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Master formula

aHLO
µ =

α

π

∫ 1

0

dx (1− x) ∆αhad[t(x)]

t(x) =
x2m2

µ

x− 1
< 0

e.g. Lautrup, Peterman, De Rafael, Phys. Rept. 3 (1972) 193

Hadronst

   The hadronic VP correction to the running of α enters

? ∆αhad(t) can be directly measured in a (single) experiment involving

a space-like scattering process and aHLO
µ obtained through numerical integration

Carloni Calame, Passera, Trentadue, Venanzoni PLB 746 (2015) 325

? A data-driven evaluation of aHLO
µ , but with space-like data

• By modifying the kernel function α
π (1− x), also aHNLO

µ and aHNNLO
µ can be provided

Balzani, Laporta, Passera, Phys.Lett.B834 (2022) 137462
talks by E. Balzani and S. Laporta
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From time-like to space-like evaluation of aHLO
µ

Time-like 7→ Space-like
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7→ Time-like: combination of many experimental data sets, control of RCs better than O(1%) on hadronic

channels required

7→ Space-like: in principle, one single experiment, it’s a one-loop effect, very high accuracy needed
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MUonE: µe→ µe @CERN

Abbiendi et al., EPJC 77 (2017) 3, 139

Abbiendi et al., Letter of Intent: the MUonE project, CERN-SPSC-2019-026, SPSC-I-252 (2019)

   Scattering µ’s on e’s in a low Z target looks like an ideal process (fixed target experiment)

   It is a pure t-channel process at tree level

   The M2 muon beam (Eµ ' 160 GeV) is available at CERN

   
√
s ' 0.4 GeV and −0.143 < t < 0 GeV2 (and extrapolate to x→ 1)

   With ∼ 3 years of data taking, a statistical accuracy of 0.35% on aHLO
µ can be achieved talk by G. Abbiendi

1

2

δσ

σ
' δα

α
' δ∆αhad

∆αhad is a 0.1% effect in this region → to measure it at 1%, σ must be controlled at the 10−5 level
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Systematics

• experimental =⇒ talks by G. Abbiendi, R.N. Pilato and U. Marconi

• theoretical: higher order radiative corrections modify the shapes

σ = σ(0) +
(α
π

)
σ(1) +

(α
π

)2
σ(2) + . . .+

(α
π

)n
σ(n)

• order of magnitude estimate, barring infrared logs and setting ci,j ∼ 10

• c1,1
(
α
π

)
L ∼ 0.2 c1,0

(
α
π

)
∼ 2.5 · 10−2

• c2,2
(
α
π

)2
L2 ∼ 5 · 10−3 c2,1

(
α
π

)2
L ∼ 5 · 10−4 c2,0

(
α
π

)2 ∼ 5 · 10−5

• c3,3
(
α
π

)3
L3 ∼ 1.5 · 10−4 c3,1

(
α
π

)3
L2 ∼ 1.5 · 10−5 c3,0

(
α
π

)3
L ∼ 1.5 · 10−6

• the most advanced technologies for NNLO calculations and higher order resummation and matching are needed
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Theoretical progress since 2017

thanks also to past

MUonE theory workshops

• Theory Kickoff Workshop, Padova, 4-5 September 2017

• MITP Workshop, Mainz 19-23 February 2018

• 2nd Workstop/ThinkStart, Zürich, 4-7 February 2019
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First step towards precision: QED NLO (2018)

p1 p3

p2 p4

µ− µ−

e− e−

t = t24 = t13

• analytical expression for tree level

dσ

dt
=

4πα2

λ(s,m2
µ,m2

e)

[
(s−m2

µ −m2
e)

2

t2
+
s

t
+

1

2

]
• VP gauge invariant subset of NLO rad. corr.

• factorized over tree-level: α→ α(t)
• NLO virtual diagrams (Van Nieuwenhuizen 1971, D’Ambrosio 1983, Kukhto et al. 1987, Bardin, Kalinovskaya 1997)

p2 p4
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leptons
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hadrons
+top
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p1 p3
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µ− µ−

e− e−

p1 p3

p2 p4

µ− µ−

e− e−

p1 p3

p2 p4

µ− µ−

e− e−

• and corresponding real emission diagrams
• NLO matrix elements calculated with finite mµ and me mass effects and a Monte Carlo program,

MESMER, has been taylored to the fixed target kinematics of MUonE
Alacevich, Carloni Calame, Chiesa, Montagna, Nicrosini, Piccinini, JHEP 02 (2019) 155
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Weak interaction effects (LO and NLO) (2018)
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Alacevich, Carloni Calame, Chiesa, Montagna, Nicrosini, Piccinini, JHEP 02 (2019) 155

• tree-level Z-exchange important at the 10−5 level (∼ tGµ/4πα
√

2 in the Fermi theory)

• purely weak RCs (in QED NLO units) at a few 10−6 level
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What can we learn from “simple” NLO?
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µ-e angle correlation in the lab
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• many points fall out of the 2→ 2 correlation curve θµ − θe because of the radiative events
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Giant K−factor for dσ/dθe
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• due to the almost vanishing LO cross cross section for θe → 0
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Radiation from electron leg not always dominant, in particular for “almost” elastic events
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• interference between electron and muon leg can be of the same order of magnitude as the contribution

from (virtual and real) radiation along the electron leg
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Second step, towards photonic radiative corrections at NNLO (2020)

• exact calculation of corrections along one lepton line
• two independent calculations, with different subtraction procedures

Carloni Calame et al., JHEP 11 (2020) 028,
P. Banerjee, T. Engel, A. Signer, Y. Ulrich, SciPost Phys. 9 (2020) 027

• implemented in Mesmer and McMule
talks by E. Budassi, T. Engel, M. Rocco, Y. Ulrich

• complete calculation (including up-down interference) approximated in Mesmer talk by E. Budassi

• interference of LO µe→ µe amplitude with

+ many others

   NNLO double-virtual amplitudes where at least 2 photons connect the e and µ lines are approximated according
to the Yennie-Frautschi-Suura (’61) formalism to catch the infra-red divergent structure

• complete calculation of the amplitude f+f− → F+F− with mf = 0, mF 6= 0 R. Bonciani et al., PRL 128 (2022)

talks by W.T. Bobadilla and J. Ronca

• complete calculation with massification in McMule T. Engel, C. Gnendinger, A. Signer and Y. Ulrich, JHEP 02 (2019) 118

• complete calculation including leading log ∝ ln(m2
e/Q

2) and m0
e terms talks by T. Engel, M. Rocco, Y. Ulrich
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NNLO Virtual leptonic pairs (vacuum polarization insertions) (2021) E. Budassi et al., JHEP 11 (2021) 098

talk by C.L. Del Pio

• any lepton (and hadron) in the VP blobs

• interfered with µe→ µe or µe→ µeγ amplitudes

(a) (b) (a)

+ · · ·

(c)

+ · · ·

• interfered with µe→ µe amplitude

(a)
(b)

+ · · ·

Here the 2-loop integral is evaluated with dispersion relation techniques
used e.g. in the past for Bhabha: Actis et al., Phys. Rev. Lett. 100 (2008) 131602; Carloni Calame et al., JHEP 07 (2011) 126

gµν
q2 + iε

→ gµν
α

3π

∫ ∞
4m2

`

dz

z
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q2 − z + iε
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α

3π

∫ ∞
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Real pair emissions (same pert. order as virtual pairs) E. Budassi et al., JHEP 11 (2021) 098

talk by C.L. Del Pio

• they also contribute at NNLO accuracy

• squared absolute vaule of

(b) (c) (e) (f)

+ · · ·

• the emission of an extra electron pair µe→ µe e+e− is potentially a dramatically large (reducible)

background, because of the presence of “peripheral” diagrams

• NNLO virtual and real pairs implemented in Mesmer
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NNLO hadronic contributions (2019)

• using the dispersion relation approach

3

of α(t) will not be considered as part of class I (al-
though of the same order), because its effect is com-
monly included in the ratio R(s) as final-state ra-
diation and, therefore, it is already incorporated in
the NLO hadronic corrections in Eq. (13) [50, 51].

II. QED one-loop diagrams in combination with one
hadronic vacuum polarization insertion in the t-
channel photon (Fig. 1c). Their contribution to the
differential cross section is proportional to Πh(t)
and a combination of one-loop QED corrections to
µe scattering.

III. Real photon emission diagrams with a vacuum
polarization insertion in the t-channel photon
(Fig. 1d). They contain terms proportional either
to Πh(te) or to Πh(tµ), where te (tµ) is the square
of the difference of the initial and final electron
(muon) momenta. In general, te 6= tµ because of
the presence of the final-state photon.

All the diagrams in classes I–III are factorizable, since
each of them can be reduced to the product of a QED
amplitude multiplied by the function Πh(q2) evaluated
at some q2 value fixed by the external kinematics. A
fourth class of non-factorizable diagrams must also be
considered:

IV. One-loop QED amplitudes with a hadronic vacuum
polarization insertion in the loop. They can be
further subdivided into vertex and box corrections
(Fig. 1e).

We point out that there are no light-by-light contribu-
tions to the µe cross section at NNLO (order α4) – they
appear at N3LO (order α5). Moreover, we remind the
reader that, at the level of precision addressed in this
letter, the analysis of future µe scattering data will also
require the study of µe scattering processes with final
states containing hadrons. Final states of Bhabha scat-
tering containing hadrons were studied in [35].

We calculated the amplitudes in class IV employing
the dispersion relation in Eq. (10). The factor Πh(q2)/q2

appearing in the loop – where q now stands for the loop
momentum – is replaced by the r.h.s. of Eq. (10), where
q appears only in the denominator of the term 1/(q2−z).
Therefore, the dispersion relation effectively replaces the
dressed propagator with a massive one, where z plays the
role of a fictitious squared photon mass. This allows to
interchange the integration order and evaluate, as a first
step, the one-loop amplitudes with a “massive” photon.
The results obtained for the z-dependent scattering am-
plitudes are then convoluted with the ratio R(s).

All four classes of diagrams were generated using
FeynArts [52] with a modified version of the QED model
that contains, besides leptons and photons, a fictitious
massive gauge boson (the “massive” photon arising from
the dispersion relation). The amplitudes were calculated

and reduced to one-loop tensor integrals with Form [53]
via the FormCalc [54] package, and exported as a Fortran
code for the numerical evaluation of the dispersive and
phase-space integrals. Two independent parametriza-
tions of the 3-body phase space were employed to cross-
check the hard bremsstrahlung cross section. For the nu-
merical evaluation of Πh(q2) in the spacelike region, ap-
pearing in classes I–III, we relied on the native implemen-
tation available in the Fortran libraries alphaQEDc17 and
KNT18VP. The one-loop tensor coefficients were computed
with the library Collier [55], which features dedicated
expansions for the evaluation in numerically unstable re-
gions (small Gram or other kinematical determinants).
We particularly benefited from this library when we con-
voluted the z-dependent amplitudes with the R(s) ratio
provided by alphaQEDc17 or KNT18VP. Indeed, in per-
forming the dispersive integrations in class IV diagrams,
the squared photon “mass” z appearing inside the loop
functions can acquire values which are orders of magni-
tude larger than the typical energy scale of the scatter-
ing process. Collier provides numerically stable results
in this treacherous region and allows the numerical in-
tegration to converge. The dispersive integrations were
performed with the subroutines in QUADPACK [56], while
for the phase space integration we employed the VEGAS

algorithm [57] in the Cuba library [58].

(a) NLO (b) class I (c) class II

(d) class III (e) class IV

FIG. 1. (a) Diagram contributing to the hadronic correction
to µe scattering at NLO. (b–e) Examples of diagrams con-
tributing to the four classes of hadronic corrections at NNLO.
Electrons, muons and photons are depicted with thin, thick
and wavy lines, respectively. The grey blobs indicate hadronic
vacuum polarization insertions.

To check our results, we produced an independent
Mathematica implementation using FeynCalc [59, 60]
and Package-X [61]. The results obtained by FeynCalc

in terms of scalar one-loop functions were then eval-
uated numerically using analytic expressions provided
by Package-X. The use of Mathematica’s arbitrary-
precision numbers, with a large number of digits, allowed

4

us to keep track of precision at all steps and avoid insta-
bilities during the numerical dispersive and phase-space
integrations. We found perfect agreement between the
two implementations.

The lepton masses were kept different from zero
throughout the calculation, so that the matrix elements
were free of collinear singularities. Ultraviolet singulari-
ties were regularized via conventional dimensional regu-
larization and UV-finite results were obtained in the on-
shell renormalization scheme. The amplitudes of class II
and the boxes of class IV develop IR poles which are can-
celled by those arising from the phase space integration
of the real emission diagrams of class III. We employed
both the FKS subtraction scheme [62, 63] as well as the
traditional QED procedure to assign a vanishingly small
mass to the photon to remove the soft singularities and
to obtain an IR-finite cross section.

RESULTS

The ratio of the NNLO hadronic corrections to the
µe differential cross section, with respect to the squared
momentum transfer te, and the LO prediction,

KNNLO
h (te) =

dσNNLO
h

dte
/
dσ0
dte

, (15)

is shown in Fig. 2 for the processes µ+e− → µ+e− (up-
per panel) and µ−e− → µ−e− (lower panel) for Eµ =
150 GeV. The black lines indicate the total hadronic con-
tribution arising from classes I–IV, while the blue ones
show the sum of the contributions of classes II, III, and
IV, but not I. The reason for this split is the follow-
ing. The goal of the MUonE experiment is to determine
∆αh(t) = −Πh(t), the leading hadronic contribution to
the running of the effective fine-structure constant in the
spacelike region, from µe scattering data. In order to
extract the NLO hadronic correction to the µe differ-
ential cross section, given by Eq. (13), which contains
Πh(t), the experimental data will have to be subtracted,
via a Monte Carlo event generator, of the total NNLO
hadronic corrections (classes I–IV). If, instead of ∆αh(t),
one wants to extract the hadronic corrections to the re-
summed photon propagator, then the corrections of class
I should not be subtracted from data, as their contri-
bution to the differential cross section accounts for the
second-order reducible hadronic contribution to the run-
ning of α(t).

The difference in KNNLO
h (t) between muon and an-

timuon is due to the box diagrams in classes II and IV,
and to electron-muon interference terms in the real emis-
sion (class III). These contributions to the cross section
are equal in size but with opposite sign for µ+ and µ−.
The same pattern is observed at NLO [17].

Figure 2 shows that, when the muon/antimuon beam
has an energy of 150 GeV, for most of the kinematic re-
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FIG. 2. KNNLO
h (te) factor for a positive (upper panel) and

negative (lower panel) muon beam of energy Eµ = 150 GeV.
The total hadronic NNLO correction are depicted in black,
while the contributions of class I (II-IV) are shown separately
in red (blue).

gion scanned by the squared momentum transfer te the
factor KNNLO

h (te) is of order 10−4–10−5. These correc-
tions are therefore larger than the O(10−5) precision ex-
pected at the MUonE experiment. Moreover, our Fortran
code, available upon request, can calculate the NNLO
hadronic corrections to any µe scattering differential dis-
tribution with arbitrary kinematical cuts and can there-
fore be implemented in future full NNLO µe scattering
Monte Carlo codes.

At NLO, the tiny contribution of the top quark to the
vacuum polarization can be separated from the hadronic
one. At NNLO, these contributions mix with each other.
The plots in Fig. 2 were obtained adding Πtop(q2) to
Πh(q2), so that the full top quark contribution has been
included in the shown NNLO prediction. Its effect is
however totally negligible.

As our calculation of the NNLO hadronic corrections to
the µe differential cross section is based on the hadronic
e+e− annihilation data, the precision of our prediction is
limited by the experimental error on the R(s) ratio. We

Fael, Passera, Phys. Rev. Lett. 122 (2019) 192001

• relevant on the target precision scale

• space-like method to calculate hadronic NNLO corrections M. Fael, JHEP02 (2019) 027
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What about real hadronic production?

• pion pair production forbidden kinematically with the available
√
s

• single π0 production possible

p2

p1

p4

p3

p5

• π0 production recently calculated and shown to be well below 10−5 w.r.t. µe→ µe

E. Budassi et al., PLB 829 (2022) 137138

talk by C.L. Del Pio
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Possible New Physics issues

• Possible contamination of New Physics in the ∆α(t) measurement?
A. Masiero, P. Paradisi and M. Passera, Phys. Rev. D102 (2020) 075013

P.S.B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, JHEP 05 (2020) 053

• Effects of heavy NP mediators investigated through EFT by considering dim-6 operators

• excluded (at the 10−5 level) by existing data

• Effects of light NP mediators investigated through EFT by considering dim-6 operators

• spin−0 NP mediators (ALPs)

• spin−1 NP mediators (Dark Photons, light Z′)

• excluded (at the 10−5 level) by existing data

MUonE@MITP2022 MUonE: theory status 19 / 21



Possible New Physics studies in complementary regions

• interesting proposals for NP searches at MUonE (new light mediators) in 2 → 3 processes

• invisibly decaying light Z′ in µe→ µeZ′

Asai et al., Phys. Rev. D106 (2022) 5

• a relevant background can be µe→ µeπ0, in addition to µe→ µeγ

• long-lived mediators with displaced vertex signatures µe→ µeA′ → µee+e−

Galon et al., arXiv:2202.08843

• through scattering off the target nuclei µN → µNX → µNe+e−

Grilli di Cortona and E. Nardi, Phys. Rev. D105 (2022) L111701
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Summary

• Given its precision requirements, MUonE represents a challenge for present theoretical calculations and

simulation tools

• at present we have two Monte Carlo tools, Mesmer and McMule

• NLO QED corrections cross-checked with perfect agreement

• NNLO QED corections from single lepton legs in perfect agreement

• YFS inspired approximation to the full NNLO QED in Mesmer

• full NNLO QED with electron “massification” in McMule

• efforts for N3LO started

• very recent result on three-loop QCD form factors for massive quarks

M. Fael, F. Lange, K. Schönwald and M. Steinhauser, Phys, Rev. D106 (2022) 034029

talk by M. Fael

• N3LO kick-off workshop/thinkstart, Durham, 3-5 August 2022 (organized by Y. Ulrich)
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