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Framework used for the analysis

● NLO MonteCarlo generator: MESMER
● Allows to change the muon beam energy and simulate 

the beam energy spread.

● C++ fast simulation to include detector effects:
● Multiple scattering effects in the target.
● Angular intrinsic resolution.
● Effects applied to (θe, θµ) taken from the NLO generator: 

track reconstruction effects are currently neglected.
● Further effects to be included: MS non-Gaussian tails, 

background effects, MS in the silicon sensors.

https://github.com/cm-cc/mesmer/
https://gitlab.cern.ch/muesli/nlo-mc/mue
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The need of including systematic 
effects in the analysis

Example: ±10% error on the angular intrinsic resolution.

Some systematic effects can produce huge distortions 
in the shape of the elastic scattering cross section.
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The need of including systematic 
effects in the analysis

Example: simulate a data sample with a shift on the 
angular intrinsic resolution wrt expectations.

● Test Run statistics: 
LTR = 5 pb-1.

● Expected angular 
intrinsic resolution:
σIntr = 0.02 mrad.

● Shift in the 
pseudo-data sample:
σIntr → σIntr + 5%.

● Template fit without 
accounting for this shift: 
the minimum is >5σ from Kinput.

Kinput
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Main systematics have 
large effects in the 

normalization region.
(no sensitivity to Dahad here)

Normalization 
region

Strategy for the systematic effects

Signal 
region

Normalization region
Large statistics here.

8

Introduce additional 
nuisance parameters 

in the analysis to include 
the systematic effects.
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±10% error on the 
angular intrinsic resolution.

Normalization region

Normalization region

Systematic error
on the angular intrinsic resolution
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Expected precision on the 
multiple scattering model: ± 1%  

Systematic error
on the multiple scattering

Normalization region

Normalization region

G. Abbiendi et al JINST (2020) 15 P01017

https://iopscience.iop.org/article/10.1088/1748-0221/15/01/P01017
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Systematic error
on the muon beam energy

Accelerator division provides 
Ebeam with O(1%) precision 
(~ 1 GeV).
It must be controlled by a 
physical process.

Effects of such shift on Ebeam 
can be seen in our data in 1h 
of data taking per station.

G Abbiendi Phys. Scr. (2022) 97 054007

https://iopscience.iop.org/article/10.1088/1402-4896/ac6297
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Strategy for the systematic effects

The Combine analysis tool is used to include 
the nuisance parameters in the fit procedure.

2 classes of 
nuisance parameters 
currently included:

● Normalization 
nuisance parameters, n

● Shape 
nuisance parameters, m

Nuisance parameters are used to 
adjust ni and make it fit to ki.

Binned likelihood fit:

ki = events in the i-th bin of data
ni = events in the i-th bin of a given template

N = total number of bins

https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/
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Normalization 
nuisance parameters

Used to account for residual shifts in the normalization 
of template distributions with respect to data.

The expected number of events is modified as follows:

Nuisance 
parameter

Relative uncertainty 
on the systematic effect

Example: systematic error 
due to a limited knowledge 

of the luminosity
ε ~ O(1%)
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Shape 
nuisance parameters

Used to control effects that change the shape 
of the differential cross section.

The expected number of events in each bin is modified as:

Spline ensuring continuity and differentiability of 
1st and 2nd derivatives.

Each bin has its own spline.
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Shape 
nuisance parameters

Shape nuisance parameters are 
determined by vertical interpolation of 

the template histograms.

depends on

3 inputs are needed 
for the interpolation:

Template with systematic effect shifted by +1σ

Template with the expected modelization

Template with systematic effect shifted by -1σ
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Analysis workflow

● Combine performs a likelihood fit 
to the nuisance parameters for 
each template.

● Obtain the profile likelihood 
as a function of K.

● Best fit value of K is determined 
by parabolic interpolation 
among the template points.

● Nuisance parameters values 
for K = Kbest fit are obtained by 
interpolation among the values 
obtained in the first step.

Statistical fit @L
TR

 = 5 pb-1
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Promising strategy: staged approach.

1.  Use a small fraction of data to refine 
   the knowledge of the main sources 
   of systematic error with respect to the
   initial modelization.

2.  Include the residual systematics as
   nuisance parameters in a combined 
   fit with the signal parameter on the 
   entire dataset.

Currently tested on the Test Run statistics 
including the main systematic errors.

Analysis workflow
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Testing the procedure

Generate a pseudo-data sample introducing 
shifts in the main sources of systematic error 

with respect to the expectations.

Are we able to determine precisely K and the 
nuisance parameters using this analysis strategy?
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Step 1: identify 
the main systematic effects

● Template fit as a function of Ebeam.

● µMS: nuisance parameter for systematics 
on the multiple scattering. 

● µIntr: nuisance parameter for systematics 
on the angular intrinsic resolution.

● ν: nuisance parameter for systematics 
on the normalization.

Similar results also for different selection cuts.

1h of data taking 
per single station.

Allows to assume a 
fixed model for Dahad.
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Update the knowledge on the 
sources of systematic error

Exploit results obtained in step 1 to 
refine the knowledge on the sources 

of systematic error.

Use this improved modelization to perform the 
combined fit to K and the residual systematics.
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Input shifts identified correctly.
No degradation on the signal parameter.

Step 2: 
combined fit signal + systematics

Similar results also for different selection cuts.

● Template fit as a function of K.

● Add a nuisance parameter for 
systematics on the beam energy: µEbeam.

● Kref = 0.137

● shift MS: +0.5%

● shift intr. res: +5%
● shift Ebeam: +6 MeV
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Conclusions

● Proposed strategy to control the systematic effects: 
use the elastic scattering events to determine the main 
systematics, then perform a combined fit to the signal 
and the residual effects.

● Promising results for the Test Run.

● Next steps: 
● Include the track reconstruction 

algorithms in the simulation.
● Add background processes.
● Add further sources of systematic errors.
● Verify the procedure with the full statistics 

(2 signal parameters).
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Further systematic effects:
theory
● Data @NNLO, templates @NLO: quantify the effect 

of the NNLO corrections.

● Residual systematic effects for the N3LO?

● Quantify the effect of me:   
me = 0   vs   me  exact   vs me  series expansion?

● Other?

● What is needed for these tests: 
distributions with the nominal model + 
±1σ distributions. 
A parameterization of the expected distortion on the shape of the 
differential cross section due to the systematic effect is needed.
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BACKUP
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Systematic error 
on the beam energy scale

Effect of a ± 15 MeV shift

Normalization region

Normalization region
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x < 0.936tpeak ~ -0.108 GeV2 xpeak ~ 0.92
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● 160 GeV muon beam 
on atomic electrons.
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40 stations
(60 cm Be) + 3 years of data taking

(~4x107 s) = ~0.3% statistical 
accuracy on aµ

HLO

Achievable accuracy

Main challenge: 
keep systematic accuracy at the 
same level of the statistical one

Systematic uncertainty 
of 10 ppm at the peak 

of the integrand function
(low θe, large θµ)

● Longitudinal alignment (~10 µm)
● Knowledge of the beam energy 

(few MeV)
● Multiple scattering (~1%)
● Angular intrinsic resolution

(few %)

Competitive with the latest 
theoretical predictions.

(Iµ ~ 107 µ+/s)

Main systematic effects:

~4x1012 events 
with Ee > 1 GeV
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Simultaneous fit signal + 
nuisance parameters @LTR

If the systematics are not 
taken into account in the fit...

If the nuisance parameters are 
introduced in the fit procedure...
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Fit of MS nuisance using different 
pseudodata shifts

µ = {-1%, 0.2%,   
        0.5%, 1%}

Linear relation 
between fitted 
value of µ and 

pseudodata shift

OK!



28

GEANT4 simulations

Tracker only

Tracker + ECAL > 1 GeV

Signal: elastic scattering
Background: e+e- pair 
production

TB2017 (resolution ~7µm)

Tracker only

Signal: elastic scattering
Background: e+e- pair 
production

Tracker + ECAL > 1 GeV

TB2018 (resolution ~40µm)
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Multiple scattering:
results from TB2017

Multiple scattering effects of electrons with 12 and 20 GeV on 
Carbon targets (8 and 20 mm)

Main goals: 

● to determine a 
parameterization able to 
describe also non Gaussian 
tails

● to compare data with a 
GEANT4 simulation of 
the apparatus



30

Results show a ~1% 
agreement between data and 

MC for the Gaussian core

Multiple scattering:
results from TB2017
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