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CP asymmetry measurements in Charm

Observation in charm
(Singly Cabibbo Suppressed)

can lead to new physics (DCS for ex) 

CPV on 𝐷 → ℎℎℎ?

searches in many process at LHCb, BESIII, BeleII

understand the mechanism in two-body is crucial to three-body studies!

direct CP asymmetry observation: new physics?
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We show that the final state interaction (FSI) within a CPT invariant framework enhances the
observed charge-parity (CP) violation di↵erence betweenD0 ! ⇡�⇡+ andD0 ! K�K+ decays. We
consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK rescattering
data to extract the FSI parameters ! strong phase di↵erence. We naturally arrive to the
sign and order of magnitude of �ACP as recently found by the LHCb collaboration.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one
of them. In general, new theories ! ”new physics
theories” ? predict new sources of CPV, with a clear
signature and high sensitivity to be experimentally ob-
served (see [1–5] for update reviews). This is why Bigi
and Sanda called CPV in charm as “The dark horse can-
didate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D
0 ! K�K+)�ACP (D

0 ! ⇡�⇡+)

= �(1.54± 0.29)⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61± 0.28)⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are several theoretical frameworks that try to

address CPV in charm within Standard Model. They
can be dived between those using QCD short-distance
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approach [9, 10] whereas the others consider contribu-
tion of long-distance e↵ects [11, 12] including topological
approach with and without SU(3) breaking[13? ]. Fac-
ing the limitation of QCD to acess the penguin contri-
bution, the first approach predicted �Acp one order of
magnitude lower than the experimental value. On the
other hand, the available long-distance approach try to
explain the CPV result in charm within the SM explor-
ing model dependent fitting to non-perturbative aspects
of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [14–16], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.
The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [17–19], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
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B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
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(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [14–16], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.
The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [17–19], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
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Patricia MagalhãesFSI to enhance CPV

CPV basics

2     amplitudes, SAME final state,    
strong (   ) and weak (   ) phases

à condition to CPV:

Ø CPV at quark level: BSS model Bander Silverman & Soni PRL 43 (1979) 242

+
Ø good for    

Ø weak phase    CKM

hadronic FSI interactions also can be a source of strong phase!

strong phase QCD
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Theory approaches for CPV in D0

Ø QCDF:

v with/without SU(3) constraint 

how to calculate penguin contributions? cannot account for rescattering effects 

v with resonances (fit agrees) 

Ø LCSR: QCD, model independent, predictions are one order magnitude below.
Khodjamirian & Petrov, Phys. Lett. B 774, 235 (2017). 

à Long distance effects: topological approaches

Alexey Petrov, Bhubanjyoti Bhattacharya

Schacht and A. Soni, Phys. Lett. B 825, 136855 (2022). 
Y. Grossman and S. Schacht,  JHEP 07, 20 (2019)  

H.-Y. Cheng and C.-W. Chiang, PRD 100, 093002 (2019). v with SU(3) breaking through 
FSI (prediction agrees) F. Buccella, A. Paul and P. Santorelli, PRD 99, 113001 (2019) 

mailto:pmagalhaes@cbpf.br


“Thus, we are in the unfortunate situation that perturbative and sum-
rule estimates are at least one order of magnitude below the
experimental value, while symmetry-based approaches suggest that
the SM is in perfect agreement with data. To identify the true origin
of direct CP violation in the charm sector, greater theoretical
understanding is necessary.”
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Abstract
In recent years charm physics has undergone a renaissance, which has been
catalyzed by an unexpected and impressive set of experimental results from
the B factories, the Tevatron, and LHCb.The existence ofD0D̄0 oscillations
is now well established, and the recent discovery ofCP violation inD0 decays
has further renewed interest in the charm sector. In this article,we review the
current status of charm-mixing and CP-violation measurements and assess
their agreement with theoretical predictions within the StandardModel and
beyond.We look forward to the great improvements in experimental preci-
sion that can be expected over the coming two decades and to the prospects
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FSI & CPT - CPV enhancement - Bediaga, Frederico PCM arxiv 2203.04056

Evidence of FSI&CPT from Bà hhh decays

Theories approaches for CPV in D0
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B decays: CPV in integrated yields
KKK Kππ

KKπ πππ

K K K < 0  --- K π π >0

π π π >0  --- K K K < 0  

Region:   1-1.5 GeV
(π πàK K)

FSI+CPT+U-spin

U-spin 
symm.

Bhattacharya,  Gronau, Rosner, PLB 726 (2013) 337

LHCb PRD90 (2014) 112004

the interference between S-matrix o↵-diagonal elements in (25) contribute to
��CP (qi).

The U-spin symmetry within this example corresponds to:

U0d⇡⇡ = U0sKK and U0dKK = U0s⇡⇡ ,

C0d⇡⇡ = C0sKK and C0dKK = C0s⇡⇡ . (27)

In addition, if we assume �⇡⇡ ⇡ �KK and equal masses for the pion and kaon,
which means the FSI does not distinguish the change of ⇡ $ K, and taking
into account the opposite signs in wd = �ws, from the unitarity of the CKM
matrix, we get that:

��CP (⇡±K+K�)

��CP (K±⇡+⇡�)
⇠ �1 and

��CP (⇡±⇡+⇡�)

��CP (K±K+K�)
⇠ �1 . (28)

From the sCPT relation ��(q⇡⇡) = ���(qKK) in Eq. (26), we get that

��CP (⇡±K+K�)

��CP (⇡±⇡+⇡�)
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��CP (K±K+K�)

��CP (K±⇡+⇡�)
= �1 (29)

Both ratios in relations (28) and (29) are consistent with the signs of asym-
metries and compatible within error with the magnitudes of the ratios given
in Eqs. (3) and (4), respectively. We remind that these ratios were obtained
from Table 1, which was built with the available experimental data for the B
decay rates and CP asymmetry. We stress that within a two coupled-channel
picture the ratios (28) and (29) are valid beyond the LO, and due to that the
superscript (LO) was dropped out in those equations.

6. Final Remarks
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addressed by the ratio of charge conjugate width di↵erences and given by (29).
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constrain including the FSI, can reveal the correct relative signs between the
��CP ’s of the charged three-body B decays, as one sees by comparing the
ratios (28) and (29), with those extracted from the experimental values pre-
sented in Eqs. (3) and (4). Note that the magnitudes are reproduced within the
experimental errors.

Although data is still not as precise as we would desire, there will be new
high statistics in the near future by LHCb (Run 2 and Run 3) and from Belle2
which will allow us to better address this issue. From the theoretical side, in the
proposed CPT constrained framework including FSI, we only take into account
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also verified for the compound contribution as a conse-
quence of Eq. (14), discussed above.
Indeed, looking at the LHCb results [4, 5], a direct

and complementary relation between different charm-
less three-body decay channels coupled by the strong
interaction emerges for B± → K±π+π− and B± →
K±K+K−, and for the decays B± → π±π+π− and
B± → π±K+K−. Even tough the tree and penguin
composition in the total decay amplitudes for each pair
of coupled channels are expected to be different. The CP
asymmetry distribution in the Dalitz plot for these chan-
nels shows the prevalence of CP violation in the mass
region where the ππ → KK scattering is important. As
a matter of fact, the π+π− and K+K− channels are cou-
pled to π0π0 and KK. Besides that, the two channels
with two or more kaons in the final state have CP asym-
metries with opposite signs with respect to the ones with
two or more pions. These facts motivates us to look more
closely to the compound contribution to the partial decay
widths in the three-body B decays.

VII. ESTIMATE OF THE COMPOUND
CONTRIBUTION TO ∆ΓKK(ππ) IN B

±
→ K

±
K

+
K

−

(K±
π
+
π
−) DECAYS

To perform a simple test of the compound contribu-
tion (second term of Eq. (11)) to CP asymmetry using
only a single angular momentum channel, namely, the
S-wave, the best place is to look to the asymmetry in de-
cays involving KK and ππ channels. Beyond the φ mass
region, there are no other significant resonance contri-
butions with a strong KK coupling before the f2(1525)
resonance. Therefore as an illustration, we estimate the
compound contribution to the asymmetry ∆ΓKK(ππ) in
B± → K±K+K− (K±π+π−) decays, presented by the
LHCb collaboration [5].
As a remark, the three-body rescattering effect at the

two-loop level is small compared to the first two-body col-
lision contribution, as suggested by the three-body model
calculation for the D± → K±π+π− decays [21]. We as-
sume that this approximation for charmless three-body
B decays must be valid at least for some regions of the
phase space.
In order to get a quantitative insight on the enhance-

ment of the CP asymmetry from the coupling between
the ππ and KK channels in the compound contribu-
tion, we start by defining the channels α ≡ K+K− and
β ≡ π+π− and consider the main isospin channel I = 0
and JP = 0+. From the second term of Eq. (11) with ζ1
from Eq. (13), we can write the compound contribution
to the CP asymmetry as

∆Γcomp
KK ≈ C

√

1− η2 cos (δKK + δππ + ΦKK)F (M2
KK),
(15)

with C = 4|K| (sinγ) considered energy independent. We
still approximate the kaon-kaon S-wave phase shift as

δKK ≈ δππ in the region where the channels are strongly
coupled. The Dalitz phase-space factor is F (M2

KK) =
(M2

K+K−)max− (M2
K+K−)min, for the B± → K±K+K−

channel (see e.g. [24]). The masses (M2
K+K−)max

and (M2
K+K−)max depend on the KK subsystem mass,

M2
KK . Also the symmetrization of the decay amplitude

in the two equally charged kaons is disregarded as the low
mass regions for each possible neutral KK subsystem are
widely separated in phase space.
Following Ref. [25], we have used the parametriza-

tion for the pion-pion inelasticity and phase-shift, for the
I = 0 and Jp = 0+ dominant channel, in order to eval-
uate Eq. (15). The used parametrizations are given in
Ref. [25] by Eqs. (2.15a), (2.15b), (2.15b’), (2.16), and
the quoted errors. We also use the CPT condition given
by Eq. (4), restricted to two channels, to obtain the asym-
metry in the ππ decay channel, which in this case is given
by ∆Γcomp

ππ = −∆Γcomp
KK .

In order to compare the asymmetries ∆Γcomp
KK and

∆Γcomp
ππ to experimental data, we extracted the differ-

ence B− − B+, respectively for the B± → K±K+K−

and B± → K±π+π− decays, from the recent LHCb re-
sults presented in Ref. [5]. The results are shown in Fig. 1
for an arbitrary normalization fitted to ∆Γcomp

KK . Our cal-
culations are presented from the subsystem mass (M2

sub
)

above the KK mass threshold. Indeed, M2
sub

= M2
K+K

(M2
π+π) for B

± → K±K+K− (K±π+π−).
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FIG. 1: Estimate (grey band) of Eq. (15) as a function of
the subsystem mass compared to experimental data of (a)
the asymmetry of B±

→ K
±
π
+
π
− decay (circles), and of (b)

the asymmetry of B±
→ K

±
K

+
K

− decay (squares). Data
extracted from Ref. [5].

The width of the band represents the errors in the
parametrizations of the isoscalar S-wave ππ phase shift,
and inelasticity parameter, both taken from Ref. [25].
The phase ΦKK was chosen to be zero, which empha-
sizes the role of the strong phases in CP violation process.
Note that this assumption is accompanied by Φππ = π
according to the relation given in Eq. (14), therefore, it
is ensured that ∆Γcomp

KK = −∆Γcomp
ππ .
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also verified for the compound contribution as a conse-
quence of Eq. (14), discussed above.
Indeed, looking at the LHCb results [4, 5], a direct

and complementary relation between different charm-
less three-body decay channels coupled by the strong
interaction emerges for B± → K±π+π− and B± →
K±K+K−, and for the decays B± → π±π+π− and
B± → π±K+K−. Even tough the tree and penguin
composition in the total decay amplitudes for each pair
of coupled channels are expected to be different. The CP
asymmetry distribution in the Dalitz plot for these chan-
nels shows the prevalence of CP violation in the mass
region where the ππ → KK scattering is important. As
a matter of fact, the π+π− and K+K− channels are cou-
pled to π0π0 and KK. Besides that, the two channels
with two or more kaons in the final state have CP asym-
metries with opposite signs with respect to the ones with
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widths in the three-body B decays.
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To perform a simple test of the compound contribu-
tion (second term of Eq. (11)) to CP asymmetry using
only a single angular momentum channel, namely, the
S-wave, the best place is to look to the asymmetry in de-
cays involving KK and ππ channels. Beyond the φ mass
region, there are no other significant resonance contri-
butions with a strong KK coupling before the f2(1525)
resonance. Therefore as an illustration, we estimate the
compound contribution to the asymmetry ∆ΓKK(ππ) in
B± → K±K+K− (K±π+π−) decays, presented by the
LHCb collaboration [5].
As a remark, the three-body rescattering effect at the

two-loop level is small compared to the first two-body col-
lision contribution, as suggested by the three-body model
calculation for the D± → K±π+π− decays [21]. We as-
sume that this approximation for charmless three-body
B decays must be valid at least for some regions of the
phase space.
In order to get a quantitative insight on the enhance-

ment of the CP asymmetry from the coupling between
the ππ and KK channels in the compound contribu-
tion, we start by defining the channels α ≡ K+K− and
β ≡ π+π− and consider the main isospin channel I = 0
and JP = 0+. From the second term of Eq. (11) with ζ1
from Eq. (13), we can write the compound contribution
to the CP asymmetry as

∆Γcomp
KK ≈ C

√

1− η2 cos (δKK + δππ + ΦKK)F (M2
KK),
(15)

with C = 4|K| (sinγ) considered energy independent. We
still approximate the kaon-kaon S-wave phase shift as

δKK ≈ δππ in the region where the channels are strongly
coupled. The Dalitz phase-space factor is F (M2

KK) =
(M2

K+K−)max− (M2
K+K−)min, for the B± → K±K+K−

channel (see e.g. [24]). The masses (M2
K+K−)max

and (M2
K+K−)max depend on the KK subsystem mass,

M2
KK . Also the symmetrization of the decay amplitude

in the two equally charged kaons is disregarded as the low
mass regions for each possible neutral KK subsystem are
widely separated in phase space.
Following Ref. [25], we have used the parametriza-

tion for the pion-pion inelasticity and phase-shift, for the
I = 0 and Jp = 0+ dominant channel, in order to eval-
uate Eq. (15). The used parametrizations are given in
Ref. [25] by Eqs. (2.15a), (2.15b), (2.15b’), (2.16), and
the quoted errors. We also use the CPT condition given
by Eq. (4), restricted to two channels, to obtain the asym-
metry in the ππ decay channel, which in this case is given
by ∆Γcomp

ππ = −∆Γcomp
KK .

In order to compare the asymmetries ∆Γcomp
KK and

∆Γcomp
ππ to experimental data, we extracted the differ-

ence B− − B+, respectively for the B± → K±K+K−

and B± → K±π+π− decays, from the recent LHCb re-
sults presented in Ref. [5]. The results are shown in Fig. 1
for an arbitrary normalization fitted to ∆Γcomp

KK . Our cal-
culations are presented from the subsystem mass (M2

sub
)

above the KK mass threshold. Indeed, M2
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= M2
K+K

(M2
π+π) for B

± → K±K+K− (K±π+π−).
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FIG. 1: Estimate (grey band) of Eq. (15) as a function of
the subsystem mass compared to experimental data of (a)
the asymmetry of B±

→ K
±
π
+
π
− decay (circles), and of (b)

the asymmetry of B±
→ K

±
K

+
K

− decay (squares). Data
extracted from Ref. [5].

The width of the band represents the errors in the
parametrizations of the isoscalar S-wave ππ phase shift,
and inelasticity parameter, both taken from Ref. [25].
The phase ΦKK was chosen to be zero, which empha-
sizes the role of the strong phases in CP violation process.
Note that this assumption is accompanied by Φππ = π
according to the relation given in Eq. (14), therefore, it
is ensured that ∆Γcomp

KK = −∆Γcomp
ππ .
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also verified for the compound contribution as a conse-
quence of Eq. (14), discussed above.
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less three-body decay channels coupled by the strong
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composition in the total decay amplitudes for each pair
of coupled channels are expected to be different. The CP
asymmetry distribution in the Dalitz plot for these chan-
nels shows the prevalence of CP violation in the mass
region where the ππ → KK scattering is important. As
a matter of fact, the π+π− and K+K− channels are cou-
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I = 0 and Jp = 0+ dominant channel, in order to eval-
uate Eq. (15). The used parametrizations are given in
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the quoted errors. We also use the CPT condition given
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KK and
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ππ to experimental data, we extracted the differ-

ence B− − B+, respectively for the B± → K±K+K−

and B± → K±π+π− decays, from the recent LHCb re-
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for an arbitrary normalization fitted to ∆Γcomp

KK . Our cal-
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The phase ΦKK was chosen to be zero, which empha-
sizes the role of the strong phases in CP violation process.
Note that this assumption is accompanied by Φππ = π
according to the relation given in Eq. (14), therefore, it
is ensured that ∆Γcomp
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The width of the band represents the errors in the
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and inelasticity parameter, both taken from Ref. [25].
The phase ΦKK was chosen to be zero, which empha-
sizes the role of the strong phases in CP violation process.
Note that this assumption is accompanied by Φππ = π
according to the relation given in Eq. (14), therefore, it
is ensured that ∆Γcomp
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The CP asymmetry from Eq. (28) can be cast in the following form

∆Γλ = Γ (h → λ)− Γ(h → λ)

= 4(sin γ)
∑

J J′

Im

{(

∑

R

bR0λF
BW
Rλ PJ (cos θ) +BJ

0λNR

)∗(
∑

R′

aR
′

0λF
BW
R′λ PJ′(cos θ) +AJ′

0λNR

)

+ i
∑

λ′

(

∑

R

bR0λF
BW
Rλ PJ (cos θ) +BJ

0λNR

)∗

tJ
′

λ′,λ

(

∑

R′

aR
′

0λ′FBW
R′λ′PJ′(cos θ) +AJ′

0λ′NR

)

− i
∑

λ′

(

∑

R′

bR
′

0λ′FBW
R′λ′PJ′(cos θ) +BJ′

0λ′NR

)∗
[

tJ
′

λ′,λ

]∗
(

∑

R

aR0λF
BW
Rλ PJ(cos θ) +AJ

0λNR

)}

. (29)

It has to be understood that the subindex λ also in-
cludes different kinematical regions of the three-body
channel. Since we have introduced the Breit-Wigner am-
plitudes in the decay amplitude, the CPT constraint has
to be checked in the actual fit, i.e., if

∑

λ ∆Γλ = 0 is sat-
isfied when one takes into account the integration over
the phase-space besides the sum over all decay channels
in the sum of λ. Indeed, in our fitting procedure, we will
keep only terms that, within our limited model, satisfy
the CPT constraint.

V. INTERFERING RESONANT AND NON
RESONANT AMPLITUDES

We present a simple example to explore the asymme-
try formula (29), considering the resonant, non-resonant
source terms and the contribution from the coupling be-
tween two strongly interacting channels, namely ππ and
KK. We use the vector and scalar resonances, the ρ(770)
and f0(980) ones, for instance, interfering with a non res-
onant amplitude and the term carrying the strong inter-
action transition amplitude between the coupled chan-
nels. This illustrates exactly the B± → π±π+π− de-
cay case at low invariant π+π− mass. Also there are
B± → K±π+π− data [22, 23] previous to the CP asym-
metry observation by LHCb collaboration.
First, let us remind that, in a general way, the Breit-

Wigner excitation curve for a resonance R reads

FBW
R (s) =

1

m2
R − s− imRΓR(s)

, (30)

with mR being the resonance mass, and

ΓR(s) =

(

s
4 −m2

π

)1/2
mRΓ′

R
(

m2
R

4 −m2
π

)1/2
s1/2

, (31)

denoting the energy dependent relativistic width. For the
pion mass, we adopted mπ = 0.138 GeV, degenerated for
the negative and positive charged particles. Here, we
consider the resonance decay in the ππ channel.

The real and imaginary parts of FBW
R (s) are given,

respectively, by

Re
[

FBW
R

]

=
m2

R − s

(m2
R − s)2 +m2

RΓR(s)2
, (32)

and

Im
[

FBW
R

]

=
mRΓR(s)

(m2
R − s)2 +m2

RΓR(s)2
. (33)

The square modulus is

|FBW
R |2(s) =

1

(m2
R − s)2 +m2

RΓR(s)2
. (34)

The amplitudes for B± → π±π+π− or
B± → K±π+π− decays, taking into account the ρ(770)
and f0(980) resonances interfering with a constant non
resonant amplitude, can be written as

A±
0λ = aρ0F

BW
ρ k(s) cos θ + af0F

BW
f +

anr0λ + bnr0λe
±iγ

1 + s
Λ2

λ

+ [bρ0F
BW
ρ k(s) cos θ + bf0F

BW
f ]e±iγ , (35)

where the kinematical factor k(s) =
√

1− 4m2
π

s is in-

cluded in the amplitude of the ρ(770) vector resonance,
to take into account the threshold behavior of the decay
amplitude in a p-wave. The angle θ is defined as the angle
between the bachelor and the equally charged interacting
particle. See this definition in the B+ → π+π+π− decay
illustrated in Fig. 1. Here, cos θ is associated to the spin
1 of the ρ resonance and varies from −1 to +1 along the
phase space.

B+ π′+

π−

π+

θ
B+ π′+

π−

π+

θ

(a) (b)

FIG. 1. B+ → π+π+π− decay with π′+ being the bachelor
particle. (a): cos θ < 0 (θ > π

2
). (b): cos θ > 0 (θ < π

2
).
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The CP asymmetry from Eq. (28) can be cast in the following form

∆Γλ = Γ (h → λ)− Γ(h → λ)

= 4(sin γ)
∑

J J′

Im

{(

∑

R

bR0λF
BW
Rλ PJ (cos θ) +BJ

0λNR

)∗(
∑

R′

aR
′

0λF
BW
R′λ PJ′(cos θ) +AJ′

0λNR

)

+ i
∑

λ′

(

∑

R

bR0λF
BW
Rλ PJ (cos θ) +BJ

0λNR

)∗

tJ
′

λ′,λ

(

∑

R′

aR
′

0λ′FBW
R′λ′PJ′(cos θ) +AJ′

0λ′NR

)

− i
∑

λ′

(

∑

R′

bR
′

0λ′FBW
R′λ′PJ′(cos θ) +BJ′

0λ′NR

)∗
[

tJ
′

λ′,λ

]∗
(

∑

R

aR0λF
BW
Rλ PJ(cos θ) +AJ

0λNR
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. (29)
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to take into account the threshold behavior of the decay
amplitude in a p-wave. The angle θ is defined as the angle
between the bachelor and the equally charged interacting
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illustrated in Fig. 1. Here, cos θ is associated to the spin
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summed in all channels λ and integrated over the phase-
space, that leads to the CPT condition expressed by
Eq. (9), once the source term in (20) satisfies

∑

λ J

Im
[

(

BJ
0λ

)∗
AJ

0λ

]

= 0, (21)

which is a consequence of the CPT constraint at the mi-
croscopic level, e.g., as expressed by the tree and penguin
amplitudes in the BSS model, that should be valid when
FSI is turned off in Eq. (2). This term was neglected
by Wolfenstein, which corresponds to the trivial solution
of Eq. (21), assuming that the phase difference between
the two CP-conserving amplitudes is zero for all decay
channels.
To be complete and detailing the notation of Ref. [2]

by including the two-particle angular momentum states
J , we show that the second term in Eq. (20),

∑

λ

∆ΓFSI
λ = 4(sin γ)

∑

λλ′ J

Re
[

(

BJ
0λ

)∗
tJλ′,λ A

J
0λ

−
(

BJ
0λ t

J
λ,λ

)∗
AJ

0λ

]

, (22)

also satisfies the CPT condition, namely, this quantity
vanishes, which is easily verified by using Eqs. (17) as

∑

λ

∆ΓFSI
λ = 4(sin γ)×

×
∑

λ′λ J

Re
[

χhχλJ

(

BJ
0λ

)∗
tJλ′,λ

(

AJ
0λ′

)∗

− χ∗
hχ

∗
λ′JB

J
0λ′

(

tJλ′,λ

)∗
AJ

0λ

]

= 0. (23)

The vanishing of Eq. (23) is due to the symmetry of
tJλ,λ′ = tJλ′,λ, and the fact that χλJ = χλ′J , i.e., the
strong interaction does not mix different CP eigenstates.
Therefore, by taking into account Eqs. (21) and (23), one
has that the CPT constraint

∑

λ

∆Γλ = 4(sin γ)
∑

λ J

Im
[

(

BJ
0λ

)∗
AJ

0λ

]

+
∑

λ

∆ΓFSI
λ = 0, (24)

is fulfilled in leading order of the interaction.

IV. RESONANT CHANNELS AND CPT

In the case that the channel λ contains also the for-
mation of a resonance in the partonic process, namely,

B → πρ, the amplitudes A0λ and B0λ can be separated
in the following two parts, AJ

0λ = AJ
0λNR+

∑

R AJ
0λR, and

BJ
0λ = BJ

0λNR+
∑

R BJ
0λR, where the subindex R andNR

mean resonant and non resonant channels. Therefore, the
decay amplitude in Eq. (19) is rewritten as

A±
LO =

∑

J

[

∑

R

AJ
0λR +AJ

0λNR+

+ e±iγ

(

∑

R

BJ
0λR +BJ

0λNR

)]

+ i
∑

λ′,J

tJλ′,λ

[

∑

R

AJ
0λ′R +AJ

0λ′NR

+ e±iγ

(

∑

R

BJ
0λ′R +BJ

0λ′NR

)]

. (25)

The resonant source terms AJ
0λR and BJ

0λR should be
interpreted as bare amplitudes, where at the resonance
decay vertex, the two-hadron rescattering process is not
yet included. The Breit-Wigner amplitudes for each term
are identified according to

(1 + i tJλλ)A
J
0λR → aR0 F

BW
R λ PJ (cos θ) (26)

and

(1 + i tJλλ)B
J
0λR → bR0λF

BW
R λ PJ (cos θ), (27)

where J is the spin of the resonance decaying to two spin
zero particles and PJ (cos θ) is the Legendre polynomial
and θ is the helicity angle between the equally charge
particles in the Gottfried-Jackson frame. We will give
the representation of this angle for the B+ → π+π+π−

decay in Fig. 1 of the next section.
After substituting (27) in (25), we get that

A±
LO =

∑

J R

(

aR0λ + e±iγbR0
)

FBW
R λ PJ (cos θ)

+
∑

J

(

AJ
0λNR + e±iγBJ

0λNR

)

+ i
∑

λ′,J

tJλ′,λ

(

AJ
0λ′NR + e±iγBJ

0λ′NR

)

, (28)

where the first and second terms in the right-hand side
is the isobar model for the decay. The second term is the
source term for the final state channel, and the third one
includes the hadronic interaction among the two of the
hadrons with angular momentum J . We should clarify
that Eq. (28) includes the interaction in the resonance re-
gion as the pair of hadrons has a probability to be formed
directly from the partonic process.
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Table 1: Width di↵erence between the charge conjugate states ��CP for specific decays
channels. Lifetime, branching ratios and Acp are given as average PDG [15] values with the
statistical and systematic uncertainties added in quadrature.

Decay channel ��CP (106 s�1)
B±

! K±⇡+⇡� +0.84± 0.25
B±

! K±K+K�
�0.68± 0.17

B±
! ⇡±⇡+⇡� +0.53± 0.13

B±
! ⇡±K+K�

�0.39± 0.07

which conflicts with the sign expected from U-spin symmetry as already pointed
in Ref. [16], although still compatible in modulus with unity.

Exploring the possible final state interactions between the four charged chan-
nels and imposing the CPT constraint, we showed in [17, 18] that ⇡⇡ ! KK
re-scattering amplitude can explain the flip in the sign for Acp between channels
coupled by the strong interaction. Therefore, returning to the observable ��CP

in Table 1, we still do not completely understand data. From one side we have a
qualitative agreement of U-spin prediction for the two ratios between channels
with di↵erent strangeness, while we observe an apparent contradiction regard-
ing the signs of other two ratios. And, on the other side, from the hadronic
FSI approach, one can understand the relative sign between the two pairs of
channels coupled through ⇡⇡ $ KK interaction.

A complete understanding of the observables in Table 1 is not trivial. We
are dealing with three-body final states and one have to consider the complexity
of their dynamics, with each channel being produced through several di↵erent
intermediate states with di↵erent interference between them. With this per-
spective, our first task is to understand the signs and the modulus (around
unity) of all the ratios in Table 1. We remind that, to make the situation even
more challenging, the channels have a di↵erent branching fraction, e.g. the
B±

! K±⇡+⇡� is one order of magnitude larger than the B±
! ⇡±K+K� .

Our work unifies two general frameworks to study the total CP violation
related to charmless three-body B decays: the CP asymmetry associated with
the U-spin approach and the central role of hadronic final state interactions in
these decays within the constraint of CPT invariance. We go beyond previous
works that used U-spin symmetry [16] without breaking the symmetry by fully
using the transformation ⇡ $ K allied to final state interactions.

2. Hints of FSI on data

The re-scattering process can be the source of strong phase and absorptive
contributions in multi-body decays through the strong interaction including also
loops, as proposed in several studies [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
We should remind that, in the QCD-only approach, known as BSS model [28],
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to the center of the debate. Note that even QCD factorization approaches are
including non-perturbative ”long-distance” contributions to take into account
hadronic strong phases in the CPV problem [3, 4].

An experimental technique to highlight the CP asymmetry directly from
data, the Mirandizing approach [5, 6] applied recently by the LHCb collabora-
tion [1, 7, 8], showed a large variation of positive and negative CP asymmetry
in the Dalitz plot distribution. In particular in Ref. [1] this was shown to be up
to 60% in specific regions in the Dalitz plane. Since the CKM weak phase must
be independent of the position in the phase space, the change of sign must be
directly related to the variation of the strong phase along the phase space.

Another aspect that should be considered in the understanding of CP asym-
metries in B decays is the so-called U-spin symmetry, which is a SU(2) subgroup
of the SU(3) flavor, under which the (d, s) pairs of quarks form a doublet, similar
to (u, d) isospin doublet [9]. The U-spin symmetry approach has been called to
explain the observed CPV in charmless B decays [10], focused on the relation
between decays channels with di↵erent strangeness quantum numbers. This ap-
proach succeed to reproduce the observed ratio between the CPV asymmetry
in the B0

s ! K�⇡+ and B0
! K+⇡� partial widths [2, 10].

Moving to three-body channels, Gronau and collaborators [11, 12] related the
CPV asymmetries of the partial decay widths of the channels B ! hhh based
on the U-spin symmetry. They pointed out a relative minus sign between B±

!

K±⇡+⇡� and B±
! ⇡±K+K� , as well as that between B±

! K±K+K� and
B±

! ⇡±⇡+⇡� .
To study the CP asymmetry in three-body B decays we use the di↵erence

between the partial decays widths of the charge conjugated states. Such di↵er-
ence when summed up over all possible decay channels are constrained by CPT
theorem to vanish [13, 14]. This di↵erence is given by:

��CP (h
±
1 h

+
2 h

�
3 ) = �(B�

! h�
1 h

+
2 h

�
3 )� �(B+

! h+
1 h

�
2 h

+
3 ) . (1)

We can express ��CP from the experimental integrated Acp results through the
equation:

��CP (h
±
1 h

+
2 h

�
3 ) = ACP (B

±
! h±

1 h
+
2 h

�
3 )B(B

+
! h+

1 h
+
2 h

�
3 )/⌧(B

+). (2)

Where we used the experimental data quoted in [15] for the branching ratios B,
lifetime ⌧(B+) and ACP . The resulting ��CP values are given in Table 1.

The ratios between channels with di↵erent strangeness are:

��CP (⇡±K+K�)

��CP (K±⇡+⇡�)
= �0.46± 0.16 and

��CP (⇡±⇡+⇡�)

��CP (K±K+K�)
= �0.77± 0.27 ,

(3)
both compatible with �1 within errors and qualitatively consistent with U-spin
symmetry as predicted by [12]. Furthermore, if we consider that the U-spin
symmetry is applied only to weak vertex, it should be valid for the other pair of
channels with di↵erent strangeness. However, from Table 1, we get the ratios:

��CP (K±⇡+⇡�)

��CP (⇡±⇡+⇡�)
= 1.59± 0.62 and

��CP (K±K+K�)

��CP (⇡±K+K�)
= 1.77± 0.55, (4)
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symmetry as predicted by [12]. Furthermore, if we consider that the U-spin
symmetry is applied only to weak vertex, it should be valid for the other pair of
channels with di↵erent strangeness. However, from Table 1, we get the ratios:
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1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B�
! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B�
! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B�
! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B�
! ���+�� and

B�
! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-

pens through the emission of a W� boson that results in a �� and a R0. For the
B�

! ���+�� (B�
! ��K+K�) decay, R0 represents any neutral resonance that

decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B�
! K�K+K� and

B�
! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs

through a virtual W� boson emission resulting in K� and R0. For the B�
! K�K+K�

q
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! ��K+K�) decay, R0 represents any neutral resonance that

decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
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Figures 1.9 and 1.10 show two Feynman diagrams for the B�
! K�K+K� and

B�
! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs

through a virtual W� boson emission resulting in K� and R0. For the B�
! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B�
! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B�
! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B�
! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B�
! ���+�� and

B�
! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-

pens through the emission of a W� boson that results in a �� and a R0. For the
B�

! ���+�� (B�
! ��K+K�) decay, R0 represents any neutral resonance that

decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B�
! K�K+K� and

B�
! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs

through a virtual W� boson emission resulting in K� and R0. For the B�
! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B�
! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B�
! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B�
! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B�
! ���+�� and

B�
! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-

pens through the emission of a W� boson that results in a �� and a R0. For the
B�

! ���+�� (B�
! ��K+K�) decay, R0 represents any neutral resonance that

decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B�
! K�K+K� and

B�
! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs

through a virtual W� boson emission resulting in K� and R0. For the B�
! K�K+K�

uq

q
<latexit sha1_base64="1gm8Sz7TaUMGHY2Ei4dXglBGy+c=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI8kXjxCIo8ENmR26IWR2dl1ZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSzvzSRBP6JDyUPOqLFS47FfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1440+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtCpl76pcaVRLtWoWRx7O4BwuwYNrqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/ANi1jOs=</latexit>

Figure 1: All the four B ! hhh channels can have contribution from the tree (left) and
penguin (right) diagrams. Note that we omit the gluon lines from the penguin. The flavour of
quark q can be d or s, and the others quarks needed to the final hadronic state are produced
from the vacuum.

where we have the channels fs = (s1, s4) and fd = (d2, d3). The CP asym-
metries in the partial widths, ��CP (f) given by Eq. (1), comes from the inter-
ference terms in B ! f decays with di↵erent weak and strong phases, and by
considering the decay amplitudes (9)-(12), one arrives at:

��CP (K
±⇡+⇡�) = 2 Im[V ⇤

ubVusVcbV
⇤
cs] Im[Us1C

⇤
s1 + Ūs1 C̄

⇤
s1 ], (13)

��CP (⇡
±K+K�) = 2 Im[V ⇤

ubVudVcbV
⇤
cd] Im[Ud2C

⇤
d2

+ Ūd2 C̄
⇤
d2
], (14)

��CP (⇡
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ubVudVcbV
⇤
cd] Im[Ud3C

⇤
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+ Ūd3 C̄
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d3
], (15)

��CP (K
±K+K�) = 2 Im[V ⇤

ubVusVcbV
⇤
cs] Im[Us4C

⇤
s4 + Ūs4 C̄

⇤
s4 ] . (16)

Imposing U-spin symmetry, expressed by Eq. (7), one needs to make d $ s in
all mesons in the decay channel, namely:

Us1 = Ud2 , Cs1 = Cd2 , Us3 = Ud4 , Cs3 = Cs4 , (17)

and considering that the unitarity of the CKM matrix leads to [11, 12]:

Im(V ⇤
ubVusVcbV

⇤
cs) = � Im(V ⇤

ubVudVcbV
⇤
cd) , (18)

it can be shown that [11, 12]:

��CP (K
±⇡+⇡�) = ���CP (⇡

±K+K�) ,

��CP (⇡
±⇡+⇡�) = ���CP (K

±K+K�) . (19)

These relations are qualitatively consistent with the experimental results within
error given in (3). Still, it is remaining the relation between the other observed
width asymmetries given in (4) and not only those related to the U-spin sym-
metry. For that purpose the CPT constraint in channels coupled by the strong
interaction is necessary.

4. FSI, U-spin symmetry and CPT

As we discussed before, re-scattering ⇡⇡ $ KK can be a CPV mechanism
in B ! hhh [17, 18]. However, the question is how to connect the FSI between
channels with the same quantum numbers with U-spin symmetry, that can only
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Figures 1.7 and 1.8 depict two Feynman diagrams for the B�
! ���+�� and

B�
! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-

pens through the emission of a W� boson that results in a �� and a R0. For the
B�

! ���+�� (B�
! ��K+K�) decay, R0 represents any neutral resonance that

decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B�
! K�K+K� and

B�
! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs

through a virtual W� boson emission resulting in K� and R0. For the B�
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Figure 1: All the four B ! hhh channels can have contribution from the tree (left) and
penguin (right) diagrams. Note that we omit the gluon lines from the penguin. The flavour of
quark q can be d or s, and the others quarks needed to the final hadronic state are produced
from the vacuum.

where we have the channels fs = (s1, s4) and fd = (d2, d3). The CP asym-
metries in the partial widths, ��CP (f) given by Eq. (1), comes from the inter-
ference terms in B ! f decays with di↵erent weak and strong phases, and by
considering the decay amplitudes (9)-(12), one arrives at:

��CP (K
±⇡+⇡�) = 2 Im[V ⇤

ubVusVcbV
⇤
cs] Im[Us1C

⇤
s1 + Ūs1 C̄

⇤
s1 ], (13)

��CP (⇡
±K+K�) = 2 Im[V ⇤

ubVudVcbV
⇤
cd] Im[Ud2C

⇤
d2

+ Ūd2 C̄
⇤
d2
], (14)

��CP (⇡
±⇡+⇡�) = 2 Im[V ⇤

ubVudVcbV
⇤
cd] Im[Ud3C
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��CP (K
±K+K�) = 2 Im[V ⇤

ubVusVcbV
⇤
cs] Im[Us4C

⇤
s4 + Ūs4 C̄

⇤
s4 ] . (16)

Imposing U-spin symmetry, expressed by Eq. (7), one needs to make d $ s in
all mesons in the decay channel, namely:

Us1 = Ud2 , Cs1 = Cd2 , Us3 = Ud4 , Cs3 = Cs4 , (17)

and considering that the unitarity of the CKM matrix leads to [11, 12]:

Im(V ⇤
ubVusVcbV

⇤
cs) = � Im(V ⇤

ubVudVcbV
⇤
cd) , (18)

it can be shown that [11, 12]:

��CP (K
±⇡+⇡�) = ���CP (⇡

±K+K�) ,

��CP (⇡
±⇡+⇡�) = ���CP (K

±K+K�) . (19)

These relations are qualitatively consistent with the experimental results within
error given in (3). Still, it is remaining the relation between the other observed
width asymmetries given in (4) and not only those related to the U-spin sym-
metry. For that purpose the CPT constraint in channels coupled by the strong
interaction is necessary.

4. FSI, U-spin symmetry and CPT

As we discussed before, re-scattering ⇡⇡ $ KK can be a CPV mechanism
in B ! hhh [17, 18]. However, the question is how to connect the FSI between
channels with the same quantum numbers with U-spin symmetry, that can only
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quarks produced from the sea to complete the final state. Implementing U-
spin approach inspired in [11] and considering the two main topologies with
di↵erent quark flavor transitions (Figure 1), the amplitude of B ! f decays,
for f = hhh, are given by:

A(Bu
! fq) = hfq

out|Hw|B
u
i = VubV

⇤
uqhf

q
out|U

q
|Bu

i+ VcbV
⇤
cqhf

q
out|C

q
|Bu

i , (5)

and for the decay of the charge conjugate state:

A(B̄u ! f̄q) = hf̄q
out|Hw|B̄ui = V ⇤

ubVuqhf̄
q
out|Ū

q
|B̄ui+ V ⇤

cbVcqhf̄
q
out|C̄

q
|B̄ui , (6)

where q = s or d, namely channels with �S = 1 or 0, respectively. The e↵ective
Hamiltonian for the decay is written as Hw, and the decay amplitude is sepa-
rated with the matrix elements of operators Uq and Cq, associated respectively
with the tree (left panel) and “penguin” (right panel) diagrams of Figure 1, and
within our assumption do not contain the strong phase. The strong phase in the
decay amplitudes, Eq. (5) and (6), comes from |fq

outi and its charge conjugate
state, which are the scattering eigenstates of the strong Hamiltonian. To com-
plement, in our notation, the states |fq

i are hadronic-free states, while |fq
out(in)i

includes the distortion due to the hadronic FSI. In principle, such separation is
possible in general scattering theory, and it will be necessary when analyzing
the Charge-Parity-Time reversal (CPT) symmetry constraint.

The B decay amplitudes for channels with �S = 0, B±
! ⇡±⇡+⇡� and

B±
! ⇡±K+K� , correspond to q = d in Eqs. (5) and (6). In the case of

�S = 1, the decays amplitudes for B±
! K±⇡+⇡� and B±

! K±K+K� are
associated to q = s.

To avoid the conflict with the signs of the ratios in Eq. (4), we restrict the use
of the U-spin symmetry to channels where the light flavor quarks are exchanged
in all hadrons in the final decay state, i.e., with the exchange of ⇡ $ K, which
in our notation is written as:

hfs
out|U

s
|Bu

i = hfd
out|U

d
|Bu

i and hfs
out|C

s
|Bu

i = hfd
out|C

d
|Bu

i . (7)

To further simplify the notation we define:

Ufq = hfq
out|U

q
|Bu

i and Cfq = hfq
out|C

q
|Bu

i . (8)

Note that we have assumed the U-spin symmetry for channels where d $ s in all
hadrons in the final state, excluding the cases where only the quarks produced
in the weak vertices are exchanged.

Considering the two main quark flavor topologies as in Figure 1, the ampli-
tudes corresponding to the charmess B ! hhh decays are written as:

A(B+
! K+⇡+⇡�) = V ⇤

ubVus Us1 + V ⇤
cbVcs Cs1 , (9)

A(B+
! ⇡+K+K�) = V ⇤

ubVud Ud2 + V ⇤
cbVcd Cd2 , (10)

A(B+
! ⇡+⇡+⇡�) = V ⇤
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A(B+
! K+K+K�) = V ⇤

ubVus Us4 + V ⇤
cbVcs Cs4 , (12)
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s
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d
|Bu
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s
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d
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i . (7)

To further simplify the notation we define:
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q
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q
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i . (8)

Note that we have assumed the U-spin symmetry for channels where d $ s in all
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in the weak vertices are exchanged.
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! K+⇡+⇡�) = V ⇤

ubVus Us1 + V ⇤
cbVcs Cs1 , (9)

A(B+
! ⇡+K+K�) = V ⇤

ubVud Ud2 + V ⇤
cbVcd Cd2 , (10)

A(B+
! ⇡+⇡+⇡�) = V ⇤

ubVud Ud3 + V ⇤
cbVcd Cd3 , (11)
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relate channels that have di↵erent �S. Both are constrained by CPT theorem
and all together should give a consistent description that allows us to understand
the observable asymmetries in Table 1.

First, to connect FSI with the observed CPV in B decays, we have to show
that the relations given by Eqs. (13) – (16) are consistent with the FSI formalism
previously developed. To define our notation and the FSI framework we follow
the discussion presented in [17] for implementing the CPT constraint in B meson
decays, as developed in Refs. [13, 36].

A hadron state |hi transforms under CPT as CPT |hi = �hh̄|, where h̄ is the
charge conjugate state, and � is a phase. The weak and strong Hamiltonians
are invariant under CPT, and therefore it is valid that

(CPT )�1
Hw CPT = Hw and (CPT )�1

Hs CPT = Hs ,

respectively. The requirement of CPT invariance for the weak and strong Hamil-
tonians imply that the sum of the partial decay widths of the hadron decays
and the correspondent sum for the charge conjugate ones should be identical:

X

fq, q=d,s

|hfq
out|Hw|hi|

2 =
X

fq, q=d,s

|hf̄q
out|Hw|h̄i|

2 . (20)

In addition, taking into account the CP invariance of the matrix elements of
U q and Cq between the strongly interacting states, independently of q we have
that:

Ufq = Ūfq and Cfq = C̄fq . (21)

The only change due to CP transformation is the sign multiplying the weak
phase. The CP asymmetry is given by:

��CP (f
q) = |A(Bu

! fq)|2 � |A(B̄u ! f̄q)|2

= 4 Im[V ⇤
ubVuqVcbV

⇤
cq] Im

⇥
UfqC

⇤
fq

⇤
, (22)

which will be our starting point for the analysis of the e↵ect of the final state
interaction. Recalling that the S-matrix is unitary by definition and its elements
are an overlap between in and out states, Eq. (22) can be rewritten as [37, 17]
(see also Appendix A):

��CP (qi) = 4 Im[V ⇤
ubVuqVcbV

⇤
cq]

X

j,k

Im
h
Sj,iS

⇤
k,i U

⇤
qjCqk

i
, (23)

which is our main formula, exposing explicitly the e↵ect of the FSI and the
CP-violating phase for the decay channels with �S = 1 and �S = 0 carrying
di↵erent net strangeness, and therefore not coupled by the strong interaction.

The CP-violating phase enters linearly at the lowest order in the hadron de-
cay amplitude. If we impose CPT invariance of the strong sector, independently
of the weak Hamiltonian, using the steps given in Refs. [17, 37] and summarized
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in the Appendix A, it is easy to show that the sum over intermediate channels
fq in ��CP gives:

X

fq

��CP (f
q) = 4 Im[V ⇤

ubVuqVcbV
⇤
cq]

X

fq

Im
h
Ufq C

⇤
fq

i
= 0 . (24)

This zero is then a direct consequence of the CPT constraint to channels coupled
by the strong final state interaction that we named as sCPT. Therefore, the FSI
should bring phases that are compensated by the di↵erent signs of �CP (fq) for
channels coupled by the strong interaction. The form of sCPT relation though
is more restrictive than the one written in Eq. (20), that could be also derived
from the unitarity constraint of the CKM matrix (18) and U-spin symmetry
relation (7).

Finally, one can identify two sources of the global CP asymmetry signs: the
weak U-spin symmetry between final states with di↵erent strangeness and the
CPT constraint between states coupled by the strong interaction with the same
quantum numbers.

5. Coupled ⇡⇡ and KK channels in B±
three-body decays

In Ref. [17, 18] we had discussed the role of the coupling between ⇡⇡ ! KK
as a mechanism to explain the total Acp observed in the charged three-body
B decays. Here, we recall this argument with the formalism developed above.
In order to apply to the B± decay channels coupled by the strong interaction,
we start by naming them to stress the strangeness and the pair of mesons
that will couple through FSI: d⇡⇡ ⌘ ⇡±⇡+⇡� and dKK ⌘ ⇡±K+K�, s⇡⇡ ⌘

K±⇡+⇡� and sKK ⌘ K±K+K� . In such case, the pairs of coupled channels
are {d⇡⇡, dKK} and {s⇡⇡, sKK}, which interact via re-scattering between ⇡⇡
and KK.

Considering only the interaction in S-wave the two-body, ⇡⇡ and KK,
coupled-channel S-matrix is:

✓
S⇡⇡,⇡⇡ S⇡⇡,KK̄

SKK̄,⇡⇡ SKK̄,KK̄

◆
=

✓
⌘ e2ı�⇡⇡ ı

p
1� ⌘2 eı(�⇡⇡+�KK)

ı
p

1� ⌘2 eı(�⇡⇡+�KK) ⌘ e2ı�KK

◆
,

(25)
where �⇡⇡ and �KK are the phase-shifts, 1 � ⌘ � 0 is the absorption parameter.

In the leading order (LO) of the strong interaction [17], namely taking into
account the transition matrix at the lowest order in Eq. (23), and identifying
for the two-channel case q1 ⌘ q⇡⇡ and q2 ⌘ qKK , for q = s or d, we can find
that:

��(LO)

CP (q⇡⇡) = wq Re
h
eı(�⇡⇡��KK) U⇤

0q⇡⇡C0qKK � e�ı(�⇡⇡��KK) U⇤
0qKK

C0q⇡⇡

i
, (26)

where wq = 4⌘
p

1� ⌘2 Im[V ⇤
ubVuqVcbV ⇤

cq] . Note that we imply due to the CPT
relation that U0q⇡⇡C

⇤
0q⇡⇡

and U0qKKC
⇤
0qKK

are real, as they do not contain the
distortion from the FSI. This assumption simplifies the partial width di↵erence
between the two charge conjugated decays. The result shows that in LO only
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are real, as they do not contain the
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between the two charge conjugated decays. The result shows that in LO only
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q= d or s
the interference between S-matrix o↵-diagonal elements in (25) contribute to
��CP (qi).

The U-spin symmetry within this example corresponds to:

U0d⇡⇡ = U0sKK and U0dKK = U0s⇡⇡ ,

C0d⇡⇡ = C0sKK and C0dKK = C0s⇡⇡ . (27)

In addition, if we assume �⇡⇡ ⇡ �KK and equal masses for the pion and kaon,
which means the FSI does not distinguish the change of ⇡ $ K, and taking
into account the opposite signs in wd = �ws, from the unitarity of the CKM
matrix, we get that:

��CP (⇡±K+K�)

��CP (K±⇡+⇡�)
⇠ �1 and

��CP (⇡±⇡+⇡�)

��CP (K±K+K�)
⇠ �1 . (28)

From the sCPT relation ��(q⇡⇡) = ���(qKK) in Eq. (26), we get that

��CP (⇡±K+K�)

��CP (⇡±⇡+⇡�)
= �1 and

��CP (K±K+K�)

��CP (K±⇡+⇡�)
= �1 (29)

Both ratios in relations (28) and (29) are consistent with the signs of asym-
metries and compatible within error with the magnitudes of the ratios given
in Eqs. (3) and (4), respectively. We remind that these ratios were obtained
from Table 1, which was built with the available experimental data for the B
decay rates and CP asymmetry. We stress that within a two coupled-channel
picture the ratios (28) and (29) are valid beyond the LO, and due to that the
superscript (LO) was dropped out in those equations.

6. Final Remarks

Our study shows the relevance of the FSI to the global CPV in B ! hhh
addressed by the ratio of charge conjugate width di↵erences and given by (29).
The comparison of our results with the experimental values in Eqs. (3) and
(4), stresses that the used U-spin symmetry at the hadronic level, namely, the
exchange K $ ⇡ in decay channels is supported by the data. This is more
restrictive than the simple exchange of d $ s of the quark produced at the
weak transition vertex.

The proposed form to apply the U-spin symmetry, together with the sCPT
constrain including the FSI, can reveal the correct relative signs between the
��CP ’s of the charged three-body B decays, as one sees by comparing the
ratios (28) and (29), with those extracted from the experimental values pre-
sented in Eqs. (3) and (4). Note that the magnitudes are reproduced within the
experimental errors.

Although data is still not as precise as we would desire, there will be new
high statistics in the near future by LHCb (Run 2 and Run 3) and from Belle2
which will allow us to better address this issue. From the theoretical side, in the
proposed CPT constrained framework including FSI, we only take into account
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sented in Eqs. (3) and (4). Note that the magnitudes are reproduced within the
experimental errors.

Although data is still not as precise as we would desire, there will be new
high statistics in the near future by LHCb (Run 2 and Run 3) and from Belle2
which will allow us to better address this issue. From the theoretical side, in the
proposed CPT constrained framework including FSI, we only take into account
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The U-spin symmetry within this example corresponds to:

U0dππ = U0sK K and U0dK K = U0sππ ,

C0dππ = C0sK K and C0dK K = C0sππ , (26)

and the analogous relations for the amplitudes of the charge con-
jugate states.

As we argue in section 2, after integrating "#C P (qi) over the 
phase-space, only off-diagonal channels will survive and contribute 
to the global CPV. In addition, if we assume δππ ≈ δK K and equal 
masses for the pion and kaon, which means the FSI does not dis-
tinguish the change of π ↔ K , and taking into account the oppo-
site signs in wd = −ws , from the unitarity of the CKM matrix, we 
get that:

"#C P (π±K+K−)

"#C P (K±π+π−)
∼ −1 and

"#C P (π±π+π−)

"#C P (K±K+K−)
∼ −1 . (27)

From the sCPT relation "#(qππ ) = −"#(qK K ) in Eq. (25), we get 
that

"#C P (π±K+K−)

"#C P (π±π+π−)
= −1 and

"#C P (K±K+K−)

"#C P (K±π+π−)
= −1 (28)

The first ratio in Eq. (27) is consistent with what was predicted by 
U-spin symmetry and with Eq. (3), as we have already discussed. 
The first and second theoretical ratios given in Eq. (28) with val-
ues of -1 are compatible within 1σ with the experimental ratios 
of −0.73 ± 0.22 and −0.81 ± 0.31, respectively. We remind that 
these ratios were obtained from Table 1, which was built with the 
available experimental data for the B decay rates and CP asym-
metry. We stress that within a two coupled-channel picture the 
ratios (27) and (28) are valid beyond the LO, and due to that the 
superscript (LO) was dropped out in those equations.

It is important to be aware of the approximations imposed in 
the above calculations. The assumption of U-spin symmetry un-
der the transformation π ↔ K as expressed by the relations (26), 
in addition to the equality between the phase-shifts for the elas-
tic ππ and K K channels and masses, can affect the magnitudes 
of the global CPV. Thus, we should have caution when comparing 
the magnitudes in the ratios given by Eq. (27) with the experi-
mental data, while its sign is well defined. With respect to the 
relations (28), they are strongly grounded in: (i) the experimental 
observation of the global CPV signal originated from the kinematic 
region where ππ → K K scattering is dominant, and (ii) the CPT 
relation considering only the coupling between these two channel. 
These considerations are indeed supported by the comparison be-
tween the experimental values of AC P ’s in the two last columns 
of Table 2. Finally, the complementary experimental ratios given in 
Eq. (4) can be understood within 1σ as a direct consequence of 
combining the theoretical ratios from Eqs. (27) and (28).

6. Final remarks

Our study shows the relevance of the FSI to the global CPV in 
B± → h±h+h− addressed by the ratio of charge conjugate width 
differences and given by (28). The comparison of our results with 
the experimental values in Eqs. (3) and (4), stresses that the used 
U-spin symmetry at the hadronic level, namely, the exchange K ↔
π in B± decay channels are supported by the data.

The proposed form to apply the U-spin symmetry, together 
with the sCPT constrain including the FSI, can reveal the correct 
relative signs between the "#C P ’s of the charged three-body B
decays, as one sees by comparing the ratios (27) and (28), with 
those extracted from the experimental values presented in Eqs. (3)
and (4). Note that the magnitudes are reproduced within the ex-
perimental errors.

Although data is still not as precise as we would desire, there 
will be new high statistics in the near future by LHCb (Run 2 and 
Run 3) and from Belle2 which will allow us to better address this 
issue. From the theoretical side, in the proposed CPT constrained 
framework including FSI, we only take into account the S-matrix 
in the charged coupled channels ππ and K K in the S-wave. But 
besides the interactions among the charged mesons, one can have 
the coupling to the neutral ones along with other isospin zero me-
son pairs such as ηη as discussed in detail in [26]. It was shown 
by many theoretical studies including the recent one [26] that K K
coupling to ππ channel is enhanced in the S-wave by the super-
position of resonance f0(980) just before the K K threshold. The 
coupling between this two channels is needed for the theoretical 
description of the ππ → ππ experimental scattering data. The sit-
uation with ηη is different as it is not strongly coupled to the ππ
and K K channels.

If we consider the coupled-channel contributions from the neu-
tral mesons as well, we will be able to expand the B three-body 
decays that we can connect through FSI. Indeed, for "S = 0, in-
volving kaons and pions there are:

B± → π±K+K−, π±K 0 K̄ 0, K± K̄ 0π0, π±π+π−, π±π0π0.

(29)

And another five channels with the same characteristic for "S = 1:

B± → K±π+π−, π±K 0π0, K±π0π0, K±K 0 K̄ 0, K±K+K−.

(30)

The formula we wrote for "#C P given by Eq. (22) is general 
and can incorporate those couplings, which will change the mag-
nitude of the ratios (27) and (28), but we expect not the relative 
signs. The sCPT relation given by Eq. (23) allows us to write down 
the relation between the "#C P ’s, independently for the five decay 
channels with "S = 0 (29) and "S = 1 (30). Furthermore, we ex-
pect that the channels K± K̄ 0π0 and π±K 0π0 are weakly coupled 
to the other four channels with "S = 0 and "S = 1, respectively, 
as the three-body rescattering that couple these two states with 
the other four should be suppressed, as it requires two-loop pro-
cesses (see e.g. [41]). Removing them, we have for "S = 0:

"#C P (π±K+K−) + "#C P (π±K 0 K̄ 0)

+ "#C P (π±π+π−) + "#C P (π±π0π0) = 0 . (31)

The other sCPT equation for "S = 1 is given by:

"#C P (K±π+π−) + "#C P (K±π0π0)

+ "#C P (K±K+K−) + "#C P (K±K 0 K̄ 0) = 0. (32)

It is also reasonable to expect that the charged and noncharged 
channels have similar decay amplitudes, and for "S = 0 we have 
that:

"#C P (π±K+K−)

"#C P (π±K 0 K̄ 0)
∼ 1 and

"#C P (π±π+π−)

"#C P (π±π0π0)
∼ 1 , (33)

and for "S = 1:

"#C P (K±π+π−)

"#C P (K±π0π0)
∼ 1 and

"#C P (K±K+K−)

"#C P (K±K 0 K̄ 0)
∼ 1. (34)

Making use of our relations for the ratios of CP asymmetry 
partial widths, Eqs. (27) and (28), in addition to the approximate 
relations (33) and (34), we can predict that:

"#C P (π±K 0 K̄ 0)

"#C P (π±π0π0)
∼ −1 and

"#C P (K±K 0 K̄ 0)

"#C P (K±π0π0)
∼ −1 . (35)
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Back to SCS D0 decays to 𝜋𝜋 and KK

Singly Cabibbo suppressed decays: tree level

weak phase in s to 𝜋𝜋 is 20 times 𝐾𝐾 one

strong phases: hadronic FSI

Lenz and Wilkinson,  Annu. Rev. Nucl. 
Part. Sci. 71, 59 (2021) 

known from 80’s experiment
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CPT in SCS D decays: S-matrix

In principle FSI in D, 𝐷 can include multiple mesons

general S-matrix can mix this FSI states

two pions cannot go to three pions due to G-parity

four pion coupling to the 2M channel is suppressed based on 1/Nc counting

assume only 2 couple-channels will contribute to FSI, ie the dominant one 𝐾𝐾

𝜂𝜂 channel coupling to the 𝜋𝜋 channel are suppressed with respect to 𝐾𝐾
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Decay amplitudes: Watson Theorem

Dressing the weak tree topology with FSI

𝐷! → 𝐾𝐾

𝐾
𝐾
→
𝐾
𝐾

+

𝜋𝜋
→
𝐾
𝐾

⊗ ⊗

same with CKM cc.

𝐷$ → 𝜋𝜋
𝜋𝜋

→
𝜋𝜋

+

𝐾
𝐾
→
𝜋𝜋

⊗ ⊗

𝑎$$ and 𝑎!! do not carry any or strong phases    

15

CPT constraint is valid:
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Partial decay widths D0 decays

𝐴!
"

the sign of ΔΓ! is determined by the CKM matrix elements and the S-wave phase-shifts

need to quantify 𝑎"" and 𝑎##: 

at 𝐷! mass 𝐵𝑟[𝐷 → 𝑓] = Γ!/Γ"#"$%
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𝐴&'

𝐴!"(𝜋𝜋) = ΔΓ##/2Γ## =   

CPT constraint for the model:

−

−

3

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1� ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [29, 30], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK
s

|g0
0
(s)| ei�

0
0(s) ⇥(s� 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s� 4m2

⇡ and qK =
1

2

p
s� 4m2

K . From Refs. [29, 30] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125± 0.025

and with
p

1� ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o. In-

cluir a discussao do eta00 do Pelaez.
The D0 decay amplitudes produced by the tree dia-

grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1� ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1� ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates. The
neutral s-wave ⇡⇡ and KK̄ coupled channels corresponds
to isospin zero states.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [17]
and based on Refs. [5, 31].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡,KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [32, 33], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = 4 Im[VcsV
⇤
usV

⇤
cdVud]

⇥ a⇡⇡ aKK ⌘
p
1� ⌘2 cos� ,

(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.
In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1� ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK . (11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ±2
Im[VcsV ⇤

usV
⇤
cdVud]

|VcsV ⇤
usV

⇤
cdVud|

⇥ ⌘�1
p

1� ⌘2 cos�

"
Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,

(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[VcsV ⇤
usV

⇤
cdVud]

|VcsV ⇤
usV

⇤
cdVud|

= (6.02± 0.32)⇥ 10�4 , (13)

in the final expression for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [28, 34] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
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ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to the f ⌘ ⇡+⇡� and K+K� channels:
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates. The
neutral s-wave ⇡⇡ and KK̄ coupled channels corresponds
to isospin zero states.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [17]
and based on Refs. [5, 31].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡,KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [32, 33], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
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where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.
In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that
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Br(D0 ! KK), can be used to determine a⇡⇡ and aKK
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[VcsV ⇤
usV

⇤
cdVud]

|VcsV ⇤
usV

⇤
cdVud|

= (6.02± 0.32)⇥ 10�4 , (13)

in the final expression for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [28, 34] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
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Eq. (8) and their charge conjugate ones. It is worth to
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shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
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nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates. The
neutral s-wave ⇡⇡ and KK̄ coupled channels corresponds
to isospin zero states.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [17]
and based on Refs. [5, 31].

The CPT constraint restricted to the two-channels cor-
responds to:
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f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡,KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [32, 33], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
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(12)
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0
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in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [28]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
data set as proposed in [30]. Note that at this energy the
parametrization have a large error bar.

TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [34] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [29]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [30] (Solution II, which is
consistent with the data [28] and [34]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

The CP asymmetries are estimated from Eq. (12) and
(13), and the branching fractions from [26]:

Br(D0 ! ⇡+⇡�) = (1.455± 0.024)⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08± 0.06)⇥ 10�3 .
(14)

As we could see above, all parameters in Eq. (12) ex-
cept ⌘ are well defined, so we factorize its dependence
and write:

ACP (⇡⇡) = (1.99± 0.37)⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71± 0.13)⇥ 10�3
p

⌘�2 � 1 ,
(15)

and from that:

�th
CP = �(2.70± 0.50)⇥ 10�3

p
⌘�2 � 1 . (16)

Experimental results for ⇡⇡ ! ⇡⇡ indicate the inelas-
ticity parameter near 1. Unlike the phase parameters,
the magnitude has a significant uncertainty in amplitude
analysis, mainly at high masses. Most due to the mul-
tiple possible solutions allowed in a set of experimental
data, as one can see in [30]. There is only one practical
result for ⇡⇡ ! KK at a centre mass above 1.8 GeV. The
value quoted at the D0 mass for the preferred solution
corresponds to a ⌘ ⇡ 0.973± 0.003 [29] that implies

ACP (⇡⇡) = (0.47± 0.13)⇥ 10�3 ,

ACP (KK) = �(0.17± 0.05)⇥ 10�3 .
(17)

and in �Ath
CP = �(0.64± 0.18)⇥ 10�3, below the LHCb

experimental result. They quoted only the statistical un-
certainty to the magnitude value; however, they assume
the existence of large systematic uncertainty to accom-
modate the other acceptable fits.

On the other hand, Grayer et al. [27], present a ⌘ =
0.78 ± 0.08. If we keep our assumption that all ⇡⇡ in-
elasticity comes from the re-scattering in KK, the value
of �Ath

CP = �(2.17 ± 0.70) ⇥ 10�3. The experimental
result is in the between of these two possible values of
the �Ath

CP .
Independently of the value inelasticity ⌘ parameter at

theD0 mass, we can present as a prediction for the future
experimental results that the ratio:

ACP (⇡⇡)/ACP (KK) = �2.80± 0.06 . (18)

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(19)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135± 0.021)⇥ 10�3 ,

ACP (KK) = �(0.405± 0.077)⇥ 10�3 ,
(20)

which is within the interval of our theory based re-
sults (17). These values are compatible with other recent
calculations [35, 36] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP half of the re-
cently observed LHCb value [6], relying absolutely in SM
physics. The key ingredient to produce the enhancement
in the CP violation is the coupling between the ⇡+⇡�

and K+K� channels as the source of the strong phase
introduced in a CPT invariant framework. Our approach
takes into account the final state interaction in accor-
dance with the Watson theorem, besides the standard
CKM matrix elements for these decays.
It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !

K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence and the absorption parameter in the elastic ⇡+⇡�

and K+K� 0+ channels at the D0 mass. By changing ⌘
from 0.973 to ⇡ 0.87 one finds consistence with �ALHCb

CP .
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [37], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
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in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [28]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
data set as proposed in [30]. Note that at this energy the
parametrization have a large error bar.

TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [34] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [29]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [30] (Solution II, which is
consistent with the data [28] and [34]).
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1.70 0.987 ± 0.160
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1.846 0.987 ± 0.175

The CP asymmetries are estimated from Eq. (12) and
(13), and the branching fractions from [26]:

Br(D0 ! ⇡+⇡�) = (1.455± 0.024)⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08± 0.06)⇥ 10�3 .
(14)

As we could see above, all parameters in Eq. (12) ex-
cept ⌘ are well defined, so we factorize its dependence
and write:

ACP (⇡⇡) = (1.99± 0.37)⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71± 0.13)⇥ 10�3
p

⌘�2 � 1 ,
(15)

and from that:

�th
CP = �(2.70± 0.50)⇥ 10�3

p
⌘�2 � 1 . (16)

Experimental results for ⇡⇡ ! ⇡⇡ indicate the inelas-
ticity parameter near 1. Unlike the phase parameters,
the magnitude has a significant uncertainty in amplitude
analysis, mainly at high masses. Most due to the mul-
tiple possible solutions allowed in a set of experimental
data, as one can see in [30]. There is only one practical
result for ⇡⇡ ! KK at a centre mass above 1.8 GeV. The
value quoted at the D0 mass for the preferred solution
corresponds to a ⌘ ⇡ 0.973± 0.003 [29] that implies

ACP (⇡⇡) = (0.47± 0.13)⇥ 10�3 ,

ACP (KK) = �(0.17± 0.05)⇥ 10�3 .
(17)

and in �Ath
CP = �(0.64± 0.18)⇥ 10�3, below the LHCb

experimental result. They quoted only the statistical un-
certainty to the magnitude value; however, they assume
the existence of large systematic uncertainty to accom-
modate the other acceptable fits.

On the other hand, Grayer et al. [27], present a ⌘ =
0.78 ± 0.08. If we keep our assumption that all ⇡⇡ in-
elasticity comes from the re-scattering in KK, the value
of �Ath

CP = �(2.17 ± 0.70) ⇥ 10�3. The experimental
result is in the between of these two possible values of
the �Ath

CP .
Independently of the value inelasticity ⌘ parameter at

theD0 mass, we can present as a prediction for the future
experimental results that the ratio:

ACP (⇡⇡)/ACP (KK) = �2.80± 0.06 . (18)

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(19)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135± 0.021)⇥ 10�3 ,

ACP (KK) = �(0.405± 0.077)⇥ 10�3 ,
(20)

which is within the interval of our theory based re-
sults (17). These values are compatible with other recent
calculations [35, 36] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP half of the re-
cently observed LHCb value [6], relying absolutely in SM
physics. The key ingredient to produce the enhancement
in the CP violation is the coupling between the ⇡+⇡�

and K+K� channels as the source of the strong phase
introduced in a CPT invariant framework. Our approach
takes into account the final state interaction in accor-
dance with the Watson theorem, besides the standard
CKM matrix elements for these decays.
It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !

K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence and the absorption parameter in the elastic ⇡+⇡�

and K+K� 0+ channels at the D0 mass. By changing ⌘
from 0.973 to ⇡ 0.87 one finds consistence with �ALHCb

CP .
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [37], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
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K . From Refs. [29, 30] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
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and with
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1� ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o. In-

cluir a discussao do eta00 do Pelaez.
The D0 decay amplitudes produced by the tree dia-

grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates. The
neutral s-wave ⇡⇡ and KK̄ coupled channels corresponds
to isospin zero states.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [17]
and based on Refs. [5, 31].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡,KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [32, 33], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
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where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.
In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that
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1� ⌘2 << 1 at the D0 mass, we have:
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In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[VcsV ⇤
usV

⇤
cdVud]

|VcsV ⇤
usV

⇤
cdVud|

= (6.02± 0.32)⇥ 10�4 , (13)

in the final expression for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [28, 34] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
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The D0 decay amplitudes produced by the tree dia-

grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1� ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1� ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates. The
neutral s-wave ⇡⇡ and KK̄ coupled channels corresponds
to isospin zero states.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [17]
and based on Refs. [5, 31].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡,KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [32, 33], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
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where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.
In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
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in the final expression for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [28, 34] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates. The
neutral s-wave ⇡⇡ and KK̄ coupled channels corresponds
to isospin zero states.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [17]
and based on Refs. [5, 31].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡,KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [32, 33], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = 4 Im[VcsV
⇤
usV

⇤
cdVud]

⇥ a⇡⇡ aKK ⌘
p
1� ⌘2 cos� ,

(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.
In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
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from the amplitudes given in Eq. (8). By taking into
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In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio
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= (6.02± 0.32)⇥ 10�4 , (13)

in the final expression for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [28, 34] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates. The
neutral s-wave ⇡⇡ and KK̄ coupled channels corresponds
to isospin zero states.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [17]
and based on Refs. [5, 31].

The CPT constraint restricted to the two-channels cor-
responds to:
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(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡,KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [32, 33], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = 4 Im[VcsV
⇤
usV

⇤
cdVud]

⇥ a⇡⇡ aKK ⌘
p
1� ⌘2 cos� ,

(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.
In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1� ⌘2 << 1 at the D0 mass, we have:
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cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK . (11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:
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Im[VcsV ⇤

usV
⇤
cdVud]

|VcsV ⇤
usV
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(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[VcsV ⇤
usV

⇤
cdVud]

|VcsV ⇤
usV

⇤
cdVud|

= (6.02± 0.32)⇥ 10�4 , (13)

in the final expression for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [28, 34] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I

3

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1� ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [29, 30], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK
s

|g0
0
(s)| ei�

0
0(s) ⇥(s� 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s� 4m2

⇡ and qK =
1

2

p
s� 4m2

K . From Refs. [29, 30] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125± 0.025

and with
p

1� ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o. In-

cluir a discussao do eta00 do Pelaez.
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How good is the experimental 
determination ?
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in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [28]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
data set as proposed in [30]. Note that at this energy the
parametrization have a large error bar.

TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [34] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [29]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [30] (Solution II, which is
consistent with the data [28] and [34]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

The CP asymmetries are estimated from Eq. (12) and
(13), and the branching fractions from [26]:

Br(D0 ! ⇡+⇡�) = (1.455± 0.024)⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08± 0.06)⇥ 10�3 .
(14)

As we could see above, all parameters in Eq. (12) ex-
cept ⌘ are well defined, so we factorize its dependence
and write:

ACP (⇡⇡) = (1.99± 0.37)⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71± 0.13)⇥ 10�3
p

⌘�2 � 1 ,
(15)

and from that:

�th
CP = �(2.70± 0.50)⇥ 10�3

p
⌘�2 � 1 . (16)

Experimental results for ⇡⇡ ! ⇡⇡ indicate the inelas-
ticity parameter near 1. Unlike the phase parameters,
the magnitude has a significant uncertainty in amplitude
analysis, mainly at high masses. Most due to the mul-
tiple possible solutions allowed in a set of experimental
data, as one can see in [30]. There is only one practical
result for ⇡⇡ ! KK at a centre mass above 1.8 GeV. The
value quoted at the D0 mass for the preferred solution
corresponds to a ⌘ ⇡ 0.973± 0.003 [29] that implies

ACP (⇡⇡) = (0.47± 0.13)⇥ 10�3 ,

ACP (KK) = �(0.17± 0.05)⇥ 10�3 .
(17)

and in �Ath
CP = �(0.64± 0.18)⇥ 10�3, below the LHCb

experimental result. They quoted only the statistical un-
certainty to the magnitude value; however, they assume
the existence of large systematic uncertainty to accom-
modate the other acceptable fits.

On the other hand, Grayer et al. [27], present a ⌘ =
0.78 ± 0.08. If we keep our assumption that all ⇡⇡ in-
elasticity comes from the re-scattering in KK, the value
of �Ath

CP = �(2.17 ± 0.70) ⇥ 10�3. The experimental
result is in the between of these two possible values of
the �Ath

CP .
Independently of the value inelasticity ⌘ parameter at

theD0 mass, we can present as a prediction for the future
experimental results that the ratio:

ACP (⇡⇡)/ACP (KK) = �2.80± 0.06 . (18)

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(19)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135± 0.021)⇥ 10�3 ,

ACP (KK) = �(0.405± 0.077)⇥ 10�3 ,
(20)

which is within the interval of our theory based re-
sults (17). These values are compatible with other recent
calculations [35, 36] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP half of the re-
cently observed LHCb value [6], relying absolutely in SM
physics. The key ingredient to produce the enhancement
in the CP violation is the coupling between the ⇡+⇡�

and K+K� channels as the source of the strong phase
introduced in a CPT invariant framework. Our approach
takes into account the final state interaction in accor-
dance with the Watson theorem, besides the standard
CKM matrix elements for these decays.
It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !

K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence and the absorption parameter in the elastic ⇡+⇡�

and K+K� 0+ channels at the D0 mass. By changing ⌘
from 0.973 to ⇡ 0.87 one finds consistence with �ALHCb

CP .
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [37], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
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We show that the final state interaction (FSI) within a CPT invariant framework enhances the
observed charge-parity (CP) violation di↵erence betweenD0 ! ⇡�⇡+ andD0 ! K�K+ decays. We
consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK rescattering
data to extract the FSI parameters ! strong phase di↵erence. We naturally arrive to the
sign and order of magnitude of �ACP as recently found by the LHCb collaboration.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one
of them. In general, new theories ! ”new physics
theories” ? predict new sources of CPV, with a clear
signature and high sensitivity to be experimentally ob-
served (see [1–5] for update reviews). This is why Bigi
and Sanda called CPV in charm as “The dark horse can-
didate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D
0 ! K�K+)�ACP (D

0 ! ⇡�⇡+)

= �(1.54± 0.29)⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61± 0.28)⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are several theoretical frameworks that try to

address CPV in charm within Standard Model. They
can be dived between those using QCD short-distance

⇤ p.magalhaes@cern.ch

approach [9, 10] whereas the others consider contribu-
tion of long-distance e↵ects [11, 12] including topological
approach with and without SU(3) breaking[13? ]. Fac-
ing the limitation of QCD to acess the penguin contri-
bution, the first approach predicted �Acp one order of
magnitude lower than the experimental value. On the
other hand, the available long-distance approach try to
explain the CPV result in charm within the SM explor-
ing model dependent fitting to non-perturbative aspects
of QCD.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [14–16], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.
The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [17–19], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
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We show that the final state interaction (FSI) within a CPT invariant framework enhances the
observed charge-parity (CP) violation di↵erence betweenD0 ! ⇡�⇡+ andD0 ! K�K+ decays. We
consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK rescattering
data to extract the FSI parameters ! strong phase di↵erence. We naturally arrive to the
sign and order of magnitude of �ACP as recently found by the LHCb collaboration.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one
of them. In general, new theories ! ”new physics
theories” ? predict new sources of CPV, with a clear
signature and high sensitivity to be experimentally ob-
served (see [1–5] for update reviews). This is why Bigi
and Sanda called CPV in charm as “The dark horse can-
didate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D
0 ! K�K+)�ACP (D

0 ! ⇡�⇡+)

= �(1.54± 0.29)⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61± 0.28)⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are several theoretical frameworks that try to

address CPV in charm within Standard Model. They
can be dived between those using QCD short-distance
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approach [9, 10] whereas the others consider contribu-
tion of long-distance e↵ects [11, 12] including topological
approach with and without SU(3) breaking[13? ]. Fac-
ing the limitation of QCD to acess the penguin contri-
bution, the first approach predicted �Acp one order of
magnitude lower than the experimental value. On the
other hand, the available long-distance approach try to
explain the CPV result in charm within the SM explor-
ing model dependent fitting to non-perturbative aspects
of QCD.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+

u d

c
Vcd d

_

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+
V ⇤
us

u
s

c
s
_

Vcs

u
D0 ! ⇡+⇡�

D0

D0

_

D0 ! K+K�

D0 K+K�
⇡+⇡�

VcsV
⇤
us

VcdV
⇤
ud �⇡⇡!KK

FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [14–16], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.
The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [17–19], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
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where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1� ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [29, 30], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK
s

|g0
0
(s)| ei�

0
0(s) ⇥(s� 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s� 4m2

⇡ and qK =
1

2

p
s� 4m2

K . From Refs. [29, 30] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125± 0.025

and with
p

1� ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o. In-

cluir a discussao do eta00 do Pelaez.
The D0 decay amplitudes produced by the tree dia-

grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1� ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1� ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates. The
neutral s-wave ⇡⇡ and KK̄ coupled channels corresponds
to isospin zero states.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [17]
and based on Refs. [5, 31].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡,KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [32, 33], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = 4 Im[VcsV
⇤
usV

⇤
cdVud]

⇥ a⇡⇡ aKK ⌘
p
1� ⌘2 cos� ,

(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.
In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1� ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK . (11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ±2
Im[VcsV ⇤

usV
⇤
cdVud]

|VcsV ⇤
usV

⇤
cdVud|

⇥ ⌘�1
p

1� ⌘2 cos�

"
Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,

(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[VcsV ⇤
usV

⇤
cdVud]

|VcsV ⇤
usV

⇤
cdVud|

= (6.02± 0.32)⇥ 10�4 , (13)

in the final expression for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [28, 34] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
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in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [28]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
data set as proposed in [30]. Note that at this energy the
parametrization have a large error bar.

TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [34] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [29]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [30] (Solution II, which is
consistent with the data [28] and [34]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

The CP asymmetries are estimated from Eq. (12) and
(13), and the branching fractions from [26]:

Br(D0 ! ⇡+⇡�) = (1.455± 0.024)⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08± 0.06)⇥ 10�3 .
(14)

As we could see above, all parameters in Eq. (12) ex-
cept ⌘ are well defined, so we factorize its dependence
and write:

ACP (⇡⇡) = (1.99± 0.37)⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71± 0.13)⇥ 10�3
p

⌘�2 � 1 ,
(15)

and from that:

�th
CP = �(2.70± 0.50)⇥ 10�3

p
⌘�2 � 1 . (16)

Experimental results for ⇡⇡ ! ⇡⇡ indicate the inelas-
ticity parameter near 1. Unlike the phase parameters,
the magnitude has a significant uncertainty in amplitude
analysis, mainly at high masses. Most due to the mul-
tiple possible solutions allowed in a set of experimental
data, as one can see in [30]. There is only one practical
result for ⇡⇡ ! KK at a centre mass above 1.8 GeV. The
value quoted at the D0 mass for the preferred solution
corresponds to a ⌘ ⇡ 0.973± 0.003 [29] that implies

ACP (⇡⇡) = (0.47± 0.13)⇥ 10�3 ,

ACP (KK) = �(0.17± 0.05)⇥ 10�3 .
(17)

and in �Ath
CP = �(0.64± 0.18)⇥ 10�3, below the LHCb

experimental result. They quoted only the statistical un-
certainty to the magnitude value; however, they assume
the existence of large systematic uncertainty to accom-
modate the other acceptable fits.

On the other hand, Grayer et al. [27], present a ⌘ =
0.78 ± 0.08. If we keep our assumption that all ⇡⇡ in-
elasticity comes from the re-scattering in KK, the value
of �Ath

CP = �(2.17 ± 0.70) ⇥ 10�3. The experimental
result is in the between of these two possible values of
the �Ath

CP .
Independently of the value inelasticity ⌘ parameter at

theD0 mass, we can present as a prediction for the future
experimental results that the ratio:

ACP (⇡⇡)/ACP (KK) = �2.80± 0.06 . (18)

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(19)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135± 0.021)⇥ 10�3 ,

ACP (KK) = �(0.405± 0.077)⇥ 10�3 ,
(20)

which is within the interval of our theory based re-
sults (17). These values are compatible with other recent
calculations [35, 36] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP half of the re-
cently observed LHCb value [6], relying absolutely in SM
physics. The key ingredient to produce the enhancement
in the CP violation is the coupling between the ⇡+⇡�

and K+K� channels as the source of the strong phase
introduced in a CPT invariant framework. Our approach
takes into account the final state interaction in accor-
dance with the Watson theorem, besides the standard
CKM matrix elements for these decays.
It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !

K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence and the absorption parameter in the elastic ⇡+⇡�

and K+K� 0+ channels at the D0 mass. By changing ⌘
from 0.973 to ⇡ 0.87 one finds consistence with �ALHCb

CP .
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [37], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
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in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [28]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
data set as proposed in [30]. Note that at this energy the
parametrization have a large error bar.
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0 � 2�⇡⇡ with
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0 = �KK + �⇡⇡ from [29]. At

p
s = 1.846 GeV, �⇡⇡ comes
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Experimental results for ⇡⇡ ! ⇡⇡ indicate the inelas-
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the magnitude has a significant uncertainty in amplitude
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CKM matrix elements for these decays.
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fact, one expect that the CP asymmetry must be en-
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ACP (KK) = �(0.405± 0.077)⇥ 10�3 ,
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Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP half of the re-
cently observed LHCb value [6], relying absolutely in SM
physics. The key ingredient to produce the enhancement
in the CP violation is the coupling between the ⇡+⇡�

and K+K� channels as the source of the strong phase
introduced in a CPT invariant framework. Our approach
takes into account the final state interaction in accor-
dance with the Watson theorem, besides the standard
CKM matrix elements for these decays.
It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !

K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:
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ACP (D0 ! K�K+)
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On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence and the absorption parameter in the elastic ⇡+⇡�

and K+K� 0+ channels at the D0 mass. By changing ⌘
from 0.973 to ⇡ 0.87 one finds consistence with �ALHCb
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Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [37], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large

4

in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [28]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
data set as proposed in [30]. Note that at this energy the
parametrization have a large error bar.
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Br(D0 ! ⇡+⇡�) = (1.455± 0.024)⇥ 10�3 ,
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and write:

ACP (⇡⇡) = (1.99± 0.37)⇥ 10�3
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Experimental results for ⇡⇡ ! ⇡⇡ indicate the inelas-
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dance with the Watson theorem, besides the standard
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It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
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of the CPT condition for only these two channels:
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fact, one expect that the CP asymmetry must be en-
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ence and the absorption parameter in the elastic ⇡+⇡�

and K+K� 0+ channels at the D0 mass. By changing ⌘
from 0.973 to ⇡ 0.87 one finds consistence with �ALHCb

CP .
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [37], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
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in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [28]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
data set as proposed in [30]. Note that at this energy the
parametrization have a large error bar.

TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [34] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [29]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [30] (Solution II, which is
consistent with the data [28] and [34]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

The CP asymmetries are estimated from Eq. (12) and
(13), and the branching fractions from [26]:

Br(D0 ! ⇡+⇡�) = (1.455± 0.024)⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08± 0.06)⇥ 10�3 .
(14)

As we could see above, all parameters in Eq. (12) ex-
cept ⌘ are well defined, so we factorize its dependence
and write:

ACP (⇡⇡) = (1.99± 0.37)⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71± 0.13)⇥ 10�3
p

⌘�2 � 1 ,
(15)

and from that:

�th
CP = �(2.70± 0.50)⇥ 10�3

p
⌘�2 � 1 . (16)

Experimental results for ⇡⇡ ! ⇡⇡ indicate the inelas-
ticity parameter near 1. Unlike the phase parameters,
the magnitude has a significant uncertainty in amplitude
analysis, mainly at high masses. Most due to the mul-
tiple possible solutions allowed in a set of experimental
data, as one can see in [30]. There is only one practical
result for ⇡⇡ ! KK at a centre mass above 1.8 GeV. The
value quoted at the D0 mass for the preferred solution
corresponds to a ⌘ ⇡ 0.973± 0.003 [29] that implies

ACP (⇡⇡) = (0.47± 0.13)⇥ 10�3 ,

ACP (KK) = �(0.17± 0.05)⇥ 10�3 .
(17)

and in �Ath
CP = �(0.64± 0.18)⇥ 10�3, below the LHCb

experimental result. They quoted only the statistical un-
certainty to the magnitude value; however, they assume
the existence of large systematic uncertainty to accom-
modate the other acceptable fits.

On the other hand, Grayer et al. [27], present a ⌘ =
0.78 ± 0.08. If we keep our assumption that all ⇡⇡ in-
elasticity comes from the re-scattering in KK, the value
of �Ath

CP = �(2.17 ± 0.70) ⇥ 10�3. The experimental
result is in the between of these two possible values of
the �Ath

CP .
Independently of the value inelasticity ⌘ parameter at

theD0 mass, we can present as a prediction for the future
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ACP (⇡⇡)/ACP (KK) = �2.80± 0.06 . (18)

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(19)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135± 0.021)⇥ 10�3 ,

ACP (KK) = �(0.405± 0.077)⇥ 10�3 ,
(20)

which is within the interval of our theory based re-
sults (17). These values are compatible with other recent
calculations [35, 36] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP half of the re-
cently observed LHCb value [6], relying absolutely in SM
physics. The key ingredient to produce the enhancement
in the CP violation is the coupling between the ⇡+⇡�

and K+K� channels as the source of the strong phase
introduced in a CPT invariant framework. Our approach
takes into account the final state interaction in accor-
dance with the Watson theorem, besides the standard
CKM matrix elements for these decays.
It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !

K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence and the absorption parameter in the elastic ⇡+⇡�

and K+K� 0+ channels at the D0 mass. By changing ⌘
from 0.973 to ⇡ 0.87 one finds consistence with �ALHCb

CP .
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [37], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
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CPT in two channels exact

All quantities 
given by data

by construction this gives: 
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Summary

Δ𝐴$% with FSI approach is compatible with LHCb data 

coupling between 𝜋𝜋 and 𝐾𝐾 channels as source 
of strong phase in a CPT invariant framework

constraint to phase difference and inelasticities of 𝜋𝜋 and 𝐾𝐾 at 𝐷$ mass 

there is room from improvement: go beyond two-coupled channels 

New measurement from LHCb

check the CPT condition for only these two channels: 

So far the SM is enoughà new physics has to wait…
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Prospect

In three-body this effect will be bigger and phase-space distributed 

SCS 𝐷( → 𝜋(𝜋)𝜋( and 𝐷( → 𝜋(𝐾)𝐾(

Thank you!



Patricia MagalhãesFSI to enhance CPVFSI to enhance CPV 26
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Dalitz plot: CP Asymmetry in B decays

Kππ KKK

KKππππ

LHCb PRD90 (2014) 112004
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CPV in low mass region ~ 1-1.5 GeV



BSS model CPV Bàhhh

CPV at quark level: BSS model Bander Silverman & Soni PRL 43 (1979) 242

+

Hadronic FSI interactions as source of strong phase

Not enough to explain CPV below ccbar threshold
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FSI & CPV at low –mass region inclusion of resonances

confirmed in Amp Analysis

contribution in rescattering LHCb  
PRL [arXiv:1905.09244]

PRL [arXiv:1909.05211]
PRD [arXiv:1909.05212]

Alvarenga Nogueira etal PRD 92 (2015) 054010
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summed in all channels λ and integrated over the phase-
space, that leads to the CPT condition expressed by
Eq. (9), once the source term in (20) satisfies

∑

λ J

Im
[

(

BJ
0λ

)∗
AJ

0λ

]

= 0, (21)

which is a consequence of the CPT constraint at the mi-
croscopic level, e.g., as expressed by the tree and penguin
amplitudes in the BSS model, that should be valid when
FSI is turned off in Eq. (2). This term was neglected
by Wolfenstein, which corresponds to the trivial solution
of Eq. (21), assuming that the phase difference between
the two CP-conserving amplitudes is zero for all decay
channels.
To be complete and detailing the notation of Ref. [2]

by including the two-particle angular momentum states
J , we show that the second term in Eq. (20),

∑

λ

∆ΓFSI
λ = 4(sin γ)

∑

λλ′ J

Re
[

(

BJ
0λ

)∗
tJλ′,λ A

J
0λ

−
(

BJ
0λ t

J
λ,λ

)∗
AJ

0λ

]

, (22)

also satisfies the CPT condition, namely, this quantity
vanishes, which is easily verified by using Eqs. (17) as

∑

λ

∆ΓFSI
λ = 4(sin γ)×

×
∑

λ′λ J

Re
[

χhχλJ

(

BJ
0λ

)∗
tJλ′,λ

(

AJ
0λ′

)∗

− χ∗
hχ

∗
λ′JB

J
0λ′

(

tJλ′,λ

)∗
AJ

0λ

]

= 0. (23)

The vanishing of Eq. (23) is due to the symmetry of
tJλ,λ′ = tJλ′,λ, and the fact that χλJ = χλ′J , i.e., the
strong interaction does not mix different CP eigenstates.
Therefore, by taking into account Eqs. (21) and (23), one
has that the CPT constraint

∑

λ

∆Γλ = 4(sin γ)
∑

λ J

Im
[

(

BJ
0λ

)∗
AJ

0λ

]

+
∑

λ

∆ΓFSI
λ = 0, (24)

is fulfilled in leading order of the interaction.

IV. RESONANT CHANNELS AND CPT

In the case that the channel λ contains also the for-
mation of a resonance in the partonic process, namely,

B → πρ, the amplitudes A0λ and B0λ can be separated
in the following two parts, AJ

0λ = AJ
0λNR+

∑

R AJ
0λR, and

BJ
0λ = BJ

0λNR+
∑

R BJ
0λR, where the subindex R andNR

mean resonant and non resonant channels. Therefore, the
decay amplitude in Eq. (19) is rewritten as

A±
LO =

∑

J

[

∑

R

AJ
0λR +AJ

0λNR+

+ e±iγ

(

∑

R

BJ
0λR +BJ

0λNR

)]

+ i
∑

λ′,J

tJλ′,λ

[

∑

R

AJ
0λ′R +AJ

0λ′NR

+ e±iγ

(

∑

R

BJ
0λ′R +BJ

0λ′NR

)]

. (25)

The resonant source terms AJ
0λR and BJ

0λR should be
interpreted as bare amplitudes, where at the resonance
decay vertex, the two-hadron rescattering process is not
yet included. The Breit-Wigner amplitudes for each term
are identified according to

(1 + i tJλλ)A
J
0λR → aR0 F

BW
R λ PJ (cos θ) (26)

and

(1 + i tJλλ)B
J
0λR → bR0λF

BW
R λ PJ (cos θ), (27)

where J is the spin of the resonance decaying to two spin
zero particles and PJ (cos θ) is the Legendre polynomial
and θ is the helicity angle between the equally charge
particles in the Gottfried-Jackson frame. We will give
the representation of this angle for the B+ → π+π+π−

decay in Fig. 1 of the next section.
After substituting (27) in (25), we get that

A±
LO =

∑

J R

(

aR0λ + e±iγbR0
)

FBW
R λ PJ (cos θ)

+
∑

J

(

AJ
0λNR + e±iγBJ

0λNR

)

+ i
∑

λ′,J

tJλ′,λ

(

AJ
0λ′NR + e±iγBJ

0λ′NR

)

, (28)

where the first and second terms in the right-hand side
is the isobar model for the decay. The second term is the
source term for the final state channel, and the third one
includes the hadronic interaction among the two of the
hadrons with angular momentum J . We should clarify
that Eq. (28) includes the interaction in the resonance re-
gion as the pair of hadrons has a probability to be formed
directly from the partonic process.
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The CP asymmetry from Eq. (28) can be cast in the following form

∆Γλ = Γ (h → λ)− Γ(h → λ)

= 4(sin γ)
∑

J J′

Im

{(

∑

R

bR0λF
BW
Rλ PJ (cos θ) +BJ

0λNR

)∗(
∑

R′

aR
′

0λF
BW
R′λ PJ′(cos θ) +AJ′

0λNR

)

+ i
∑

λ′

(

∑

R

bR0λF
BW
Rλ PJ (cos θ) +BJ

0λNR

)∗

tJ
′

λ′,λ

(

∑

R′

aR
′

0λ′FBW
R′λ′PJ′(cos θ) +AJ′

0λ′NR

)

− i
∑

λ′

(

∑

R′

bR
′

0λ′FBW
R′λ′PJ′(cos θ) +BJ′

0λ′NR

)∗
[

tJ
′

λ′,λ

]∗
(

∑

R

aR0λF
BW
Rλ PJ(cos θ) +AJ

0λNR

)}

. (29)

It has to be understood that the subindex λ also in-
cludes different kinematical regions of the three-body
channel. Since we have introduced the Breit-Wigner am-
plitudes in the decay amplitude, the CPT constraint has
to be checked in the actual fit, i.e., if

∑

λ ∆Γλ = 0 is sat-
isfied when one takes into account the integration over
the phase-space besides the sum over all decay channels
in the sum of λ. Indeed, in our fitting procedure, we will
keep only terms that, within our limited model, satisfy
the CPT constraint.

V. INTERFERING RESONANT AND NON
RESONANT AMPLITUDES

We present a simple example to explore the asymme-
try formula (29), considering the resonant, non-resonant
source terms and the contribution from the coupling be-
tween two strongly interacting channels, namely ππ and
KK. We use the vector and scalar resonances, the ρ(770)
and f0(980) ones, for instance, interfering with a non res-
onant amplitude and the term carrying the strong inter-
action transition amplitude between the coupled chan-
nels. This illustrates exactly the B± → π±π+π− de-
cay case at low invariant π+π− mass. Also there are
B± → K±π+π− data [22, 23] previous to the CP asym-
metry observation by LHCb collaboration.
First, let us remind that, in a general way, the Breit-

Wigner excitation curve for a resonance R reads

FBW
R (s) =

1

m2
R − s− imRΓR(s)

, (30)

with mR being the resonance mass, and

ΓR(s) =

(

s
4 −m2

π

)1/2
mRΓ′

R
(

m2
R

4 −m2
π

)1/2
s1/2

, (31)

denoting the energy dependent relativistic width. For the
pion mass, we adopted mπ = 0.138 GeV, degenerated for
the negative and positive charged particles. Here, we
consider the resonance decay in the ππ channel.

The real and imaginary parts of FBW
R (s) are given,

respectively, by

Re
[

FBW
R

]

=
m2

R − s

(m2
R − s)2 +m2

RΓR(s)2
, (32)

and

Im
[

FBW
R

]

=
mRΓR(s)

(m2
R − s)2 +m2

RΓR(s)2
. (33)

The square modulus is

|FBW
R |2(s) =

1

(m2
R − s)2 +m2

RΓR(s)2
. (34)

The amplitudes for B± → π±π+π− or
B± → K±π+π− decays, taking into account the ρ(770)
and f0(980) resonances interfering with a constant non
resonant amplitude, can be written as

A±
0λ = aρ0F

BW
ρ k(s) cos θ + af0F

BW
f +

anr0λ + bnr0λe
±iγ

1 + s
Λ2

λ

+ [bρ0F
BW
ρ k(s) cos θ + bf0F

BW
f ]e±iγ , (35)

where the kinematical factor k(s) =
√

1− 4m2
π

s is in-

cluded in the amplitude of the ρ(770) vector resonance,
to take into account the threshold behavior of the decay
amplitude in a p-wave. The angle θ is defined as the angle
between the bachelor and the equally charged interacting
particle. See this definition in the B+ → π+π+π− decay
illustrated in Fig. 1. Here, cos θ is associated to the spin
1 of the ρ resonance and varies from −1 to +1 along the
phase space.

B+ π′+

π−

π+

θ
B+ π′+

π−

π+

θ

(a) (b)

FIG. 1. B+ → π+π+π− decay with π′+ being the bachelor
particle. (a): cos θ < 0 (θ > π

2
). (b): cos θ > 0 (θ < π

2
).
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To perform both fits and the other plots, we use the
π+π− → K+K− amplitude, the non resonant compo-
nent, and the ρ and f0(980) resonances. We put these
amplitudes within the isobar model through a coherent
sum of them. The biggest source of uncertainty from
these fits is the error in the ππ phase shift and inelastic-
ity parameter. For simplicity we use the central value of
Ref. [26], although possible variations within the quoted
errors in the parameters could give better results. De-
spite our belief that this model is able to represent much
of this data, we are aware that it can not explain all the
rich CP violation structure observed in these decays. The
inclusion of other contributions and the symmetrization
of the B± → π±π+π− decay amplitude would be nec-
essary to understand in more details the phase space of
these decays and get better agreement in all CP asym-
metry regions presented in Ref. [9].
To perform the fits we use for the f0(980) resonance,

mf = 0.975 GeV and width Γ′
f = 0.044 GeV, getting

from E791 experiment [27]. For the two Λ parameters,
we use Λλ = Λππ = 3.0 GeV and Λλ′ = ΛKK = 4.0 GeV.
It is important to say that we changed these values by a
factor two without finding an appreciable change in the
fitting.

A. πππ channel

We started by performing the fit of the integrated
Eq. (44) to the cos θ > 0 asymmetry distribution of the
low π+π− mass projection for the B± → π±π+π− decay.
Due the presence of identical particles in final state, the
interference between symmetrical terms by the exchange
of the two identical pions must disturb the CP violation
pattern mostly for cos θ < 0. We study the regions on
the Dalitz plot where this interference can be minimum
and observe that it corresponds to the high π+π− region
on the cos θ > 0 distribution as can be seen in Fig. 7.

-1 -0,5 0 0,5 1
cosθ

0

1

2

3

4

5

m
π’

+ π
-  (

G
eV

)

m
π

+
π

- = 0.3 GeV
m
π

+
π

- = 0.5 GeV
m
π

+
π

- = 1.0 GeV
m
π

+
π

- = 1.8 GeV

FIG. 7. mπ′+π− as a function of cos θ for some particular
values of mπ+π− .

This figure provides the mass of the changeless pair of
pions formed with the bachelor pion. If cos θ < 0 the
mass of this pair stays below 3 GeV, and for mπ′+π− ! 1
GeV, it can be even below 1 GeV, and therefore mak-

ing relevant the interference with the resonances. For
cos θ > 0, mπ′+π− > 3 GeV, minimizing interference
effects from the Bose symmetrization of the decay am-
plitude. We intend to perform this study in the future.
For the moment, we do not consider the symmetrization
of the decay amplitude, and therefore we do not use the
data for the CP asymmetry in the B± → π±π+π− chan-
nel for cos θ < 0 to fit the parameters.
The best fit was obtained by using four parameters

associated to the π+π− → K+K− amplitude (B), the
real and imaginary parts of the interference between the
ρ and the non resonant partonic amplitudes (D and E),
and finally the imaginary part of the interference between
the ρ and the f0(980) resonances (G). The result is pre-
sented in Fig. 8a, where we compared our model with the
experimental data extracted from Fig. 4c of Ref. [9]. The
remaining parameters, namely, those that locally violate
the CPT constraint, and those negligible in the fitting
procedure, were set to zero.
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FIG. 8. (Color online) CP asymmetry of the B± → π±π+π−

decay, integrated Eq. (44), compared with the experimental
values (blue points) taken from Ref. [9]. Results for cos θ > 0
for (a) total and (b) individual contributions.

The individual contributions to the CP asymmetry are
shown in Fig. 8b. As expected, the ρ meson contribution
represented by the amplitudes containing the D and E
parameters, is large mainly for the real part of the BW,
and the presence of f0(980) is seen only by one of the
interfering terms with the ρ, namely, that presenting the
G parameter. All these terms are locally CPT invariant,
namely by integration in cos θ their contribution to the
CP asymmetry vanishes. Between 1 and 1.6 GeV, the
contribution of the π+π− → K+K− amplitude, namely,
the B term, shows its importance and as expected [2],
dominates the asymmetry in this region. We remind
that this part of the asymmetry does not vanishes upon
integration in cos θ and cancels the asymmetry in the
B± → π±K+K− decay channel.
Looking at the behavior of the experimental cos θ < 0

distribution in Fig. 9a, we can see that much of the fea-
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tures observed for the distribution of events for cos θ > 0
are present in this asymmetry. In fact, we plotted to-
gether with the experimental points, the amplitudes com-
puted with the integrated Eq. (44) using the fit param-
eters obtained from the cos θ > 0 distribution. The
plot in Fig. 9a shows a clear departure from the exper-
imental data when at the starting of the ρ mass reso-
nance and also at the beginning of the contribution of
the π+π− → K+K− amplitude to the asymmetry. As-
suming that these differences are due to the symmetriza-
tion, this result suggests an interference between ρ and
π+π− → K+K− amplitude in the crossing channels,
which is corroborated by Fig. 7, where for the mass region
above 1 GeV, the mass of the π′+π− pair in the crossing
channel for cos θ ! −0.75 can be even below 1 GeV. In
addition, we show in Fig. 9b the individual contributions
to this CP asymmetry distribution.
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FIG. 9. (Color online) CP asymmetry of the B± → π±π+π−

decay, integrated Eq. (44), compared with the experimental
values (blue points) taken from Fig. 4d of Ref. [9]. Results
for cos θ < 0 for (a) total and (b) individual contributions.

We still remark to the reader that for the B± →
π±π+π− decay, our definition of the angle θ is opposite
from that presented in Ref. [9]. Thus, we had to compare
our results of cos θ > 0 (cos θ < 0) with those of cos θ < 0
(cos θ > 0) of Ref. [9].

B. πKK channel

The expression for the CP asymmetry in the coupled
B± → π±K+K− channel, derived from the general for-
mula in Eq. (29), applied to this specific decay and inte-
grated in cos θ, is given by

∆Γ(s) = −
2A

a′(s)
√

s− 4m2
K

(

1 + s
Λ2

λ′

)2

−
2B
√

1− η2(s) cos[2δππ(s)]

a′(s)
√

s− 4m2
K

(

1 + s
Λ2

λ

)(

1 + s
Λ2

λ′

) , (60)

where the kinematical factors, namely,

a′(s) =
1

(s− 4m2
K)1/2

[

(M2
B−m2

π−s)2

4s −m2
π

]1/2
, (61)

and the kaon momentum in the rest frame of the KK
subsystem,

√

s− 4m2
K , are now taken for the πKK sys-

tem. Furthermore, the integrated decay width in cos θ
from Eq. (60), becomes exactly opposite in sign to the
decay width in the πππ channel above the KK thresh-
old, c.f. the first two terms of the integrated Eq. (44).
The expression in Eq. (60) is obtained by adding the

π+π− → K+K− contributions detailed in Figs. 8 and
9, since A = 0. The plot shown in Fig. 10 was done
with the parameters fitted by the CP asymmetry data
in the B± → π±π+π− decay. The CP violation dis-
tribution obtained for the K+K− invariant mass from
B± → π±K+K− decay through Eq. (60), has opposite
sign with respect to the correspondent term in the cou-
pled π±π+π− channel.
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FIG. 10. (Color online) CP asymmetry of the
B± → π±K+K− decay, Eq. (60), compared with ex-
perimental data (blue points) taken from Fig. 7b of Ref. [9].

For this decay, the LHCb experiment presented the
sum of events with cos θ < 0 and cos θ > 0. The compar-
ison of the data with our model is also provided in Fig. 10.
There is a clear agreement about the shape of the model
distribution with the experimental data and also a rea-
sonable amount of the number of events related with this
kind of CP asymmetry. It is also worth to mention that
CPT is conserved if we sum all CP asymmetry contri-
butions obtained with our approach to B± → π±π+π−

and B± → π±K+K− decays, in a region of π+π− and
K+K− invariant mass below 1.6 GeV.

VIII. CPV IN B± → K±π+π− AND
B± → K±K+K− DECAYS

The number of events observed in these two decay
channels are about one order of magnitude larger than
in the π±π+π− and π±K+K− data [9]. This allows a
better fit to the difference between B− and B+ events.
In the fitting procedure we use only the cos θ < 0 distri-
bution, because the experimental results [9] for cos θ > 0
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present a new feature in both decays in the region stud-
ied in this work. Our simple model does not account for
this new behavior. We only have a guess, that we already
mentioned in our previous paper [2], related with the pos-
sible presence of re-scattering coming from double charm
decays. One should note that three light-pseudoscalar
mesons can, in principle, couple via strong interaction
with channels like DDK. It seems reasonable to expect
that DDK → KKK or Kππ can contribute to the CP
asymmetry in regions of large two-body invariant mass
above the DD threshold, that is far from the KK thresh-
old and above 1.6 GeV, outside the region discussed in
this work but excluded from the cos θ < 0 distribution.

A. Kππ channel

Differently to the B± → π±π+π− decay where the
ρ amplitudes were dominant, here the f0(980) has the
largest contribution to the B± → K±π+π− decay, as it
is expected by recalling the BSS mechanism applied to
these decays, which builds in principle the correspond-
ing amplitudes associated with the source terms or par-
tonic amplitudes. One possible good fit for the integrated
Eq. (44) is obtained by using five parameters associated
to the π+π− → K+K− amplitude (B), the real parts of
the interference between ρ resonance with the non res-
onant partonic (D), and π+π− → K+K− amplitudes
(D′), and finally the real and imaginary parts of the in-
terference between the ρ and the f0(980) resonances, (F
and G). As in the B± → π±π+π− case, the parameters
that locally violate the CPT constraint, and those negli-
gible in the fitting procedure were set to zero. Fig. 11a
shown the best fit we get to the cos θ < 0 distribution.
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FIG. 11. (Color online) CP asymmetry of the B± →
K±π+π− decay, integrated Eq. (44), compared with the ex-
perimental values (blue points) taken from Fig. 5c of Ref. [9].
Results for cos θ < 0 for (a) total and (b) individual contri-
butions.

In Fig. 11b, we shown the decomposition of each com-
ponent of the fit. Clearly the dominant contribution

comes from the real part of the interference between ρ
and the f0(980) resonances. The imaginary part of this
amplitude has a contribution, however, much less impor-
tant than the real one. The π+π− and K+K− amplitude
plays an important role in this fit above 1 GeV and also
associated with the interference with the ρ resonance.
Here, we also used Λλ = 3.0 GeV and Λλ′ = 4.0 GeV.

The other parameters were found by using the χ2 method
in order to fit the experimental data for cos θ < 0 distri-
bution from Ref. [9].

B. KKK channel

The CP asymmetry in the B− and B+ event distri-
butions in the B± → K±K+K− channel is compared
to our model with the sum of the events of cos θ < 0
and cos θ > 0 as we did for B± → π±K+K− decay
channel and the data provided by the LHCb in this last
case. The functional form of the asymmetry for the
B± → K±K+K− decay is the same as in Eq. (60).
The only change is due to the kinematical factor a′(s) in
Eq. (61), that now presents the replacement mπ → mK .
We plot in Fig. 12 the asymmetry of the B± →

K±K+K− decay, computed with the parameter B ob-
tained in our previous fitting of the B± → K±π+π− de-
cay. Our model is compared to the data obtained by
summing the experimental results of B± → K±K+K−

distributions for both cos θ positive and negative regions.
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FIG. 12. CP asymmetry of the B± → K±K+K− decay com-
pared with experimental values (blue points) taken from the
sum of Figs. 6c and 6d of Ref. [9].

IX. CONCLUDING REMARKS

A. Beyond the model

We can go beyond the asymmetry formula in Eq. (38),
where we have not included the interference terms be-
tween the resonances and the scattering terms in the elas-
tic channel, we remind that in the BW we included the
elastic amplitude, but it is also important to consider it
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The CP asymmetry from Eq. (28) can be cast in the following form

∆Γλ = Γ (h → λ)− Γ(h → λ)

= 4(sin γ)
∑

J J′

Im

{(

∑

R

bR0λF
BW
Rλ PJ (cos θ) +BJ

0λNR

)∗(
∑

R′

aR
′

0λF
BW
R′λ PJ′(cos θ) +AJ′

0λNR

)

+ i
∑

λ′

(

∑

R

bR0λF
BW
Rλ PJ (cos θ) +BJ

0λNR

)∗

tJ
′

λ′,λ

(

∑

R′

aR
′

0λ′FBW
R′λ′PJ′(cos θ) +AJ′

0λ′NR

)

− i
∑

λ′

(

∑

R′

bR
′

0λ′FBW
R′λ′PJ′(cos θ) +BJ′

0λ′NR

)∗
[

tJ
′

λ′,λ

]∗
(

∑

R

aR0λF
BW
Rλ PJ(cos θ) +AJ

0λNR

)}

. (29)

It has to be understood that the subindex λ also in-
cludes different kinematical regions of the three-body
channel. Since we have introduced the Breit-Wigner am-
plitudes in the decay amplitude, the CPT constraint has
to be checked in the actual fit, i.e., if

∑

λ ∆Γλ = 0 is sat-
isfied when one takes into account the integration over
the phase-space besides the sum over all decay channels
in the sum of λ. Indeed, in our fitting procedure, we will
keep only terms that, within our limited model, satisfy
the CPT constraint.

V. INTERFERING RESONANT AND NON
RESONANT AMPLITUDES

We present a simple example to explore the asymme-
try formula (29), considering the resonant, non-resonant
source terms and the contribution from the coupling be-
tween two strongly interacting channels, namely ππ and
KK. We use the vector and scalar resonances, the ρ(770)
and f0(980) ones, for instance, interfering with a non res-
onant amplitude and the term carrying the strong inter-
action transition amplitude between the coupled chan-
nels. This illustrates exactly the B± → π±π+π− de-
cay case at low invariant π+π− mass. Also there are
B± → K±π+π− data [22, 23] previous to the CP asym-
metry observation by LHCb collaboration.
First, let us remind that, in a general way, the Breit-

Wigner excitation curve for a resonance R reads

FBW
R (s) =

1

m2
R − s− imRΓR(s)

, (30)

with mR being the resonance mass, and

ΓR(s) =

(

s
4 −m2

π

)1/2
mRΓ′

R
(

m2
R

4 −m2
π

)1/2
s1/2

, (31)

denoting the energy dependent relativistic width. For the
pion mass, we adopted mπ = 0.138 GeV, degenerated for
the negative and positive charged particles. Here, we
consider the resonance decay in the ππ channel.

The real and imaginary parts of FBW
R (s) are given,

respectively, by

Re
[

FBW
R

]

=
m2

R − s

(m2
R − s)2 +m2

RΓR(s)2
, (32)

and

Im
[

FBW
R

]

=
mRΓR(s)

(m2
R − s)2 +m2

RΓR(s)2
. (33)

The square modulus is

|FBW
R |2(s) =

1

(m2
R − s)2 +m2

RΓR(s)2
. (34)

The amplitudes for B± → π±π+π− or
B± → K±π+π− decays, taking into account the ρ(770)
and f0(980) resonances interfering with a constant non
resonant amplitude, can be written as

A±
0λ = aρ0F

BW
ρ k(s) cos θ + af0F

BW
f +

anr0λ + bnr0λe
±iγ

1 + s
Λ2

λ

+ [bρ0F
BW
ρ k(s) cos θ + bf0F

BW
f ]e±iγ , (35)

where the kinematical factor k(s) =
√

1− 4m2
π

s is in-

cluded in the amplitude of the ρ(770) vector resonance,
to take into account the threshold behavior of the decay
amplitude in a p-wave. The angle θ is defined as the angle
between the bachelor and the equally charged interacting
particle. See this definition in the B+ → π+π+π− decay
illustrated in Fig. 1. Here, cos θ is associated to the spin
1 of the ρ resonance and varies from −1 to +1 along the
phase space.
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FIG. 1. B+ → π+π+π− decay with π′+ being the bachelor
particle. (a): cos θ < 0 (θ > π

2
). (b): cos θ > 0 (θ < π

2
).
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1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B�
! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B�
! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B�
! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B�
! ���+�� and

B�
! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-

pens through the emission of a W� boson that results in a �� and a R0. For the
B�

! ���+�� (B�
! ��K+K�) decay, R0 represents any neutral resonance that

decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B�
! K�K+K� and

B�
! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs

through a virtual W� boson emission resulting in K� and R0. For the B�
! K�K+K�
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Figure 1: All the four B ! hhh channels can have contribution from the tree (left) and
penguin (right) diagrams. Note that we omit the gluon lines from the penguin. The flavour of
quark q can be d or s, and the others quarks needed to the final hadronic state are produced
from the vacuum.

where we have the channels fs = (s1, s4) and fd = (d2, d3). The CP asym-
metries in the partial widths, ��CP (f) given by Eq. (1), comes from the inter-
ference terms in B ! f decays with di↵erent weak and strong phases, and by
considering the decay amplitudes (9)-(12), one arrives at:

��CP (K
±⇡+⇡�) = 2 Im[V ⇤

ubVusVcbV
⇤
cs] Im[Us1C

⇤
s1 + Ūs1 C̄

⇤
s1 ], (13)

��CP (⇡
±K+K�) = 2 Im[V ⇤

ubVudVcbV
⇤
cd] Im[Ud2C

⇤
d2

+ Ūd2 C̄
⇤
d2
], (14)

��CP (⇡
±⇡+⇡�) = 2 Im[V ⇤

ubVudVcbV
⇤
cd] Im[Ud3C

⇤
d3

+ Ūd3 C̄
⇤
d3
], (15)

��CP (K
±K+K�) = 2 Im[V ⇤

ubVusVcbV
⇤
cs] Im[Us4C

⇤
s4 + Ūs4 C̄

⇤
s4 ] . (16)

Imposing U-spin symmetry, expressed by Eq. (7), one needs to make d $ s in
all mesons in the decay channel, namely:

Us1 = Ud2 , Cs1 = Cd2 , Us3 = Ud4 , Cs3 = Cs4 , (17)

and considering that the unitarity of the CKM matrix leads to [11, 12]:

Im(V ⇤
ubVusVcbV

⇤
cs) = � Im(V ⇤

ubVudVcbV
⇤
cd) , (18)

it can be shown that [11, 12]:

��CP (K
±⇡+⇡�) = ���CP (⇡

±K+K�) ,

��CP (⇡
±⇡+⇡�) = ���CP (K

±K+K�) . (19)

These relations are qualitatively consistent with the experimental results within
error given in (3). Still, it is remaining the relation between the other observed
width asymmetries given in (4) and not only those related to the U-spin sym-
metry. For that purpose the CPT constraint in channels coupled by the strong
interaction is necessary.

4. FSI, U-spin symmetry and CPT

As we discussed before, re-scattering ⇡⇡ $ KK can be a CPV mechanism
in B ! hhh [17, 18]. However, the question is how to connect the FSI between
channels with the same quantum numbers with U-spin symmetry, that can only
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quarks produced from the sea to complete the final state. Implementing U-
spin approach inspired in [11] and considering the two main topologies with
di↵erent quark flavor transitions (Figure 1), the amplitude of B ! f decays,
for f = hhh, are given by:

A(Bu
! fq) = hfq

out|Hw|B
u
i = VubV

⇤
uqhf

q
out|U

q
|Bu

i+ VcbV
⇤
cqhf

q
out|C

q
|Bu

i , (5)

and for the decay of the charge conjugate state:

A(B̄u ! f̄q) = hf̄q
out|Hw|B̄ui = V ⇤

ubVuqhf̄
q
out|Ū

q
|B̄ui+ V ⇤

cbVcqhf̄
q
out|C̄

q
|B̄ui , (6)

where q = s or d, namely channels with �S = 1 or 0, respectively. The e↵ective
Hamiltonian for the decay is written as Hw, and the decay amplitude is sepa-
rated with the matrix elements of operators Uq and Cq, associated respectively
with the tree (left panel) and “penguin” (right panel) diagrams of Figure 1, and
within our assumption do not contain the strong phase. The strong phase in the
decay amplitudes, Eq. (5) and (6), comes from |fq

outi and its charge conjugate
state, which are the scattering eigenstates of the strong Hamiltonian. To com-
plement, in our notation, the states |fq

i are hadronic-free states, while |fq
out(in)i

includes the distortion due to the hadronic FSI. In principle, such separation is
possible in general scattering theory, and it will be necessary when analyzing
the Charge-Parity-Time reversal (CPT) symmetry constraint.

The B decay amplitudes for channels with �S = 0, B±
! ⇡±⇡+⇡� and

B±
! ⇡±K+K� , correspond to q = d in Eqs. (5) and (6). In the case of

�S = 1, the decays amplitudes for B±
! K±⇡+⇡� and B±

! K±K+K� are
associated to q = s.

To avoid the conflict with the signs of the ratios in Eq. (4), we restrict the use
of the U-spin symmetry to channels where the light flavor quarks are exchanged
in all hadrons in the final decay state, i.e., with the exchange of ⇡ $ K, which
in our notation is written as:

hfs
out|U

s
|Bu

i = hfd
out|U

d
|Bu

i and hfs
out|C

s
|Bu

i = hfd
out|C

d
|Bu

i . (7)

To further simplify the notation we define:

Ufq = hfq
out|U

q
|Bu

i and Cfq = hfq
out|C

q
|Bu

i . (8)

Note that we have assumed the U-spin symmetry for channels where d $ s in all
hadrons in the final state, excluding the cases where only the quarks produced
in the weak vertices are exchanged.

Considering the two main quark flavor topologies as in Figure 1, the ampli-
tudes corresponding to the charmess B ! hhh decays are written as:

A(B+
! K+⇡+⇡�) = V ⇤

ubVus Us1 + V ⇤
cbVcs Cs1 , (9)

A(B+
! ⇡+K+K�) = V ⇤

ubVud Ud2 + V ⇤
cbVcd Cd2 , (10)

A(B+
! ⇡+⇡+⇡�) = V ⇤

ubVud Ud3 + V ⇤
cbVcd Cd3 , (11)

A(B+
! K+K+K�) = V ⇤

ubVus Us4 + V ⇤
cbVcs Cs4 , (12)

5

U-spin symm:

in the Appendix A, it is easy to show that the sum over intermediate channels
fq in ��CP gives:

X

fq

��CP (f
q) = 4 Im[V ⇤

ubVuqVcbV
⇤
cq]

X

fq

Im
h
Ufq C

⇤
fq

i
= 0 . (24)

This zero is then a direct consequence of the CPT constraint to channels coupled
by the strong final state interaction that we named as sCPT. Therefore, the FSI
should bring phases that are compensated by the di↵erent signs of �CP (fq) for
channels coupled by the strong interaction. The form of sCPT relation though
is more restrictive than the one written in Eq. (20), that could be also derived
from the unitarity constraint of the CKM matrix (18) and U-spin symmetry
relation (7).

Finally, one can identify two sources of the global CP asymmetry signs: the
weak U-spin symmetry between final states with di↵erent strangeness and the
CPT constraint between states coupled by the strong interaction with the same
quantum numbers.

5. Coupled ⇡⇡ and KK channels in B±
three-body decays

In Ref. [17, 18] we had discussed the role of the coupling between ⇡⇡ ! KK
as a mechanism to explain the total Acp observed in the charged three-body
B decays. Here, we recall this argument with the formalism developed above.
In order to apply to the B± decay channels coupled by the strong interaction,
we start by naming them to stress the strangeness and the pair of mesons
that will couple through FSI: d⇡⇡ ⌘ ⇡±⇡+⇡� and dKK ⌘ ⇡±K+K�, s⇡⇡ ⌘

K±⇡+⇡� and sKK ⌘ K±K+K� . In such case, the pairs of coupled channels
are {d⇡⇡, dKK} and {s⇡⇡, sKK}, which interact via re-scattering between ⇡⇡
and KK.

Considering only the interaction in S-wave the two-body, ⇡⇡ and KK,
coupled-channel S-matrix is:

✓
S⇡⇡,⇡⇡ S⇡⇡,KK̄

SKK̄,⇡⇡ SKK̄,KK̄

◆
=

✓
⌘ e2ı�⇡⇡ ı

p
1� ⌘2 eı(�⇡⇡+�KK)

ı
p

1� ⌘2 eı(�⇡⇡+�KK) ⌘ e2ı�KK

◆
,

(25)
where �⇡⇡ and �KK are the phase-shifts, 1 � ⌘ � 0 is the absorption parameter.

In the leading order (LO) of the strong interaction [17], namely taking into
account the transition matrix at the lowest order in Eq. (23), and identifying
for the two-channel case q1 ⌘ q⇡⇡ and q2 ⌘ qKK , for q = s or d, we can find
that:

��(LO)

CP (q⇡⇡) = wq Re
h
eı(�⇡⇡��KK) U⇤

0q⇡⇡C0qKK � e�ı(�⇡⇡��KK) U⇤
0qKK

C0q⇡⇡

i
, (26)

where wq = 4⌘
p

1� ⌘2 Im[V ⇤
ubVuqVcbV ⇤

cq] . Note that we imply due to the CPT
relation that U0q⇡⇡C

⇤
0q⇡⇡

and U0qKKC
⇤
0qKK

are real, as they do not contain the
distortion from the FSI. This assumption simplifies the partial width di↵erence
between the two charge conjugated decays. The result shows that in LO only

8

quarks produced from the sea to complete the final state. Implementing U-
spin approach inspired in [11] and considering the two main topologies with
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for f = hhh, are given by:

A(Bu
! fq) = hfq

out|Hw|B
u
i = VubV

⇤
uqhf

q
out|U

q
|Bu

i+ VcbV
⇤
cqhf

q
out|C

q
|Bu

i , (5)

and for the decay of the charge conjugate state:

A(B̄u ! f̄q) = hf̄q
out|Hw|B̄ui = V ⇤

ubVuqhf̄
q
out|Ū

q
|B̄ui+ V ⇤

cbVcqhf̄
q
out|C̄

q
|B̄ui , (6)

where q = s or d, namely channels with �S = 1 or 0, respectively. The e↵ective
Hamiltonian for the decay is written as Hw, and the decay amplitude is sepa-
rated with the matrix elements of operators Uq and Cq, associated respectively
with the tree (left panel) and “penguin” (right panel) diagrams of Figure 1, and
within our assumption do not contain the strong phase. The strong phase in the
decay amplitudes, Eq. (5) and (6), comes from |fq

outi and its charge conjugate
state, which are the scattering eigenstates of the strong Hamiltonian. To com-
plement, in our notation, the states |fq

i are hadronic-free states, while |fq
out(in)i

includes the distortion due to the hadronic FSI. In principle, such separation is
possible in general scattering theory, and it will be necessary when analyzing
the Charge-Parity-Time reversal (CPT) symmetry constraint.

The B decay amplitudes for channels with �S = 0, B±
! ⇡±⇡+⇡� and

B±
! ⇡±K+K� , correspond to q = d in Eqs. (5) and (6). In the case of

�S = 1, the decays amplitudes for B±
! K±⇡+⇡� and B±

! K±K+K� are
associated to q = s.

To avoid the conflict with the signs of the ratios in Eq. (4), we restrict the use
of the U-spin symmetry to channels where the light flavor quarks are exchanged
in all hadrons in the final decay state, i.e., with the exchange of ⇡ $ K, which
in our notation is written as:

hfs
out|U

s
|Bu

i = hfd
out|U

d
|Bu

i and hfs
out|C

s
|Bu

i = hfd
out|C

d
|Bu

i . (7)

To further simplify the notation we define:

Ufq = hfq
out|U

q
|Bu

i and Cfq = hfq
out|C

q
|Bu

i . (8)

Note that we have assumed the U-spin symmetry for channels where d $ s in all
hadrons in the final state, excluding the cases where only the quarks produced
in the weak vertices are exchanged.

Considering the two main quark flavor topologies as in Figure 1, the ampli-
tudes corresponding to the charmess B ! hhh decays are written as:

A(B+
! K+⇡+⇡�) = V ⇤

ubVus Us1 + V ⇤
cbVcs Cs1 , (9)

A(B+
! ⇡+K+K�) = V ⇤

ubVud Ud2 + V ⇤
cbVcd Cd2 , (10)

A(B+
! ⇡+⇡+⇡�) = V ⇤

ubVud Ud3 + V ⇤
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ubVus Us4 + V ⇤
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1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B�
! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B�
! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B�
! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B�
! ���+�� and

B�
! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-

pens through the emission of a W� boson that results in a �� and a R0. For the
B�

! ���+�� (B�
! ��K+K�) decay, R0 represents any neutral resonance that

decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B�
! K�K+K� and

B�
! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs

through a virtual W� boson emission resulting in K� and R0. For the B�
! K�K+K�

q
<latexit sha1_base64="1gm8Sz7TaUMGHY2Ei4dXglBGy+c=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI8kXjxCIo8ENmR26IWR2dl1ZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSzvzSRBP6JDyUPOqLFS47FfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1440+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtCpl76pcaVRLtWoWRx7O4BwuwYNrqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/ANi1jOs=</latexit>

c

cb cq

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B�
! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B�
! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B�
! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B�
! ���+�� and

B�
! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-

pens through the emission of a W� boson that results in a �� and a R0. For the
B�

! ���+�� (B�
! ��K+K�) decay, R0 represents any neutral resonance that

decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B�
! K�K+K� and

B�
! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs

through a virtual W� boson emission resulting in K� and R0. For the B�
! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B�
! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B�
! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B�
! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B�
! ���+�� and

B�
! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-

pens through the emission of a W� boson that results in a �� and a R0. For the
B�

! ���+�� (B�
! ��K+K�) decay, R0 represents any neutral resonance that

decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B�
! K�K+K� and

B�
! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs

through a virtual W� boson emission resulting in K� and R0. For the B�
! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B�
! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B�
! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B�
! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B�
! ���+�� and

B�
! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-

pens through the emission of a W� boson that results in a �� and a R0. For the
B�

! ���+�� (B�
! ��K+K�) decay, R0 represents any neutral resonance that

decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B�
! K�K+K� and

B�
! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs

through a virtual W� boson emission resulting in K� and R0. For the B�
! K�K+K�

uq

q
<latexit sha1_base64="1gm8Sz7TaUMGHY2Ei4dXglBGy+c=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI8kXjxCIo8ENmR26IWR2dl1ZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSzvzSRBP6JDyUPOqLFS47FfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1440+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtCpl76pcaVRLtWoWRx7O4BwuwYNrqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/ANi1jOs=</latexit>

Figure 1: All the four B ! hhh channels can have contribution from the tree (left) and
penguin (right) diagrams. Note that we omit the gluon lines from the penguin. The flavour of
quark q can be d or s, and the others quarks needed to the final hadronic state are produced
from the vacuum.

where we have the channels fs = (s1, s4) and fd = (d2, d3). The CP asym-
metries in the partial widths, ��CP (f) given by Eq. (1), comes from the inter-
ference terms in B ! f decays with di↵erent weak and strong phases, and by
considering the decay amplitudes (9)-(12), one arrives at:

��CP (K
±⇡+⇡�) = 2 Im[V ⇤

ubVusVcbV
⇤
cs] Im[Us1C

⇤
s1 + Ūs1 C̄

⇤
s1 ], (13)

��CP (⇡
±K+K�) = 2 Im[V ⇤

ubVudVcbV
⇤
cd] Im[Ud2C

⇤
d2

+ Ūd2 C̄
⇤
d2
], (14)

��CP (⇡
±⇡+⇡�) = 2 Im[V ⇤

ubVudVcbV
⇤
cd] Im[Ud3C

⇤
d3

+ Ūd3 C̄
⇤
d3
], (15)

��CP (K
±K+K�) = 2 Im[V ⇤

ubVusVcbV
⇤
cs] Im[Us4C

⇤
s4 + Ūs4 C̄

⇤
s4 ] . (16)

Imposing U-spin symmetry, expressed by Eq. (7), one needs to make d $ s in
all mesons in the decay channel, namely:

Us1 = Ud2 , Cs1 = Cd2 , Us3 = Ud4 , Cs3 = Cs4 , (17)

and considering that the unitarity of the CKM matrix leads to [11, 12]:

Im(V ⇤
ubVusVcbV

⇤
cs) = � Im(V ⇤

ubVudVcbV
⇤
cd) , (18)

it can be shown that [11, 12]:

��CP (K
±⇡+⇡�) = ���CP (⇡

±K+K�) ,

��CP (⇡
±⇡+⇡�) = ���CP (K

±K+K�) . (19)

These relations are qualitatively consistent with the experimental results within
error given in (3). Still, it is remaining the relation between the other observed
width asymmetries given in (4) and not only those related to the U-spin sym-
metry. For that purpose the CPT constraint in channels coupled by the strong
interaction is necessary.

4. FSI, U-spin symmetry and CPT

As we discussed before, re-scattering ⇡⇡ $ KK can be a CPV mechanism
in B ! hhh [17, 18]. However, the question is how to connect the FSI between
channels with the same quantum numbers with U-spin symmetry, that can only
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Three-body channels

the S-matrix in the charged coupled channels ⇡⇡ and KK in the S-wave. But
besides the interactions among the charged mesons, one can have the coupling
to the neutral ones along with other isospin zero meson pairs such as ⌘⌘ as
discussed in detail in [27]. It was shown by many theoretical studies including
the recent one [27] that KK coupling to ⇡⇡ channel is enhanced in the S-wave
by the superposition of resonance f0(980) just before the KK threshold. The
coupling between this two channels is needed for the theoretical description of
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can predict that:

��CP (⇡±K0K̄0)

��CP (⇡±⇡0⇡0)
⇠ �1 and

��CP (K±K0K̄0)

��CP (K±⇡0⇡0)
⇠ �1 . (36)

With the above equations and the already observed experimental results for
the charged modes, we can make predictions for the neutral channels yet without
experimental results. The LHCb upgrade together with the Belle II, that is
already taking data, can give us a good experimental estimate of the di↵erent
CP asymmetries. These future experimental data will provide further support
to the proposed theoretical framework to describe the global CP violation in
charmless three-body B decays, which unifies U-spin symmetry and final state
interactions at the hadronic level within a CPT invariant approach.
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Appendix A. Strong CPT relation

In this Appendix, we follow Ref. [17] and sketch the derivations of Eq. (23)
from (22) and the resulting relation (24) expressing the sCPT constraint. The
requirement of CPT invariance for the weak Hamiltonian is fulfilled by the
matrix element of the decay amplitude when [14]:

hfout|Hw|B
u
i = �B�f hf̄in|Hw|B̄

u
i
⇤ , (A.1)

where �B and �f are constant phases. Taking into account the decomposition
of (A.1) in terms of the matrix elements of the operators Uq and Cq given in
Eq. (5), and the charge conjugate operators Ū q and C̄q present in Eq. (6), one
finds that:

Ufq = hfq
out|U

q
|Bu

i = �B�fq hf̄q
in|Ū

q
|B̄u

i
⇤ . (A.2)

and the analogous relations for Cfq corresponding to the matrix elements of the
operator Cq. If we consider: (i) the unity resolution in terms of the |fq

outi states;
(ii) the strong S-matrix element fulfill Sf 0,f = hf̄ 0

out|f̄ini = hf 0
out|fini ; and (iii)

the identity between the matrix elements of the operators U q and Cq and the
associated charge conjugate ones is given by Eq. (21); one easily arrives to:

Ufq = �B�fq

X

f 0q

Sf 0q,fq hf 0q
out|U

q
|Bu

i
⇤ = �B�fq

X

f 0q

Sf 0q,fqU
⇤
f 0q , (A.3)

and an analogous relation for the matrix elements of Cq. Therefore, our CP
asymmetry expression, Eq. (23), namely, the di↵erence of partial widths of
charge conjugate states follows from Eqs. (A.3), (5) and (6).
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