

Theory Summary

Christoph Hanhart

Forschungszentrum Jülich

In this presentation I will present my take aways of this meeting

- \rightarrow The presentation does not call for completeness
- \rightarrow I focus on topics, not talks
- \rightarrow The presentation is based on my subjective point of view

- Talks and discussions revealed that the crucial quantities to understand the role of molecules in the spectrum are
- → the effective range (from lattice or experiment)
 - $\triangleright r > 0 \implies$ hadronic molecule
 - $\triangleright r < 0 \implies \text{Compact component}$ (or coupled channel effect?)

Unitarity fixes prod. amp. E-dep. only up to polynomial!

- \rightarrow lineshapes
- What is needed:
- → Combined analysis of various channels For $\chi_{c1}(3872)$: $\pi\pi J/\psi$, $D^0 \bar{D}^{*0}$, $\pi\chi_{cJ}$
- \rightarrow High resolution analyses (PANDA?)

- Breit Wigner analyses are to be taken with care:
- \rightarrow violate unitarity
- \rightarrow parameters reaction dependent
 - \Rightarrow parameters from one reaction to another questionable
 - \implies even too many states, e.g. only $\pi_1(1400)$; no $\pi_1(1600)$ (JPAC confirmed by Bochum group)
- What is needed in formalisms consistent with
- \rightarrow unitarity
- \rightarrow analyticity
- → chiral symmetry
- \rightarrow low energy phase shifts (non-trivial for s-waves)
- → Role of triangle singul. (Discussion on Di-baryons)

Applies also to analysis of lattice data!

- On a very good path to accomplish the program
- Currently most pressing issue

 \implies Lattice systematics needs to be understood

It is my understanding that there is not much freedom on phenomenological/dispersion theoretical side of the calculation