

Experimental summary Multiquark states: 20 years later

Claudia Patrignani

ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA Università di Bologna and I.N.F.N. CAMPUS DI RIMINI Claudia.Patrignani@bo.infn.it Facts:

• QCD *is* part of the Standard Model

unfortunately perturbative only at small distance

- precision tests of Standard Model rely on controlling QCD corrections
- the primary observable of QCD is the hadron spectrum
- ${ullet}$ level splittings \Longrightarrow probe the region between long and short distance

Spectroscopy is a tool to test understanding short and medium range dynamics

C. Patrignani

INFN

Experimental summary

A flashback: heavy guark spectroscopy circa A.D. 2000

Mesons:

The quantum numbers are determined from the relative angular momentum L and the quark spin relative orientation \vec{s}_1 and \vec{s}_2 :

Quarkonium: charmonium and bottomonium

Heavy guarks \rightarrow non relativistic relativistic corrections in $b\bar{b}$ smaller than in $c\bar{c}$ (?)

- Potential models: Cornell (Coulomb +linear term) but also
- Lattice NRQCD, pNRQCD: α_s, m_b/m_c, lattice spacing, ...

 $c\bar{c}$ or $b\bar{b}$ bound states: spectroscopic notation: $n^{25+1}L_{I}$

fermion-antifermion: $P = (-1)^{L+1}$ $C = (-1)^{L+S}$

Quarkonium physics

Decay widths:

above open DD or BB threshold dominant decay to heavy mesons unless forbidden by quantum numbers broad states below open $D\overline{D}$ or $B\overline{B}$ threshold. $Q\overline{Q}$ annihilate to gluons (or virtual photon) OZI-rule \rightarrow narrow states:

- $\psi(nS), \Upsilon(nS) \to ggg, \gamma gg \approx \%$ or $\gamma * [\ell^+ \ell^- \approx \%]$
- other states decay to ggg or gg depending on J odd/even $\eta_O(nS), \chi_{O0}(nP), \chi_{O2}(nP) \rightarrow gg$ $h_{O}(nP), \chi_{O1}(nP) \rightarrow ggg \text{ or } ga\overline{a}$
- very few exclusive hadronic modes observed especially in bb

Radiative and hadronic transitions:

photon or gluons radiation from QQ
 state

multipole expansion if radius « wavelength

Spectroscopy: $\psi(nS), \Upsilon(nS) = n^3 S_1$ $\eta_Q(nS) = n^1 S_0$ $h_Q(nP) = n^1 P_1$ fine and hyperfine splitting (spin-dependent terms) $\chi_{OI}(nP) = n^3 P_I$ mass splitting between n^3S_1 and n^1S_0 depend strongly on α . Focus: precisely understand spectrum below open charm/bottom threshold

C. Patrignani

Experimental summary

A.D. 2003: $X(3872) - \text{now } \chi_{c_1}(3872)$ just the first in a new kind of hadrons

- Ever since the discovery of X(3872), we have a golden era in the discovery of the exotic states.
- · No solid explanations for these exotics.

C. Patrignani

Phys.Rev.Lett. 91 (2003) 262001 Most cited Belle paper!

Standard and Exotic Hadrons

Multiquark states

C. Patrignani

orts 873 (2020) 1-154

Experimental summary

From Junhao Yin's talk. (Tue.15)

hadron spectroscopy

- New knowledge feeds back to theory.
- Perfect ground to test theoretical models.
- New viewing angle towards QCD.

bottomonium

Mass [GeV/c²]

11

10

Experimenter's take on this:

measure as many multiquark states as possible

 \bullet > 3 valence guarks required

many possible exotic states would not fit

Patrignani

- mass/width not fitting in meson or baryon spectra
- overpopulation of the spectra
- production or decay properties incompatible with standard mesons/baryons

identification can be disputed

possible mixing with conventional states

CAVEAT: Peaking structures can also be due to rescattering / threshold effects,...

for heavy constituent quarks the mass itself is a clue!

... too many results!

disclaimer: just a personal selection

And be lenient if I misunderstood your work :)

Experimental summary

Heavy (exotic?) mesons

$\chi_{c1}(3872)$

In nearly 20 years we have learnt a lot:

- $J^{PC} = 1^{++}$ (LHCb)
- absolute branching fractions (BABAR) albeit with large errors

pprox 90% to D^0 \overline{D}^{*0} and D^0 \overline{D}^0 π^0

- lower limit on the natural width (LHCb) still not able to test the expected deviation from BW shape
- mass determined with increased precision

but still compatible with $D^0 \ \overline{D}^{*0}$ threshold

- sizeable I-spin violation in $\chi_{c1}(3872) \rightarrow J/\psi \, \pi^+ \pi^-$
- large prompt production in pp and $p\bar{p}$ high energy collisions

yet, we are far from understanding its nature

plenty of recent and new results, as well as future perspectives presented in Thursday 17th session by

- Tomasz Skwarnicki (LHCb)
- Daniele Fasanella (CMS)
- Jens Sören Lange (Belle,BelleII)
- Frank Nerling (PANDA)

A few picks on $\chi_{c1}(3872)$: Proximity to threshold & width close to threshold BW is not appropriate; decay dominated by $D^0 \ \overline{D}^{*0} \Longrightarrow$ Flattè inspired amplitude parametrization

- (T. Skwarnicki): quasi-bound state preferred over quasi-virtual state

sheet IV quasi-virtual E [Me LHCb D⁰D^{*0} state guasi-bound E $D^0\overline{D}^{*0}$ state -0.2lσ -0.4-0.6 -0.8sheet II -0.4-0.2Re E [MeV] excellent LHCb resolution gives sensitivity to natural width, yet it's not enough (nor will likely be..)

- (F. Nerling) PANDA

should be able to pin down the correct lineshape and achieve a sensitivity $\Gamma/\Delta\Gamma > 5 \text{ for } \Gamma \gtrsim 50 \div 120 \text{ keV}$ provided $\mathcal{B}_{p\bar{p}}$ not too small...

A few picks on $\chi_{c1}(3872)$: I-spin violating decays

- (T. Skwarnicki) Determination of sizeable ω contribution in $\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi$

Decay NOT completely dominated by ho^0

phase space effects on resonance masses in decay chains NOT simulated in EvtGen

Implications for I-spin violating contribution:

Experimental summary

A few picks on $\chi_{c1}(3872)$: prompt production

Compare to $\psi(2S)\to\pi^+\pi^-J\!/\!\psi$; prompt/non-prompt via tranverse distance from primary vertex

- (T. Skwarnicki) event-multiplicity dependence of prompt production in pp markedly different from $\psi(2S)$

seem to support compact tetraquark (comover interaction m.)

- (D. Fasanella) PbPb collisions (CMS, first measurement) and pp

A few picks on $\chi_{c1}(3872)$: b-hadron, $\gamma\gamma$ production

C. Patrignani

Vector states: ψ (4230); ψ (4360); ψ (4660) ^{Junhao} Yin and Nils Huesken's talks, Tue 15th

$\chi_{cl}(2P)$ candidates around 3.9 GeV

Wenjing Zhu, Thur 18; Ruiting Ma, Wed 16

Many candidates: assignment as 0^{++} or 2^{++} not clear

And one more result: two overlapping 0^{++} or 2^{++} in $B \rightarrow D\bar{D}K$

plus another candidate at lower mass: is this a better 0⁺⁺?

MITP 14-25 March, 2022 16

Charged hidden charm candidates: $Z_c^{\pm,0}$

see Yuping Guo's talk, Thurs 17

Many more observed in the large BESIII datasets

in a variety of final states

4.05 PRL126, 102001 (2021 RM(K⁺) (GeV/c²

same state !

4.05 4.1 RM(K*) (GeV/c²)

Observation of $Z_{cs}(3985)$

Data

non-Res DD comb. BKG

$$\Gamma = (12.8^{+5.3} + 3.0) \text{ MeV}$$

- Significance: 5.3σ
- At least four quarks (ccsū)

Assume IP=1⁺

PRI 126 102001 (2021)

- Simultaneous fit to five data

Signal component:
$$\sqrt{q \cdot p_j}$$

gnal component:
$$\sqrt{q \cdot p_i}$$

gnal component:
$$\sqrt{q \cdot p_j}$$

$$\frac{\sqrt{q \cdot p_j}}{2 - 2 \cdot 1 \cdot (2 - 2 \cdot 1)} |^2$$

$$\frac{\sqrt{q \cdot p_j}}{\frac{1}{2-m^2+im_j(f\Gamma_j(M)+(1-f)\Gamma_j(M))}}$$

$$\frac{\sqrt{q \cdot p_j}}{M^2 - m_0^2 + im_0(f\Gamma_1(M) + (1 - f)\Gamma_2(M))}$$

f = 0.5 represents the fraction

C. Patrignani

 $e^+e^- \to K^+(D^-_s D^{*0} + D^{*-}_s D^0)$

= 4 681 GeV

4.05 4.1 4.15 RM(K*) (GeV/c2)

4.05 4.1 RM(K⁺) (GeV/c²)

RM(K*) (GeV/c2)

ents/ 5.0MeV/c²

see Yuping Guo's talk, Thurs 17

Charged hidden charm strange candidates: $Z_{cs}(3985)$

Exotics in $B^+ \to J/\psi \phi K$ decays

talk: Capriotti, Tue 15

Confirmed states: X(4150), X(4500), X(4700), X(4140), X(4274)New states: X(4630), X(4685), $Z_{cs}(4000)$, $Z_{cs}(4220)$ First observation of exotic states with $c\bar{c}u\bar{s}$ content in the $J/\psi K^+$ final state

[PRL 127 (2021) 082001]

Lorenzo Capriotti - Spectroscopy at LHCb: experimental overview and prospects

INFN

Experimental summary

Y_b(10750)

- Seven scan points below $\Upsilon(5S)$ at Belle, each $\simeq 1$ fb
- New structure observed in $\Upsilon(nS)\pi\pi$

BOTTOMONIUM

- $\Upsilon(5S)$ never observed at LHC
- Branching of Υ(5S) Υ(nS)ππ is factor ≃1000 larger than Υ(4S) Υ(nS)ππ Υ(5S) exotic itself?
- Charged Z_b states observed in Υ(5S) decays Belle, Phys. Rev. D91 (2015) 072003 (not seen at LHC either) peculiar properties: spin ip in decays not suppressed

Charged charm strange candidates?

 $B
ightarrow D^+ D^- K^+$

see talk by Ruiting Ma, Wed 16

Model independent and model dependent analysis

Need two overlapping D^-K^+ components $c\bar{s}u\bar{d}$

Very large significance for both

- Results after add D^-K^+ resonances:
 - > Two D^-K^+ resonances are added:
 - $\Box X_0(2900), J^P = 0^+$
 - Mass: 2866 ± 7 ± 2 MeV/c²
 - Width: $57 \pm 12 \pm 4$ MeV
 - $\Box X_1(2900), J^P = 1^-$
 - Mass: 2904 ± 5 ± 1 MeV/c²
 - Width: $110 \pm 11 \pm 4$ MeV
 - Also test other models, this model gives the best description.

PRL 125, 242001 (2021); PRD 102, 112003 (2020)

would be the first meson with 4 different flavours..

Experimental summary

Structure in J/ψ -pair mass spectrum

- Threshold enhancement described by two resonances
- S-wave BW \times 2-body phase space
- $m_{X(6900)} = 6905 \pm 11 \pm 7 \text{ MeV}$
- $\Gamma_{X(6900)} = 80 \pm 19 \pm 33 \text{ MeV}$
- Significance $>5\sigma$

- Threshold enhancement described by interference
- One BW, interference with SPS
- $m_{X(6900)} = 6886 \pm 11 \pm 11 \text{ MeV}$
- $\Gamma_{X(6900)} = 168 \pm 33 \pm 69 \text{ MeV}$
- Significance $>5\sigma$

Further studies are required to investigate the nature of X(6900). If confirmed: First observation of exotic hadron composed by heavy quarks of the same flavour

MITP 14-25 March, 2022 24

talk: Polyakov, Mikhasenko,Wed 16

Fit to the spectrum

Unitarized model

No direct sensitivity to the width, the value is driven by the model

	Vanya, Misha, Ivan (LHCb) C. Patrignani Exp		Discovery and study of T^+_{cc}	March 16 th , 2022 6	6/14
			Experimental summary	MITP 14-25 March. 2	022 2

Future of ${\cal T}_{QQ}$ f	amilies	talk: Polyakov,	
_		Mikhasenko,Wed 16	
Do other hadrons of the (QQ'qq') family exist?	

- Exists? Now, we are sure they do, all of them.
- Can be observed? Certainly some. Some might be too broad.
- $T^-_{bb}(bb\bar{u}\bar{d})$ are likely stable wrt QCD
- $T_{cb}^{0}(cb\bar{u}\bar{d})$ is either stable or almost, like T_{cc}^{+}
- ? Radial and orbital excitations of isoscalar T^*_{QQ}
- ? Isovector T_{QQ} and its family

26

Vanya, Misha, Ivan (LHCb) Discovery and study of T⁺_{cc} March 16th, 2022 13/14 C. Patrignani Experimental summary MITP 14-25 March, 2022

Baryon excitations

Also for baryons when at least one of the quarks is heavy the problem is simplified by the decoupling between heavy and light quark's spins

Experimental summary

Heavy (exotic/excited) baryons

talk: Capriotti, Tue 15

New excited Ξ_b^0 states

- Two narrow peaks observed in the $\Lambda_b^0 K^- \pi^+$ spectrum
- Large significance wrt one and no peak hypotheses
- $m(\Xi_b(6327)^0) = 6327.28^{+0.23}_{-0.21} \pm 0.08 \pm 0.24 \text{ MeV}, \ \Gamma(\Xi_b(6327)^0) < 2.20 \text{ MeV}$
- $m(\Xi_b(6333)^0) = 6332.69^{+0.17}_{-0.18} \pm 0.03 \pm 0.22 \text{ MeV}, \ \Gamma(\Xi_b(6333)^0) < 1.55 \text{ MeV}$
- Consistent with the predicted 1D Ξ_b^0 doublet, $J^P = 3/2^+$ and $J^P = 5/2^+$

New excited Λ_b^0 states

talk: Pompili, Tue 15

... and another broad bump later confirmed by LHCb

Observation of the excited beauty baryon $\Xi_b^{**}(6100)^-$

➤ The invariant mass of the final state is build combining the fully reconstructed decays (left) with identical mass resolutions and the partially reconstructed channel (right) with a 30% larger mass resolution. The projections of the simultaneous extended UML fit (mass parameter is common due to Δm definition):

- ➤ The natural width (signal model: RBW⊗2Gauss-resolution) is too small (consistent with 0) to be measured with the present data sample and experimental resolution. An Upper Limit Γ(Ξ_b^{**-}) < 1.9MeV @95%CL is obtained (systematics included) through the scan of the profiled likelihood.</p>
- The low yield does not allow a measurement of the quantum numbers. However following analogies with the established \mathbb{Z}_c baryon states ...
 - ... the new $\mathcal{Z}_b^*(6100)^-$ resonance is the analogue of $\mathcal{Z}_c(2815)$ and its decay sequence are consistent with lightest the orbitally excited \mathcal{Z}_b^- baryon with $J^P = 3/2^-$ [L=1 between b-quark and (ds)-diquark]

HadSpec22@Mainz / 15-3-2022

A.Pompili (UNIBA & INFN-Bari)

Study of Excited Baryons via the $\overline{\Xi}^{+}\Lambda K^{-}$ Final State

Barvon studies especially interesting at PANDA due to high production cross sections

- Knowledge in strange baryon sector very sparse
- All decay modes charged and neutral accessible
- Feasibility study performed to determine the spin and parity QN for specific Ξ resonances
- $\Xi(1690)^{-}$ and $\Xi(1820)^{-}$ were simulated including detector response
- Model includes interference effects, proper angular distributions and barrier factors
- Fit was able to identify the correct spin and parity guantum numbers and resonance parameters
- Of course, the models used are a limited representation of reality and can be improved

$p_{\overline{p}}$ (GeV/c)	Reaction	Rate (s^{-1}) at 10^{31} cm ⁻¹
1.64	$\overline{p}p \to \overline{\Lambda}\Lambda$	44
1.77	$\overline{p}p \to \overline{\Sigma}^0 \Lambda$	2.4
6.0	$\overline{p} p \to \overline{\Sigma}^0 \Lambda$	5.0
4.6	$\overline{p}p \to \overline{\Xi}^+ \Xi^-$	0.3
7.0	$\overline{p}p \to \overline{\Xi}^+ \Xi^-$	0.1
4.6	$\overline{p}p \to \overline{\Lambda}K^+ \Xi^- + \mathrm{c.c}$	0.2

Reaction

Eur. Phys. J. A (2021) 57: 184

Rate (s^{-1})

∆ AIC values for Ξ(1690)[−]

	$Fit \rightarrow$	$1/2^+$	$1/2^{-}$	$3/2^{+}$	$3/2^{-}$
Gen. \downarrow					
$1/2^+$		0.0	2,550.6	2,310.6	2,706.8
$1/2^{-}$		316.7	0.0	328.2	2,332.2
$3/2^{+}$		4,973.9	5,228.0	0.0	584.6
$3/2^{-}$		5,345.6	3,118.6	833.1	0.0

Δ (AIC+BIC) values for Ξ (1820)⁻

	$Fit \rightarrow$	$1/2^{+}$	$1/2^{-}$	$3/2^{+}$	$3/2^{-}$
Gen. \downarrow					
$1/2^+$		0.0	139.9	158.7	208.1
$1/2^{-}$		96.8	0.0	211.1	887.4
$3/2^{+}$		7473.3	7604.5	0.0	198.4
$3/2^{-}$		7617.6	6900.8	490.2	0.0

arXiv: 2201.03852

Pentaquarks

LHCb observation in 2015

- Two $J/\psi p$ resonant structures are revealed by a full 6D amplitude analysis
 - □ $P_c(4450)^+$ ← the prominent peak
 - □ $P_c(4380)^+$ ← required to obtain a good fit to the data
 - Consistent with pentaquarks with minimal quark content of uudcc

See talk Liming Zhang, Thur 18 more in overflow...

34

Fine structures from update

- Run1+Run2, x10 $\Lambda_b^0 \rightarrow J/\psi p K^-$ yield
 - Inclusion of Run 2 data (x 5)
 - Improved data selection (x 2)
- $P_c(4312)^+$ is observed
- $P_c(4450)^+$ peak structure is an overlap of two narrower states, $P_c(4440)^+$ and $P_c(4457)^+$
- Their near-threshold masses favour "molecular" pentaquarks with meson-baryon substructure, but other hypotheses are not ruled out

State	$M \;[\mathrm{MeV}\;]$	Γ [MeV]	(95% CL)	R [%]
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7 ^{+ \ 3.7}_{- \ 4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} {}^{5.7}_{1.9}$	(< 20)	$0.53\pm0.16^{+0.15}_{-0.13}$

Liming Zhang

Thur 12846k Λ_b signals

1D $m_{J/\psi p}$ is fitted, full amplitude study is very advanced

5

Introduction and Motivation Spectroscopy of Baryon Resonances Experimental Approach and Results Summary and Conclusions Structure of Nucleon Resonances N* Spectroscopy: Polarization Measurements Spectroscopy of E Resonances Heavy-Flavor Resonances

Cornell 75

J/ψ Photoproduction Near Threshold

See talk Credé, Wed 23

36

Photoproduction of J/ψ (near threshold) provides clean laboratory to study $c\bar{c}$:

- Probes gluon distribution in proton
- Sensitive to multi-quark correlations
- Intriguing possibility of five-quark
 interaction

Introduction and Motivation Spectroscopy of Baryon Resonances Experimental Approach and Results Summary and Conclusions Structure of Nucleon Resonances N^* Spectroscopy: Polarization Measurements Spectroscopy of Ξ Resonances Heavy-Flavor Resonances

Observation of J/ψ at GlueX

See talk Credé, Wed

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

First observation of J/ψ at Jefferson Lab in $\gamma p \rightarrow p J/\psi \rightarrow p e^+ e^-$

- First detailed look at cross section near threshold
- Measurement of t slope (at 10.7 GeV avg. E_{γ}): (-1.67 ± 0.39) GeV⁻²
- Limits on pentaquark production

Light mesons

$PWA \implies$ resonance parameters See B. Ketzer; Tue 22

See B.J.Liu; Mon 21

exotic $J^{PC} = 1^{-+}$ in $J/\psi \rightarrow \gamma \eta \eta'$

Charmonium decays provide an ideal lab for light hadron physics

What's the role of gluonic excitation and

how does it connect to the confinement?

- I(I^{PC}) filter
- "Gluon-rich" process

Baseline set of amplitudes by adding the η_1 state

Decay mode	Resonance	$M (MeV/c^2)$	Γ (MeV)	M_{PDG} (MeV/ c^2)	FPDG (MeV)	B.F. (×10 ⁻⁵)	Sig.	
	$f_0(1500)$	1506	112	1506	112	$1.81 \pm 0.11 \substack{+0.19 \\ -0.11}$	$\gg 30\sigma$	
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ	
	$f_0(2020)$	$2010\pm6^{+6}_{-4}$	$203\pm9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ	į
$J/\psi \rightarrow \gamma X \rightarrow \gamma \eta \eta'$	$f_0(2330)$	$2312 \pm 7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ	i
	$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188 \pm 18^{+3}_{-8}$			$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ	;
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7σ	1
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71 {\pm} 0.06 {}^{+0.10}_{-0.06}$	13.4σ	
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.02}_{-0.01}$	4.60	
	0++ PHSP					$1.44 \pm 0.15 \substack{+0.10 \\ -0.20}$	15.7σ	
$J/\psi \rightarrow \eta' X \rightarrow \gamma \eta \eta'$	$h_4(1415)$	1416	90	1416	90	$0.08 \pm 0.01^{+0.01}_{-0.02}$	10.2σ	
	$h_1(1595)$	1584	384	1584	384	$0.16 \pm 0.02^{+0.02}_{-0.01}$	9.90	

Comparing to the PDGoptimized set, In L of the baseline set is improved by 32 and the number of free parameters is reduced by 16

Contributions from the f₀(2100), h₁(1595)(γη'), ρ(1700)(γη'), φ(2170)(γη), f₂(1810), and f₂(2340), in the PDGoptimized set become insignificant (< 30), omitted Significance of the f₄(2050) is reduced from 5.60 to 4.60, but is still retained

For comparison

Scalar glueball candidate: production properties

C. Patrignani

Experimental summary

arXiv:2202.00621.2202.00623

Exploit polarization to determine amplitudes

INFN :ry complicated, polarization observables can help disentangling "weak" C. Patrienani

41

Not just spectroscopy..

10 billions J/ψ huge samples of η and η' some analyses just use 1.3 billions at present ...)

•
$$\eta' \rightarrow \pi^0 \pi^0 \pi^0 \pi^0$$

- $\eta' \to \gamma \gamma \eta$
- $\eta' \rightarrow \pi^+\pi^-e^+e^-$
- $\eta' \rightarrow \pi^+\pi^-\mu^+\mu^-$

 $\eta' \rightarrow \pi^+\pi^- e^+ e^-$

Branching fraction of $\eta' \rightarrow \pi^+\pi^-e^+e^-$:

C. Patrignani

Theoretical predictions:

• Absolute Branching Fractions of η Decay Modes

Absolute Branching Fractions of η Decay Modes

B(

Step 1: Inclusive decays

$$I/\psi \rightarrow \gamma \eta$$
 = $\frac{N_{J/\psi \rightarrow \gamma \eta}^{obs}}{N_{J/\psi} \cdot \varepsilon f}$ (4)

Experimental summary

MITP 14-25 March, 2022 42

... too many results!

disclaimer: just a personal selection

Experimental summary

MITP 14-25 March, 2022 43

Overflow

... all other interesting things for which I had no time

 R_1 can be (any of) the states at 3.9 GeV

C. Patrignani

3.7 3.8

3.9 4 M(γψ(2S))

 R_2 ?? 2⁺⁺ partner of $\chi_{c1}(3872)$??

Evidence of $J/\psi \Lambda$ structure

- Hidden-charm pentaquark with strangeness P_{cs} is predicted, and suggested to search for in $\mathcal{Z}_b^- \rightarrow J/\psi\Lambda K^-$ [JJ Wu PRL 105 (2010) 232001; HX Chen PRC 93(2016) 064203]
- Amplitude analysis with improved helicity formalism

• $P_{cs}(4459)^0$ found, significance >3.1 σ

~1750 $\mathcal{Z}_b^- \rightarrow J/\psi \Lambda K^-$ signals (purity ~80%)

Liming Zhang

Evidence of $J/\psi \Lambda$ structure

- [Science Bulletin 66 (2021) 1278]
- Hidden-charm pentaquark with strangeness P_{cs} is predicted, and suggested to search for in $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ [JJ Wu PRL 105 (2010) 232001; HX Chen PRC 93(2016) 064203]
- Amplitude analysis with improved helicity formalism

• $P_{cs}(4459)^0$ found, significance >3.1 σ

~1750 $\mathcal{Z}_b^- \rightarrow J/\psi \Lambda K^-$ signals (purity ~80%)

Liming Zhang

