The role of Padé approximants as fitting functions in the context of the MuonE experiment

Diogo Boito¹, **Cristiane Yumi London**^{1,2,3}, Pere Masjuan^{2,3}

¹Instituto de Física de São Carlos, Universidade de São Paulo, Brazil ²Departament de Física, Universitat Autònoma de Barcelona, Spain ³Institut de Física d'Altes Energies, The Barcelona Institute of Science and Technology, Spain

Introduction

Problem

Finding a reliable method to fit the data + good **extrapolation** outside data region

- Already applied in similar contexts:
 - Masjuan, Peris (2009) arXiv:0903.0294 [hep-ph]
 - Golterman, Maltman, Peris (2014) arXiv:1405.2389 [hep-lat]

arXiv:1512.07555 [hep-lat]

- Chakraborty, Davies, de Oliveira, Koponen, Lepage, van de Water (2016)
- Aubin, Blum, Chau, Golterman, Peris, Tu (2017) arXiv:1601.03071 [hep-lat]
- Masjuan, Sanchez-Puertas (2017) arXiv:1701.05829 [hep-ph]

Workshop MuonE

Advantages of PAs

- Systematic and model-independent method
- Partial reconstruction of analytical (physical) properties
- Efficient approximation
- Possible to provide a convergence error

Workshop MuonE

Padé's Theory

Stieltjes function

- There are convergence theorems for PAs to Stieltjes functions
- Some convergence properties:

* poles of
$$P_N^{N+J}$$
, $J \ge -1$, are real and simple;

- * Padé sequences P_N^{N+J} , $J \ge -1$, uniformity converge to the original function;
- * Padés act as bounds of the function

$$\lim_{N \to \infty} P_N^N(t) \ge \bar{\Pi}(t) \ge \lim_{N \to \infty} P_N^{N+1}(t)$$

Padé's Theory

* Padés act as bounds of the function

$$\lim_{N \to \infty} P_N^N(t) \ge \bar{\Pi}(t) \ge \lim_{N \to \infty} P_N^{N+1}(t)$$

Cristiane Y. London (USP, IFAE)

Method

Data Generation

Cristiane Y. London (USP, IFAE)

Workshop MuonE

Model of Greynat and de Rafael

$$\operatorname{Im}\Pi_{\text{had}}(s) = \alpha \left(1 - \frac{4m_{\pi}^2}{s}\right)^{3/2} \left[\frac{1}{12} |F(s)|^2 + \Theta(s) \sum_{\text{quarks}} q_f^2\right] \theta(s - 4m_{\pi}^2)$$

model used to generate toy data

Greynat, de Rafael (2022)

$$\begin{split} \Gamma(s) &= \frac{m_{\rho} s}{96\pi f_{\pi}^2} \left[\left(1 - \frac{4m_{\pi}^2}{s} \right)^{3/2} \theta(s - 4m_{\pi}^2) \\ &+ \frac{1}{2} \left(1 - \frac{4m_{\pi}^2}{s} \right)^{3/2} \theta(s - 4m_{K}^2) \right] & (5) \\ |F(s)|^2 &= \frac{m_{\rho}^4}{(m_{\rho}^2 - s)^2 + m_{\rho}^2 \Gamma^2(s)} \\ \Theta(s) &= \frac{2}{\pi} \left[\frac{\arctan(\frac{s-s_c}{\Delta}) - \arctan(\frac{4m_{\pi}^2 - s_c}{\Delta})}{\arctan(\frac{4m_{\pi}^2 - s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{2}{\pi} \left[\frac{\arctan(\frac{s-s_c}{\Delta}) - \arctan(\frac{4m_{\pi}^2 - s_c}{\Delta})}{\arctan(\frac{4m_{\pi}^2 - s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{2}{\pi} \left[\frac{\arctan(\frac{s-s_c}{\Delta}) - \arctan(\frac{4m_{\pi}^2 - s_c}{\Delta})}{\arctan(\frac{4m_{\pi}^2 - s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{2}{\pi} \left[\frac{\arctan(\frac{s-s_c}{\Delta}) - \arctan(\frac{4m_{\pi}^2 - s_c}{\Delta})}{\arctan(\frac{4m_{\pi}^2 - s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{2}{\pi} \left[\frac{\arctan(\frac{s-s_c}{\Delta}) - \arctan(\frac{4m_{\pi}^2 - s_c}{\Delta})}{\arctan(\frac{4m_{\pi}^2 - s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{2}{\pi} \left[\frac{\arctan(\frac{s-s_c}{\Delta}) - \arctan(\frac{4m_{\pi}^2 - s_c}{\Delta})}{\operatorname{arctan}(\frac{4m_{\pi}^2 - s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{2}{\pi} \left[\frac{\operatorname{arctan}(\frac{s-s_c}{\Delta}) - \operatorname{arctan}(\frac{4m_{\pi}^2 - s_c}{\Delta})}{\operatorname{arctan}(\frac{4m_{\pi}^2 - s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{2}{\pi} \left[\frac{\operatorname{arctan}(\frac{s-s_c}{\Delta}) - \operatorname{arctan}(\frac{4m_{\pi}^2 - s_c}{\Delta})}{\operatorname{arctan}(\frac{4m_{\pi}^2 - s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{2}{\pi} \left[\frac{\operatorname{arctan}(\frac{s-s_c}{\Delta}) - \operatorname{arctan}(\frac{s-s_c}{\Delta})}{\operatorname{arctan}(\frac{4m_{\pi}^2 - s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{2}{\pi} \left[\frac{\operatorname{arctan}(\frac{s-s_c}{\Delta}) - \operatorname{arctan}(\frac{s-s_c}{\Delta})}{\operatorname{arctan}(\frac{s-s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{1}{\pi} \left[\frac{\operatorname{arctan}(\frac{s-s_c}{\Delta}) - \operatorname{arctan}(\frac{s-s_c}{\Delta})}{\operatorname{arctan}(\frac{s-s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{1}{\pi} \left[\frac{\operatorname{arctan}(\frac{s-s_c}{\Delta}) - \operatorname{arctan}(\frac{s-s_c}{\Delta})}{\operatorname{arctan}(\frac{s-s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{1}{\pi} \left[\frac{\operatorname{arctan}(\frac{s-s_c}{\Delta}) - \operatorname{arctan}(\frac{s-s_c}{\Delta})}{\operatorname{arctan}(\frac{s-s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{1}{\pi} \left[\frac{\operatorname{arctan}(\frac{s-s_c}{\Delta}) - \operatorname{arctan}(\frac{s-s_c}{\Delta})}{\operatorname{arctan}(\frac{s-s_c}{\Delta})} \right] & (5) \\ \Theta(s) &= \frac{1}{\pi} \left[\frac{1}{\pi} \left[\frac{1}{\pi} \left[\frac{s-s_c}{\Delta} \right] \right] & (5) \\ \Theta(s) &= \frac{1}{\pi} \left[\frac{1}{\pi} \left[\frac{1}{\pi} \left[\frac{s-s_c}{\Delta} \right] \right] & (5) \\ \Theta(s) &= \frac{1}{\pi} \left[\frac{1}{\pi} \left[\frac{s-s_c}{\Delta} \right] \\ (5) \\ \Theta(s) &= \frac{1}{\pi} \left[\frac{1}{\pi} \left[\frac{s-s_c}{\Delta} \right] \\ (5) \\ \Theta(s) &= \frac{1}{\pi} \left[\frac{1}{\pi} \left[\frac{s-s_c}{\Delta} \right] \\ (5) \\ \Theta(s) &= \frac{1}{\pi} \left[\frac{s-s_c}{\Delta} \right] \\ (5) \\ \Theta(s) &=$$

Cristiane Y. London (USP, IFAE)

4/14

Fitting Method

• Padés as fitting functions

 $(\theta_{\mu}, R_{\text{had}})$ $0.16 \le \theta_{\mu}(\text{mrad}) \le 4.8$

30 equally spaced data points

 $(x, R_{\text{had}}^{\text{mod}})$ $0.214 \le x \le 0.932$

$$R_{\rm had}^{\rm mod} = (R_{\rm had} - 1) \times 10^5 \approx 10^5 \times 2\,\Delta\alpha_{\rm had}$$

$$\Delta \alpha_{\text{had}}(x) = \sum_{n=0}^{\infty} c_n \, x^n = c_2 \, x^2 + c_3 \, x^3 + \dots$$

- PA parameters: χ^2 minimization
- Error propagation: Monte Carlo

Example

Toy data set

- Data points $(x, \overline{\Pi}_{had})$ generated in the interval $0.23 \le x \le 0.93$ in steps of 0.01
- Central value randomly chosen from a gaussian distribution with $1\ \%$ error

6/14

Toy data set

Cristiane Y. London (USP, IFAE)

Padés to the model

Canonical Padés

- Canonical Padé P_N^M :
 - determination of the PA coefficients through matching
 - PA reproduces the first M + N + 1 Taylor series coefficients of the function

• Data without fluctuations or errors — estimate method uncertainty

- Data without fluctuations or errors estimate method uncertainty
- Padés as fitting functions imposing that $c_0 = c_1 = 0$
- PAs used to calculate a_{μ} in the whole region of $x \in [0,1]$
- Better results for higher-order PAs
- Uncertainty from the method is small

The MUonE Collaboration (2019) Abbiendi (2022)

$$\Delta \alpha_{\text{model}}(t) = k \left\{ -\frac{5}{9} - \frac{4M}{3t} + \left(\frac{4M^2}{3t^2} + \frac{M}{3t} - \frac{1}{6}\right) \frac{2}{\sqrt{1 - \frac{4M}{t}}} \log \left| \frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}} \right| \right\}$$

Cristiane Y. London (USP, IFAE)

The MUonE Collaboration (2019) Abbiendi (2022)

Cristiane Y. London (USP, IFAE)

- 1000 toy data sets generated
- $(\theta_{\mu}, R_{had}) 30$ data points equally spaced in the interval $0.16 \le \theta_{\mu}(mrad) \le 4.8$
- Central value randomly chosen from a gaussian distribution with $0.001\,\%\,$ error precision of $\mathcal{O}(10^{-5})$
- Selecting data sets whose relative error between its central value for $a_{\mu}^{\rm partial}$ and the true one is lower than 1 %
- Monte Carlo analysis of the fits for each Padé approximant
- PAs used to calculate a_{μ} in the whole x region

• 1000 toy data sets generated

• PAs used to calculate a_{μ} in the whole x region

• 1000 toy data sets generated

• 1000 toy data sets generated

- Covariance between Padés predictions still needs to be computed
- Method uncertainty has to be added

Workshop MuonE

Dividing the error of the data points by 5

- No need for data points in larger values of x, but for lower errors
- Central value predicted by $\Delta \alpha_{\rm model}$ is more distant from the real a_{μ} than the Padés

Conclusions and Outlooks

• Plots so far presented are based on a particular model

• Uncertainty due to the method can be estimated and is small

- Error of the model $\Delta \alpha_{\rm model}$ is larger than the one coming from Padés method — has to be computed in final value

- Larger value of E_{μ} is not needed but smaller errors of data points

Outlooks

- Results of Padés may be improved by employing:
 - partial Padés;
 - D-log Padés;
 - conformal mapping Padés also converge;
 - include the moments of the correlator;
 - * impose $c_2 = c_3$; model independent!

impose other constraints in PAs analysis

 Padés as fitting functions to data need more studies — no convergence theorems

Thank you for your attention!

