation of $a_{\mu}^{\rm HVP}:$ Lattice QCD

- (1) Formulate QCD on a (finite-size) lattice in Euclidean time
- (2) Generate ensembles of field configuration with MC simulations
- (3) Compute correlation function of fields as a function of time/momentum
- (4) Average over configurations
- (5) Extrapolate to continuum, infinite volume, and physical quark masses

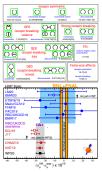


Space-like Evaluation of $a_{\mu}^{\rm HVP}:$ Lattice QCD

- $\bullet\,$ In WP20, lattice results (< Mar/2020) were averaged; uncertainty 2.6%
- BMW20 reported first lattice result with sub-percent uncertainty:
 - reduced tension with experiment: $\sim 1.5\sigma$,
 - some tension with the R-ratio method (WP20); $\sim 2.1\sigma$

	value $\times 10^{10}$	error $\%$
$a_{\mu}^{\text{HVP, LO}}$ (R-ratio, WP20)	693.1(4.0)	0.6%
$a_{\mu}^{\text{HVP, LO}}$ (lattice, WP20)	711.6(18.4)	2.6%
$a_{\mu}^{\text{HVP, LO}}$ (lattice, BMW20)	707.5(5.5)	0.8%

WP20: arXiv:2006.04822, BMW20: arXiv:2002.12347



• Intermediate Euclidean-time window values of a_{μ} are introduced for further investigations

Space-like Evaluation of a_{μ}^{HVP} : Lattice QCD

Dominant sources of error:

1) Determination of signal at small Q^2

• The integrand peaks at Q^2 about $m_{\mu}^2/4$

$$\left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dQ^2 f(Q^2) \hat{\Pi}_{\rm had}(Q^2)$$

- These very low momenta cannot be directly accessed on current lattices ($L\approx 10~{\rm fm}$ required)
- Analytic functions (like Padé) in combination of the method of time moments have been suggested & used to describe $\hat{\Pi}(Q^2)$ over small values of Q^2 ; increase of statistical error at higher moments
- In alternative, time-momentum representation the problem with small Q^2 shows itself as exponential growth of the relative statistical error at large time
- 2) Continuum extrapolation, scale setting errors, finite volume effects, disconnected diagrams, ···

Space-like Evaluation of a_{μ}^{HVP} : Lattice QCD

Dominant sources of error:

1) Determination of signal at small Q^2

• The integrand peaks at Q^2 about $m_{\mu}^2/4$

$$\left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dQ^2 f(Q^2) \hat{\Pi}_{\rm had}(Q^2)$$

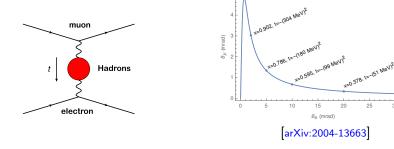
- These very low momenta cannot be directly accessed on current lattices ($L\approx 10~{\rm fm}$ required)
- Analytic functions (like Padé) in combination of the method of time moments have been suggested & used to describe $\hat{\Pi}(Q^2)$ over small values of Q^2 ; increase of statistical error at higher moments
- In alternative, time-momentum representation the problem with small Q^2 shows itself as exponential growth of the relative statistical error at large time
- A hybrid method (with MUonE) can be used to circumvent this problem
- 2) Continuum extrapolation, scale setting errors, finite volume effects, disconnected diagrams, ···

Space-like Evaluation of a_{μ}^{HVP} : MUonE

• HVP contributes to the running of QED fine structure coupling

$$\alpha(Q^2) = \frac{\alpha_0}{1 - \hat{\Pi}(Q^2)}$$

- Comparing experimental data & perturbative calculations yields HVP through its contribution to $\alpha(Q^2)$
- MUonE extracts $\Delta \alpha_{had}(Q^2)$ from the shape of the differential μe scattering cross section



25 30

Space-like Evaluation of a_{μ}^{HVP} : Hybrid Method

Divide & Conquer:

$$\begin{split} a^{\rm HVP}_{\mu} &= I_0 + I_1 + I_2 \\ I_0 &= \left(\frac{\alpha}{\pi}\right)^2 \int_0^{0.14} dQ^2 f(Q^2) \hat{\Pi}_{\rm had}(Q^2) \\ I_1 &= \left(\frac{\alpha}{\pi}\right)^2 \int_{0.14}^{Q^2_{\rm max}} dQ^2 f(Q^2) \hat{\Pi}_{\rm had}(Q^2) \\ I_2 &= \left(\frac{\alpha}{\pi}\right)^2 \int_{Q^2_{\rm max}}^{\infty} dQ^2 f(Q^2) \hat{\Pi}_{\rm had}(Q^2) \end{split}$$

- $I_0:$ contains \sim 84% of the $a_\mu^{\rm had,\ LO}$ & can be calculated precisely with the MUonE experiment
- I_1 : use lattice QCD or R-ratio
- I_2 : use perturbation theory

Extraction of HVP from μ -e scattering

• A proposed template fit inspired by contribution of lepton-pairs to the space-like photon vacuum polarization looks very good on test data

$$\Delta \alpha_{\rm had}(t) = k \left\{ -\frac{5}{9} - \frac{4M}{3t} + \left(\frac{4M^2}{3t^2} + \frac{M}{3t} - \frac{1}{6}\right) \frac{2}{\sqrt{1 - \frac{4M}{t}}} \log \left| \frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}} \right| \right\}$$

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{\sqrt{1 - \frac{4M}{t}}} \\ \frac{1}{\sqrt{1 - \frac{4M}{t}}}$$

Extraction of HVP from μ -e scattering

• A proposed template fit inspired by contribution of lepton-pairs to the space-like photon vacuum polarization looks very good on test data

$$\Delta \alpha_{\rm had}(t) = k \left\{ -\frac{5}{9} - \frac{4M}{3t} + \left(\frac{4M^2}{3t^2} + \frac{M}{3t} - \frac{1}{6}\right) \frac{2}{\sqrt{1 - \frac{4M}{t}}} \log \left| \frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}} \right| \right\}$$

$$\left| \int_{\frac{9}{2}}^{\frac{9}{2}} \int_{\frac{9}{$$

- The above template fit can be potentially problematic with highly precise data
- Alternative methods such as using Padé based fits are suggested and explored

2 Analysis of a mock data for HVP using Padé based fit functions

HVP, Stieltjes Functions, Padé Approximants

In the context of lattice QCD, the use of Padé approximants for low Q^2 regions $\hat{\Pi}(Q^2)$ was suggestion by [Aubin, Blum, Golterman, Peris (2012); Golterman, Maltman, Peris (2013)]

- It was introduced to deal with low signal at small Q^2 in lattice QCD
- They investigated the Padé approximants using mock data from dispersive $\tau\text{-}\mathsf{based}\ I=1$ data:

$$\hat{\Pi}^{I=1}(Q^2) = Q^2 \int_{4m_\pi^2}^{\infty} ds \frac{\rho^{I=1}(s)}{s(s+Q^2)}$$

- They chose 40 equally-spaced points in Q^2 (from 0.01 to 0.4 ${\rm GeV^2}$) from $\hat{\Pi}^{I=1}(Q^2)$, exploited an exaggerated lattice-based covariance matrix, and created a mock data set
- After performing their analysis, they compared their results with the "exact" value obtained directly from the original data set:

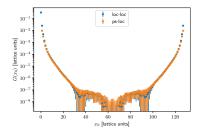
$$\tilde{a}_{\mu, \rm HLO} \Big|_{Q^2 \le 1 {\rm GeV}^2} = 1.204(27) \times 10^{-7}$$

Sample Covariance Matrix from Lattice QCD

- We continue their study using a correlation matrix calculated on a lattice ensemble of size $64^3\times128$ at $a\approx0.066~{\rm fm}$
- We calculate current-current correlator and integrate over spacial dimensions

$$G(x_0) = -\frac{1}{3}\sum_{k=1}^3 \int dx^3 \langle J_k(x)J_k(0)\rangle$$

After subtracting associated contact terms, we take FFT to obtain Q²Π(Q²)
 We extract a correlation matrix and use it with chosen 40 equally-spaced points of Π^{I=1}(Q²) (curtesy of Kim Maltman)

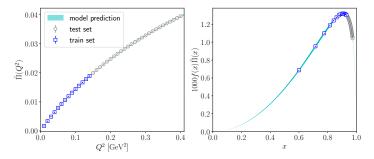


Padé-Based Fit Function

• Writing the HVP in terms of a Stieltjes function warrants an existence of the converging sequence of order [N-1,N] and [N,N] Padé approximants (PAs), defined as

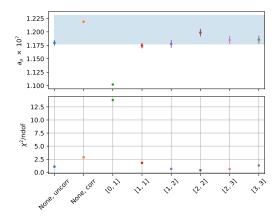
$$\Delta \alpha_{\rm had}(Q^2) = c_0 + Q^2 \left(a_0 + \sum_{i=1}^N \frac{a_i}{b_i + Q^2} \right)$$

where $Q^2=-t$ and $a_0=0$ in $\left[N-1,N\right]$ PAs



JK (ETH)

Some Fit Results



Mock data: 20 correlated data are included in the fits

Fit func: Padé-based fits and a lepton-like ansatz

Message: Better fit functions are needed with very precise covariance matrices

JK (ETH)

Summary & Concluding Remarks

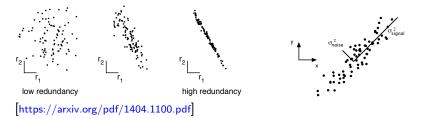
- We performed a test study using a mock data from dispersive au-based data
- $\bullet\,$ We used Padé based functions and a lepton-like ansatz to investigate Q^2 dependence of the mock data
- Our investigation showed, the lepton-like ansatz works as good as higher order Pade-based fits if we ignore correlations
- With correlated data, however, one has to exploit other functions such as the Padé approximants
- Padé approximants (and similar, analytic functions) can be used for extrapolating both lattice and MUonE data, and comparing them if needed

Thanks for your attention!

Back-up Slides

Principal Component Analysis (PCA)

- PCA is an analysis that used for dimensional reduction
 - identifies the *principal components* in data that show as much variation in data as possible
 - projects data onto only the first few principal axes/directions to obtain lower-dimensional data with most variation



- Principal axes are eigenvectors of the data's covariance/correlation matrix.
- Principal components are the projection of data on the principal axes

Principal Component Analysis using SVD

- $\bullet\,$ Say C is the covariance matrix of our data
- SVD or eigenvalue decomposition of C (an $n \times n$ matrix)

$$C = \sum_{i=1}^{n} \lambda_i |i\rangle \langle i|, \quad (\lambda_i > \lambda_{i+1})$$

 Modified SVD inflates the smallest eigenvalues of C and replaces the inverse of C with

$$\tilde{C}^{-1} = c_0 \sum_{i=1}^{n-k} \frac{1}{\lambda_i} \left| i \right\rangle \langle i | + \frac{c_1}{\lambda_{\rm cut}} \sum_{\rm rest} \left| i \right\rangle \langle i |$$