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Anatomy of the muon anomaly

T. Aoyama et al. (Muon g-2 Theory Initiative), Phys. Rep. 887 1 (2020) = White Paper (2020)
From the new experimental average value FNAL (2021),
exp. __ ) —11
a; P = 116592 061(41) - 10 (0.35 ppm)
there is a persistent discrepancy of 4.20 with the SM evaluation Wp (2020)
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All in 10~ units

The evaluation of the HVP-LO is the most important to consider



HVP contribution to the anomaly



HVP and a,
The two-point VV correlator I obeys to a one sub. disp. rep. Q% = —(¢> =t) >0
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C. Bouchiat and L. Michel (1961); B. Lautrup and E. de Rafael (1969); E. de Rafael (1994)



LQCD determination of a:'l'vp

Sz. Borsanyi et al., Nature 593 51 (2021)

LQCD reconstructs the Euclidean part TI(—Q?) and gives
afVP(BMW) = (7075 £ 55) - 10~
which differs by 2.10 of the WP evaluation aﬂVP(WP) = (6845 £ 40) - 10~ 1 and

Aay, = a$® — a3 (BMW) = (21 £ 30) - 107!

which is a difference of 1.60 (for the WP is 4.20).
Confirmed by:

M. Cé et al., arXiv:2206.06582 [hep-lat]
C. Alexandrou et al., arXiv:2206.15084 [hep-lat]

Conclusion

It is clearly important to understand this discrepancy both theoretically and
experimentally.



T onE proposal at CERN

G. Abbiendi et al. Letter of Intent: The MUonE Project, CERN-SPSC-2019-026 / SPSC-I-252 (2019)

Measuring the hadronic contribution to the Bhabha scattering exn — ep

e e dot© dog
Ha2d —9 H(_QQ) 5
aQ dQ
where the Born term is
dog % 2(m2 +m2)2 — 2su — Q4
— =4dr«a
dQ? 2Q*\(s,m2,m2)
1 n -
and s — Q% + u = 2m? + 2mi, s=2m.E, + mi +m?2, X is the Killen function
0.03 - Bl HVP /11 (1 ) I .’L'2 2
a =— [ de(1—=x — m
[ 0 1—2 [

2} | The expected range of measurements

0.23 < 2 <0.93

This area represents at the best 87% of the total value.

0 B We need an efficient extrapolation of II !
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HVP structure and expansions
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From A. Keshavarzi et al. Phys. Rev. D 97 (2018)



What should be a good HVP extrapolation?

e The anomaly requires to know:
o II(—Q?) for 0 < Q* < o0
e Or ImTI(g?) for ty < ¢ < <.

e This is equivalent to know all the moments M (1 —n).

e We are looking for an extrapolation method which satisfies the
analytic properties of QCD



A mathematical interlude



Flajolet and Odlyzko’s transfer theorem

Ph. Flajolet and A.M. Odlyzko, SIAM Journal Discrete Math.3 2 216 (1990)
Ph. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, (2009)

Transfer Theorem

" The asymptotic expansion of a function near its dominant singularities provides the
asymptotic expansion of the function's coefficients.”

Assume that f: C — C is analytic inside the unit disc,

> fa,
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and at z = 1, f has the singular behaviour — (a, §) € C?
1)~ (1- 22 Wf(1 - 2)
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then the transfer theorem states
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where P, are polynomials.



Transfer Theorem: some examples

Ph. Flajolet and A.M. Odlyzko, SIAM Journal Discrete Math.3 2 216 (1990)
Ph. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, (2009)

Some examples how the transfer works
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for any m positive integers and {} Stirling numbers of 2nd kind.



Reconstruction Approximants

From the exact equality

F(z) = Z i = Z (fn — fAS 2" 4 Z fAS n
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where the are given by the transfer theorem, then f can be approximated by
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where A,, are treated as free parameters. The local systematic error is then
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where the Liy are the Polylogarithm functions Therefore

f( ) fVL ZA772N+ZB(L1((Z)

One can show that fx, 1 (2) oo f(2) and fn 1(2) == f(z)



How apply reconstruction
approximants to HVP?



How to transfert asymptotic expansions of II to its moments M (1 — n) ?
By a conformal change of variable,
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The reconstruction approximants can be applied to II as a function of w.




Taylor expansion

The Taylor expansion at w = 0 is known since {),, are a linear combination of the
moments M (1 — n),

M(1 n) = : i (n—k) Qp — Q, = i (ng—;p_—l 1)_\/1(1 1“)(—4)?

k=1 p=1

The large Q2 expansion
The generic large Q2 expansion of II in perturbative QCD is
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In our case we take k = 0,1 (compatible with all known phenomenological models in
particular sum of Breit-Wigner's resonances)
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where B1 = —2R 1,1 and By are a linear combination of the Ry 1, with Bag = 0.



Spectral function
On the circle |w| = 1, we are moving on the cut 1 < 7 = Z—O < 00,
4w 2 . 2T — 1 & 2
Im IT (7— = m) = Z Q, sin(nargw) = B ;Qn Up—1 (1 - ;)
where U, are the Chebyshev polynomials of the 2nd kind. One gets the threshold expansion
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According to Chiral Perturbation Theory,
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Fr(to) is the e.m. form factor of the pion at the threshold. By identification, we
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Reconstruction Approximants of the HVP

The reconstruction approximants are
4w ol
TN <772> = Z (Q, QAS)wn + Z Q "
(1-w) n:1_ n=1
=An

From the transfer theorem we know that
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where the Liy are the Polylogarithm functions.

The Euclidean reconstruction approximants of the HVP are given by
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A first example

QCD asymptotic Freedom fixes: 1 = (—2)%% and lowest order x PT fixes
|Fr(t0)]? = 1. The two constraints give A1 = 2.156 and A = 0.2450

The anomaly
Using this first simple reconstruction
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approximant, we have a value for the anomaly

2) = 6527.12- 10~ 11

which is already at a level of 6% error from the WP prediction.



Reconstruction approximants of HVP
and the MUonE proposal




A toy-model for testing the efficiency

Phenomenological toy-model
We consider the spectral function
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Phenomenological toy-model (t. = 1 GeV?, A = 0.5 GeV?)
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This toy-model gives an anomaly:

af VT (Model) = 6992.4 - 10711

Procedure
1. To mimic the data points of MUonE, we consider 50 points equally spaced
without " experimental errors” in the range 0.23 < = < 0.93

2. We do linear fits of the parameters A,, in the reconstruction approximants
formula for Iy 1, (—Q2).



Fits # 1

We take L = 1 with the condition By = (—2)% 2
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Fits # 2

We take L = 5 with the condition Bi = (—2)%% Bs and Bs fixed by constraints
but |Fr(to)|? as fitted parameter.
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Conclusion




Conclusion

We have built reconstruction approximants to HVP in the Euclidean region using
the Flajolet and Odlyzko's transfert theorem. This approximation method

e is valid for any value of Q2.
e preserves the analytic structure (cuts,...) — contrary to Padé approximants.

o Well adapted to the MUonE experimental proposal.
e The method can be improved by adding more approximants.

e \We are working on adapting the method to Lattice QCD evaluations of the Time
Momentum Representation of HVP.



Backup slides



Relations on coefficients

From the Mellin singular expansion
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Comments on errors and efficiency

Absolute error
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This just an illustrative example to show the stability and the efficiency a posteriori of the
reconstruction approximants.

There are several ways to estimate the systematic error

SN (w) = Z Anwn
n=N+1

but it must be discussed in the context of the MUonE experiment and adapted.
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