

Quarkonium in ISR at Belle and Belle II

Xuyang Gao¹

1. Fudan University, Shanghai, China

MITP virtual workshop

Quarkonium(-like) states in e^+e^-

 $Q\overline{Q}$ meson with a pair of heavy quark (i.e., Q = c or b) Good playground for quark model and for exotic XYZ states

Various interpretations of the exotic states

Non-standard hadrons

Hybrid Glueball

Nature Reviews Physics 1, 480 (2019)

Tetraquark

High Priority:

- Identify most
 prominent component
 in wave function
- Seek unique picture describing all XYZ states, not state-bystate

Besides above models, there still are screened potential, cusps effect, final state interaction ...

Initial state radiation (ISR)

ISR method was proposed in 1968 by Y. N. BAIER and V. S. FADIN.

Volume 27B. number 4

PHYSICS LETTERS

8 July 1968

ISR technique is a very effective tool to study exotic Y states ($J^{PC} = 1^{--}$).

RADIATIVE CORRECTIONS TO THE RESONANT PARTICLE PRODUCTION

V.N. BAIER and V.S. FADIN Institute of Nuclear Physics, Novosibirsk, USSR

Received 1 May 1968

Radiative corrections to the resonant cross-sections of particle production in colliding beam experiments have been calculated.

Mechanism of the initial state radiation:

- Allows to study energies below E_{c.m.}
- Compensated by high luminosity at B-factory
- Wide energy range available for the cross section measurements

Results in BABAR

SuperKEKB

Results in Belle

Process	Reference	Int. Lum.	Physics Covered
$\pi^+\pi^-J/\psi$	PRL 99, 182004 (2007)	548 fb^{-1}	Y(4008), Y(4260)
$\pi^+\pi^-\psi(2S)$	PRL 99, 142002 (2007)	673 f b ⁻¹	Y(4360), Y(4660)
$DD_2(2460)$	PRL 100, 062001 (2008)	$673 f b^{-1}$	ψ (4415)
$\Lambda_c^+\Lambda_c^-$	PRL101,172001 (2008)	695 fb^{-1}	Y(4630)
$D^{0}D^{*-}\pi^{+}$	PRD 80, 091101(R) (2009)	$695 f b^{-1}$	U.L.
K^+K^-J/ψ	PRD 77, 011105(R) (2008)	$673 f b^{-1}$	U.L.
$\pi^+\pi^-\phi$	PRD 80, 031101 (2009)	$673 f b^{-1}$	Y(2175) <i>,</i> φ(1680)
$\eta J/\psi$	PRD 87, 051101(R) (2013)	980 f b ⁻¹	ψ (4040), ψ (4160)
$\pi^+\pi^-J/\psi$	PRL 110, 252002 (2013)	980 f b ⁻¹	Y(4008), Y(4260), Z_c^+(3900)
K^+K^-J/ψ	PRD 89,072015 (2014)	980 f b ⁻¹	U.L.
$\pi^+\pi^-\psi(2S)$	PRD 91, 112007 (2015)	980 f b ⁻¹	Y(4360), Y(4660)
γX_{cJ}	PRD 92, 012011 (2015)	980 f b ⁻¹	U.L.
$\pi^+\pi^-\psi(2S)$	PRD 91, 112007 (2015)	980 f b ⁻¹	$Z_c^+(4050)$
$D_s^+ D_{s1}(2536)^-$	PRD 100, 111103(R) (2019)	922 fb^{-1}	Y(4626)
$D_s^+ D_{s2}^* (2573)^-$	PRD 101, 091101(R) (2020)	922 fb^{-1}	Y(4626)
			evidence

Remarkable charmonium-like mesons via ISR

Study Y(4660)

Y(4626) in e⁺e[−] → $\gamma_{ISR}D_s^+D_{s1}(2536)^-(→ \overline{D}^{*0}K^-/D^{*-}K_s^0)$ +c.c.

For $\overline{D}^{*0}K^-$ mode, full reconstruction of the γ_{ISR} , D_s^+ , and K^- .

 $D_{s}: K^{+}K^{-}\pi^{+}, K_{s}K^{+}, K^{+}K^{-}\pi^{+}\pi^{0}, K_{s}K^{+}\pi^{0}, \eta\pi^{+}, \eta'\pi^{+} \text{, and require } D_{s}^{+}K^{-}\gamma_{ISR} \text{ recoil mass } \sim \overline{D}^{*0} \text{ mass.}$

For $D^{*-}K_{S}^{0}$ mode, full reconstruction of the γ_{ISR} , D_{s}^{+} , and K_{S}^{0} , and do similar selection

- $M_{rec}(\gamma_{ISR}D_s^+K^-/K_s^0)$ distribution is making before applying the \overline{D}^{*0}/D^{*-} mass constraint.
- Due to the poor mass resolution, the D
 ^{*0}/D^{*-} signal is very wide.
- The yellow histogram shows the normalized D_{s1}(2536)⁻ mass sidebands.

Phys. Rev. D 100, 111103(R) (2019)

Study Y(4660)

Y(4626) in $e^+e^- \rightarrow \gamma_{ISR}D_s^+D_{s1}(2536)^- (\rightarrow \overline{D}^{*0}K^-/D^{*-}K_S^0)+c.c.$

To improve mass resolution, $M_{rec}(\gamma_{ISR}D_s^+K^-)$ is constrained to nominal mass of \overline{D}^{*0} The resolution of $M_{rec}(\gamma_{ISR})$ is drastically improved (~180 \rightarrow ~ 5 MeV).

$$M_{\rm rec}(\gamma_{\rm ISR}D_{\rm s}^{+}{\rm K}^{-}) = \sqrt{({\rm E}_{\rm c.m.}^{*} - {\rm E}_{\gamma_{\rm ISR}D_{\rm s}^{+}{\rm K}^{-}}^{*})^{2} - \left({\rm p}_{\gamma_{\rm ISR}D_{\rm s}^{+}{\rm K}^{-}}^{*}\right)^{2}}$$

- $M_{rec}(\gamma_{ISR}D_s^+)$ distribution is making after applying the \overline{D}^{*0}/D^{*-} mass constraint.
- The yellow histogram shows the normalized $\mathrm{D}^+_{\mathrm{s}}$ mass sidebands.
- The fit yields $275\pm32 D_{s1}(2536)^-$ signal events with the statistical significance of 8.0 σ .

Phys. Rev. D 100, 111103(R) (2019)

Study Y(4660)

Similar mass and width of Y state at around 4.6 GeV in following channels, are they from same resonance?

Experiment	Mass (MeV)	Width (MeV)
Belle, $\Lambda^+_{\ c}\Lambda^{\ c}$	4634 +8 +5 -7 -8	$92 \begin{array}{c} +40 \\ -24 \\ -21 \end{array} \begin{array}{c} +10 \\ -21 \end{array}$
Belle, $\pi\pi\psi'$	4652±10±8	68±11±1
BaBar, $\pi\pi\psi'$	4669±21±3	104±48±10
Belle, D _s D _{s1}	4625.9 $^{+6.2}_{-6.0}\pm0.4$	49.8 $^{+13.9}_{-11.5}\pm4.0$

Y(4626) = Y(4660)?

New structure near 10.75 GeV

- Energy dependence of the $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ (n = 1,2,3)
- ISR process in the Υ(10860) on-resonance data provides support for the new structure.
- New structure has global significance of 6.8σ

	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$M (MeV/c^2)$	$10885.3 \pm 1.5 \substack{+2.2 \\ -0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma ({\rm MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0}_{-6.8}{}^{+0.7}_{-1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

D-wave bottomonium?

- Phys. Rev. D 101, 014020 (2020)
- EPJC 80, 59 (2020)

 $ar{B}^{(*)}B^{(*)}$ dynamically generated pole?

- Phys. Rev. D 101, 034503 (2020) Hybrid?
- arXiv:1908.05179

Tetraquark state?

Physics Letters B 802, 135217 (2020)

ISR study and prospects at Bellell

Comparable with BESIII in direct e⁺e⁻ annihilations
 Continuous mass range to investigate fine structures
 Higher mass region (> 5.0 GeV) is unique for Belle II

From PTEP 2019 (2019) 12, 123C01, Belle II physics book

Golden Channels	$E_{c.m.}$ (GeV)	Statistical error (%)	Related XYZ states
$\pi^+\pi^- J/\psi$	4.23	7.5 (3.0)	$Y(4008), Y(4260), Z_c(3900)$
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	Y(4260), Y(4360), Y(4660),
			$Z_{c}(4050)$
K^+K^-J/ψ	4.53	15 (6.5)	Z_{cs}
$\pi^+\pi^-h_c$	4.23	10 ab ⁻¹ ¹⁵ (6.5)	$Y(4220), Y(4390), Z_c(4020),$
		× 50 ab ⁻¹	$Z_c(4025)$
$\omega\chi_{c0}$	4.23	$35\;(15)$	Y(4220)

- Measure more precisely the line shapes of more final states in e⁺e⁻ annihilations, including open-charm and charmonium final states.
- □ Search for the Y states in more processes, such as Y → charmed baryon pairs $(\Lambda_c^+ \Sigma_c^-, \Sigma_c^+ \Sigma_c^-)$, charmed strange meson pairs $(D_s D_{s2}(2573), D_s^* D_{s0}(2317))$, ...
- **D** Search for Z_{cs} states decaying into $K^{\pm}J/\psi$, $D_s^-D^{*0}$ +c.c., $D_s^{*-}\overline{D}^0$ +c.c., ...
- Determine the quantum numbers, measure the Argand plot of the resonant amplitude, and search for more decay modes.

 $e^+e^- \rightarrow J/\psi (\rightarrow \mu^+\mu^-)$ via ISR

The polar angles for muon tracks from signal MC simulations and data after trigger efficiency corrections. Both are consistent.

PHOKHARA generator has been embeded into Belle2 software framework to simulate ISR events.

$\mathbf{Results}$	Data	\mathbf{MC}
Mass	(3.097 ± 0.001) MeV/ c^2	$(3.098 \pm 0.001) \text{ MeV}/c^2$
Resolution	$(22.0\pm0.8)~{\rm MeV}$	$(19.1\pm0.5)~{\rm MeV}$
(Expected) J/ψ signal yield	9566 ± 214	10530 ± 892

 $e^+e^- \rightarrow \psi(2S) \rightarrow \pi^+\pi^-J/\psi$

Selection criteria:

- $PID(\mu) > 0.5$, PID(e) > 0.5, $PID(\pi) > 0.1$
- $|M(J/\psi) m_{J/\psi}| < 75 \text{ MeV/c}^2$
- ISR photon not required (high efficiency)
- $|M_{recoil}^2(\pi^+\pi^-J/\psi)| < 2 (GeV/c^2)^2$

Clear observation of ISR $\psi(2S)$ signals with low backgrounds.

Next step: "Y(4260)" rediscovery [expect ~60 events per 100 fb⁻¹]

Motivation:

- Rediscover $\Psi(2S)$ at current statistical level.
- Validate PHOKHARA generator performance.
- Check strategy with well known cross section $e^+e^- \rightarrow \psi(2S)$
- Prepare for later large data sample.

$$e^+e^- \rightarrow \psi(2S) \rightarrow \pi^0 \pi^0 J/\psi$$

Next step: "Y(4260)" and neutral Z_c rediscoveries

Motivation:

- $\psi(4040)$ and $\psi(4160)$ are evident at Belle
- Prepare for later large data sample.

Selection criteria:

- For photons from η : E_{γ} > 200 MeV.
- To suppress Bhabha background in J/ $\psi \rightarrow ee$, ($|\theta_{cm}(e^+) + \theta_{cm}(e^-) 180^\circ|$) is required to be greater than 5°.
- $|M_{recoil}^2(\eta J/\psi)| < 1.5 (GeV/c^2)^2$ to identify ISR events.

$$e^+e^- \to \psi(2S) \to \eta J/\psi$$

Next step:

Explore the extra excited ψ and possible Y states

Summary

• ISR physics is an interesting way to look for resonant states. This is unique to the e^+e^- experiments.

The expected Belle II data sample of 50 ab⁻¹ will provide a lot of new opportunities for charmonium-like analyses via ISR process.

 Υ (4S) on-peak data + non- Υ (4S) plans

All data samples at any energy points can be used for ISR analysis.

Back up