MITP VIRTUAL Workshop

Hadron Spectroscopy: The Next Big Steps 14 – 25 March 2022

https://indico.mitp.uni-mainz.de/event/246

Update for JPAC

Hadron Spectroscopy: The Next Big Steps

Adam Szczepaniak Indiana University/Jefferson Lab

Jefferson Lab

César Fernández-Ramírez UNED/ICN-UNAM

With slides from Adam Szczepaniak and Alessandro Pilloni

- Over 120 Research Articles (since 2013)
- Over 200 Invited Talks and Seminars
- Workshops and Conferences Summer Schools (2015,2017), INT Program (2020) Our own series "Future Directions and Hadron Spectroscopy Analysis" (JLab, Mexico, Beijing), Graduate course on reaction theory (2019,2020)
- Scattering course (2021, 2022)
- Affiliated membership in CLAS, GlueX, BESIII, COMPASS, LHCb
- Recent PhD's: D.Winney (2021), N.Sherrill (2021), A.Jackura (2019), A.Rodas (2019), M.Mikhasenko (2019), J.Nys (2018), A.Hiller-Blin (2018).
- Review: 2112.13436

Joint Physics Analysis Center Full Members

Viktor

Sergi

Misha

Cesar

Daniel

Alessandro

Lukasz

Astrid

Vincent

Adam

Akaitz

Robert

Miguel

Identifying resonances

Joint Physics Analysis Center

• Scalars in J/ Ψ radiative decay

•XYZ studies at EIC/Jlab++ and GlueX-like setup

Rodas et al, EPJC 82 (2022) 1

 $J/\psi \to \gamma \,\pi^0 \pi^0 \\ \to \gamma \,K^0_S K^0_S$

• DNN: see my talk past Thursday

- Yields in direct production at (future) JLab++ comparable to BESIII, Belle, LHCb. The later involve more complicated final states.
- Variable photon energy is important, it probes different production mechanisms : Y production at higher energies W>10 GeV, XZPc , at lower W < 10 GeV

• Search for the exotic hybrid

Bibrzycki et al, EPJC 81 (2021) 10

Albaladejo, et al. PRD 102 (2020) 114010

	$W_{\gamma p}$ (GeV)	σ (nb)	$\mathcal{B}(Q \rightarrow \ell^+ \ell^- n\pi) \ (\times 10^{-3})$	Counts	Comparisor
X(3872)	6	33.1	5.3	877	~ 90 [56]
$Z_c(3900)^+$		15.9	12.5	994	$\sim 1300 \ [15]$
$Z_b(10610)^+$	15	2.8	2.6	36	$\sim 750 \ [57]$
$Z_b'(10650)^+$		0.66	2.1	7	$\sim 200 \ [57]$

- Angular asymmetry in $\eta^{(')}\pi$ production at COMPASS explained with Regge theory.
- This will constraint extraction of exotic meson (P-wave) from GlueX data

Light scalars and the Glueballs

The clearest sign of confinement in pure Yang-Mills The worst state to search in real life

J^{PC}	Mass MeV							
	Unquenched Quenched							
	This work	M&P	Ky	Meyer				
0-+		2590(40)(130)	2560(35)(120)	2250(60)(100)				
2^{-+}	3460(320)	3100(30)(150)	3040(40)(150)	2780(50)(130)				
0-+	4490(590)	3640(60)(180)		3370(150)(150)				
2^{-+}				3480(140)(160)				
5^{-+}				3942(160)(180)				
$0^{}$ (exotic)	5166(1000)							
1		3850(50)(190)	3830(40)(190)	3240(330)(150)				
2	4590(740)	3930(40)(190)	4010(45)(200)	3660(130)(170)				
2				3.740(200)(170)				
3		4130(90)(200)	4200(45)(200)	4330(260)(200)				
1+-	3270(340)	2940(30)(140)	2980(30)(140)	2670(65)(120)				
3+-	3850(350)	3550(40)(170)	3600(40)(170)	3270(90)(150)				
3^{+-}				3630(140)(160)				
2^{+-} (exotic)		4140(50)(200)	4230(50)(200)					
0^{+-} (exotic)	5450(830)	4740(70)(230)	4780(60)(230)					
5^{+-}				4110(170)(190)				
0++	1795(60)	1730(50)(80)	1710(50)(80)	1475(30)(65)				
2^{++}	2620(50)	2400(25)(120)	2390(30)(120)	2150(30)(100)				
0++	3760(240)	2670(180)(130)		2755(30)(120)				
3^{++}		3690(40)(180)	3670(50)(180)	3385(90)(150)				
0++				3370(100)(150)				
0++				3990(210)(180)				
2++	regol	ry et a	11.	2880(100)(130)				
4++				3640(90)(160)				
6++	FP11	D10 1	70	4360(260)(200)				
		- IV, I	10					

 $J/\psi \rightarrow \gamma \pi^0 \pi^0$ and $\rightarrow \gamma K_S^0 K_S^0$

This is a gluon-rich process, expected to be one of the golden channels for the search of the scalar glueball

Same model as before

Two/three channels, $i, k = \pi \pi, KK, (\rho \rho)$ **Two waves,** J = S, D

$$D_{ki}^{J}(s) = \left[K^{J}(s)^{-1}\right]_{ki} - \frac{s}{\pi} \int_{s_{k}}^{\infty} ds' \frac{\rho N_{ki}^{J}(s')}{s'(s'-s-i\epsilon)}$$

$$K_{ki}^{J}(s) = \sum_{R} \frac{g_{k}^{(R)} g_{i}^{(R)}}{m_{R}^{2} - s} + c_{ki}^{J} + d_{ki}^{J} s$$

3 K-matrix pole for the S-wave 3 K-matrix poles for the D-wave

 $n_k^J(s) = \sum_{n=0}^3 a_n^{J,k} T_n\left(\frac{s}{s+s_0}\right)$

$$pN_{ki}^{J}(s') = \delta_{ki} \frac{\lambda^{J+1/2} \left(s', m_{\eta^{(\prime)}}^{2}, m_{\pi}^{2}\right)}{\left(s'+s_{R}\right)^{2J+1+\alpha}}$$

Lead by Arkaitz & Alessandro

$J/\psi \rightarrow \gamma \pi^0 \pi^0$ and $\rightarrow \gamma K_S^0 K_S^0$

Rodas et al, EPJC 82 (2022) 1

Poles:

- Large systematic uncertainty for the heavier poles
- Study of residues ongoing
- Interpretation as glueballs? See Alexey's talk today

Target: high saturated gluon content

Beam/probe: high resolution photons, point-like quark-antiquary production

- Clean mode for production of heavy quarks is, especially bottomonia, possibly with enchanted production of hybrids
- Excellent kinematic separation, incoherent charge exchange, production of tetraquarks and baryon exotics, pentaquarks
- Wide kinematic coverage, from diffraction to DIS gives access to a wide range of production mechanisms

Lead by Miguel, Astrid, Vincent, Daniel & Alessandro

X(3872)

For production/detection, its main decay channels are $J/\psi\rho$ and $J/\psi\omega$ with Br=4.1% and 4.4%, respectively.

The couplings $J/\psi\rho$ and $J/\psi\omega$ are determined from \widehat{a}_{b} the branching ratios and assuming a width 1.2 MeV.

The other parts of the amplitude, $\gamma \rightarrow J/\psi$ given by VMD, and VNN (bottom vertex) also well known. [1] [1] Phys. Rev. D 96, 093008 (2017)

The $X \rightarrow J/\psi\rho$, $\rho \rightarrow \pi\pi$ distribution also agrees with data.

INDIANA UNIVERSITY

Jefferson Lab

 $\mathcal{L} \sim 500 p b^{-1}/yr$ (at $E_{\gamma} = 20 GeV$) with 1% eff.

Number of events ~3000 events/yr

BESIII efficiency ~50% due to enhanced acceptance of the symmetric detector — thus our efficiency estimate of 1% is probably conservative

The reason why J/ψ photo production is larger is due to the small $Y \rightarrow J/\psi \pi \pi$ branching ratio of 3%

Y production increases with energy : AMBER/EIC

Jefferson Lab

INDIANA UNIVERSITY

Z(3900)

Photoproduction by charged pion exchange considered in [1] but decay widths were largely unknown.

BESIII determination [2] of $\Gamma(Z \to D\bar{D}^*)/\Gamma(Z \to J/\psi\pi)$ allows more accurate estimation of the coupling within VMD framework.

[1] Phys. Rev. D 88, 114009 (2013)[2] Phys. Rev. Lett. 112, 022001 (2014)

~1000 events/yr

Branching ratio $Z \to J/\psi\pi$ is larger than that of $Y \to J/\psi\pi\pi$

Summary

TABLE VIII. Estimates of yields for one year of data taking under the conditions described in the text. The branching ratios $\mathcal{B}(Q \to \ell^+ \ell^- n\pi)$ are given by $\sum_V \mathcal{B}(Q \to V n\pi) \times \mathcal{B}(V \to \ell^+ \ell^-)$. Comparison with existing datasets are also given. The efficiency is assumed to be 1%. Higher efficiencies are certainly possible, e.g., 50% for the $Z_c(3900)^+$ at BESIII. The results for the X(6900) must be rescaled by the yet unknown $\mathcal{B}[X(6900) \to \psi\psi]$.

	$W_{\gamma p}$ (GeV)	σ (nb)	$\mathcal{B}(\mathcal{Q} \to \ell^+ \ell^- n\pi) \; (\times 10^{-3})$	Counts	Comparison
$X(3872) Z_c(3900)^+$	6	33.1 15.9	5.3 12.5	877 994	~90 [60] ~1300 [15]
$Z_b(10610)^+$ $Z_b'(10650)^+$	15	2.8 0.66	2.6 2.1	36 7	~750 [61] ~200 [61]
			$\mathcal{B}(J/\psi \to \ell^+ \ell^-)^2~(\times 10^{-3})$		
X(6900)	12	1.9	14	133	~800 [33]

Plenty of signatures: hybrids

- Exotic J^{PC}=1⁻⁺ (hybrid) mesons expected (VES, GAMS, E852, COMPASS, and theory)
- In low-t pion diffraction (COMPASS) exotic wave production compatible with one pion exchange (but not at high-t)
 - Low-t Red : Exotic resonance 1.5 ×10³ $\times 10^3$ Green : pion exchange High-t $R_{\pi\pi}$ π p_{recoil} 1.5 2 0.5 1.5 $\pi^{-} p \rightarrow \eta^{(')} \pi^{-} p$ **COMPASS** (2018)

Jefferson Lab

 In photoproduction (GlueX,CLAS12) exotic mesons produced via pion exchange

[B.Grube, proc. HADRON2019]

INDIANA UNIVERSITY

See Bernhard's talk today

M.Swat, AS Phys.Lett.B 516 (2001)

adding P wave and $\eta'\pi$ channel

INDIANA UNIVERSITY

Single vs Double Regge exchange

COMPASS vs GlueX

[C.Adolph, et all COMPASS, Phys.Lett.B 740 (2015) 303]

• Also charge exchange

 π

See Sean's talk today

• Thanks to V. Mathieu from APS 2021

Low energy fit (L=1,2)

Rodas et al (JPAC) PRL 122 (2019) 042002

Lead by Arkaitz & Alessandro

Pole postions

1⁻⁺ from lattice

octet 1-+ resonance pole & couplings

generates for a π_1 at 1564 MeV:

Гтот ~ 140-600 MeV

 $\Gamma(\pi\eta) \lesssim 1 \text{ MeV}$ $\Gamma(\pi\eta') \lesssim 20 \text{ MeV}$ $\Gamma(\pi\rho) \lesssim 12 \text{ MeV}$ $\Gamma(\pi b_1) \sim 140-530 \text{ MeV}$ JPAC/COMPASS *M*~1560, Γ~490 MeV

Kopf et al. *M*~1620, Γ~455 MeV

See Dudek's talk

See Kopf's talk

Partial wave expansion

[C.Adolph, et all COMPASS, Phys.Lett.B 740 (2015) 303]

Lead by Lukasz, Misha, Vincent & CFR

Fit results : $\eta\pi$

Bibrzycki et al. EPJC 81 (2021) 647

Fit results : $\eta' \pi$

ПΠ

Forward-backward intensities

Forward-backward asymmetry

Πī

Finite Energy Sum Rules

[V. Mathieu, J.Nys. et al. (JPAC) 1708.07779 (2017)]

$$A_{\lambda';\lambda\lambda_{\gamma}}(s,t) = \overline{u}_{\lambda'}(p') \left(\sum_{k=1}^{4} A_k(s,t)M_k\right) u_{\lambda}(p)$$
$$\int_0^{\Lambda} \operatorname{Im} A_i(\nu,t)\nu^k d\nu = \underbrace{\beta_i(t)}_{\alpha(t)+k} \frac{\Lambda^{\alpha(t)+k}}{\alpha(t)+k}$$

ШI

Summary

- Existence of exotic hadrons (hybrids in particular) are a consequence of gluon dynamics.
- Forward-backward asymmetry in eta-pi and eta'-pi is evidence of exotics
- Regge physics needed to extract exotic multiplet
- FESR constraints
- The XYZ phenomena are yet to be understood. There may be molecules or compact tera-, penta- quark states
- Their photo- and electro-production can provide insight (EIC & Jlab++)
- Poles for scalars and tensor states from radiative J/Ψ decay determined
- Nature?