Properties of low-lying charmonia and bottomonia from lattice QCD+QED

Christine Davies University of Glasgow HPQCD collaboration hristine.davies@glasgow.ac.uk

spectroscopy, March 2022

theory and experiment results can be brought together.

The ground-state heavyonium mesons (η_c , J/ ψ , η_b , Y) can provide such tests

D. Hatton, CD, J. Koponen, P.Lepage, A.Lytle, 2005.01845, 2101.08103

To achieve high precision we have:

1) Used HPQCD's Highly Improved Staggered Quark (HISQ) action designed as a very accurate discretisation of the Dirac equation.

2) Used 17 gluon field configs that include u, d, s and c sea quarks with the HISQ action (generated by MILC). Lattice spacing (a) values range from 0.15 fm to 0.03 fm. u/d sea quark masses from ms/5 to physical.

Lattice QCD enables precision tests of the Standard Model when accurate

E. Follana et al, HPQCD, hep-ph/0610092

- 3) Included 'quenched' QED to allow for effects from electric charge of c/b quark. (Random photon field incorporated with gluon when solving Dirac eq.)

Calculational details for charmonium

have?

Fit correlators to obtain ground-state masses (E_0) and amplitudes (A_0)

$$C(t) = \sum_{i} A_{i} (e^{-E_{i}t} + e^{-E_{i}(L_{t}-t)})$$

Z_V is renormalisation factor to match lattice vector current to that in continuum QCD - calculate accurately using intermediate symmetric MOM scheme D. Hatton et al, HPQCD, 1909.00756 Tune m_c so J/ψ mass = experiment for every gluon ensemble

(lattice spacing fixed from w_0 and f_{π}).

D. Hatton et al, HPQCD, 2005.01845

Calculate 'connected' two-point correlation functions for 0- and 1- for both lattice QCD and QCD+QED. Statistical accuracy very high. NOTE: annihilation to gluons NOT included. Key question: What impact does this

Do this for both QCD and QCD+QED (so 'physical tuning' same in both cases).

Impact of QED on charmonium

Impact of QED on hyperfine splitting

Including QED INCREASES the hyperfine splitting by 0.8% (0.7% direct and 0.1% from retuning m_c)

There is an additional QED contribution from J/ψ annihilation to a photon - estimate with pert. th. as +0.7MeV.

Including QED INCREASES the decay constants by 0.2% (0.3% direct and -0.1% from retuning m_c)

Hyperfine Splitting: $M_{J/\psi} - M_{\eta_c}$

Hyperfine splitting in lattice QCD+QED - extrapolate to a=0 and physical u/d masses in sea. (Note: a² effects are small for HISQ; allow a²ⁿ terms up to a¹⁰ in extrapolation.)

Experimental av.

D. Hatton et al, HPQCD, 2005.01845

Conclude: lattice QCD+QED connected calculation of hyperfine splitting disagrees with experiment. If this is because of missing η_c annihilation, then

$$\Delta M_{\eta_c}^{\text{annihiln}} = +7.3(1.2) \,\text{MeV}$$

Leading order NRQCD pert. th. gives -3 MeV (related to total Γ =32(1) MeV), but subleading terms could easily change sign. Not (yet) calculable directly in lattice QCD.

Decay constants of η_c and J/ψ

Extend calculations to bottomonium

Use HPQCD's 'heavy-HISQ' approach, increasing quark masses above that of charm but keeping ma<1. Can reach the b quark mass for a=0.045 fm and a=0.03 fm. Systematic errors are smaller than for nonrelativistic approaches to the b.

By fitting results as a function of m_h and lattice spacing can obtain results at b in continuum limit. Use cubic splines for m_h-dependence

Improved by factor 3 over The b mass is fixed as the point where the vector meson mass is that of the Y. earlier lattice results.

QED effects are much smaller here because $e_b = 1/3$.

Hyperfine splitting

Curve gives physical (continuum) dependence of splitting on heavyonium vector mass.

D. Hatton et al, HPQCD, 2101.08103

Result at b from quark-line connected correlators agrees with experiment. Pert. th. gives disc. contribution of -1 MeV ($\Gamma_{\eta} = 10$ MeV); expect this to be more reliable than for charmonium

Decay constants

$f_{\Upsilon} = 677.2(9.7) \,\mathrm{MeV}$

Curve gives physical (continuum) dependence of decay constant on heavyonium vector mass from c to b.

$$\Gamma(\Upsilon \to \ell^+ \ell^-) = \frac{4\pi}{3} \alpha_{\rm QED}^2 Q_b^2 \frac{f_{\Upsilon}^2}{M_{\Upsilon}}$$

Compare rate for annihilation to leptons predicted by lattice QCD to the experimental result - see good agreement

Big improvement in accuracy over previous lattice QCD results.

D. Hatton et al, HPQCD, 2101.08103

Determination of quark masses from lattice QCD+QED

mc

Tune lattice mass from J/ψ .

Determine Z_m via SMOM scheme on lattice allowing for nonperturbative artefacts.

Combined impact of QED: -0.2% at scale 3 GeV.

In MS scheme $\overline{m}_c(n_f = 4, 3 \,\text{GeV}) = 0.9841(51) \,\text{GeV}$ $\overline{m}_c(n_f = 4, \overline{m}_c) = 1.2719(78) \,\mathrm{GeV}$

mb

1) Calculate ratio of m_h to m_c as a function of heavyonium meson mass in pure QCD we can then read off mb/mc for lattice masses = ratio of MSbar masses in continuum limit. Key point: independent of scale, μ

2) Determine QED corrections to this (next slide) - ratio no longer scale-independent since Q not the same

2) Use ratio and m_c above to give: $\overline{m}_b(n_f = 4, \overline{m}_b) = 4.209(21) \text{ GeV}$

D. Hatton et al, HPQCD, 1805.06225, 2005.01845, 2102.09609

Determination of the b quark mass in lattice QCD+QED

1) Ratio of m_h to m_c as a function of heavyonium meson mass in pure QCD. This is equal to the mass ratio in the MSbar scheme in the continuum limit and is scale-independent.

3) Adjust m_c in ratio for $Q=1/3 \rightarrow Q=2/3$ - biggest QED effect = 3/4 of -0.2% at 3 GeV

Final result for ratio (now scale-dependent)

2) Ratio of m_h to m_c ratios in QCD+QED to that in QCD for the case where each quark has Q=1/3, so ratio still scale-independent. Effects are tiny.

$$\frac{\overline{m}_b(3\,\text{GeV})}{\overline{m}_c(3\,\text{GeV})} \bigg|_{\text{QCD+QED}} = 4.586(12)$$

Conclusions

- Lattice QCD results for η_c and J/ ψ have reached high precision, and now include the effects of the c quark electric charge (QCD+quenched QED).
- The hyperfine splitting result shows that the impact of η_c annihilation on its mass is +7(1) MeV • The calculation of the J/ ψ leptonic width is now more accurate (0.9%) than experiment and agrees well with it.
- Extension of the calculation to bottomonium gives a hyperfine splitting that agrees well with recent experiment, and an Y leptonic width that also agrees with experiment. The ratio of vector to pseudoscalar decay constants flips from >1 at c to <1 at b.
- Masses for c and b quarks now determined including the effect of QED.

Future

- Accurate determination underway of decay modes that test meson structure: need more accurate experiment
- Extend to accurate (1 MeV level) determination of heavy-light meson masses, including effects of QED. Heavy-light vector meson vector and tensor decay constant calculations underway

 $J/\psi \to \eta_c \gamma$ $\eta_c \to \gamma \gamma$

11

SPARES

Tensor decay constant of the J/ψ

D. Hatton et al, HPQCD, 2008.02024

scheme and scale-dependent

Ratio of tensor to vector decay constants

Charm quark contribution to anomalous magnetic moment of the muon, a^{c}_{μ}

D. Hatton et al, HPQCD, 2005.01845

14

Error budgets

Error budget for our final result for the charmonium hyperfine splitting an decay constants including quenched QED corrections. The uncertainties shown are given as a percentage of the final result.

	$\Delta M_{ m hyp}$	$f_{J/\psi}$	f_{η_c}
$a^2 \rightarrow 0$	0.13	0.09	0.03
Z_V	-	0.05	-
Pure QCD statistics	0.24	0.12	0.05
QCD+QED statistics	0.08	0.05	0.02
w_0/a	0.24	0.11	0.08
w_0	0.87	0.34	0.24
Valence mistuning	0.02	0.05	0.01
Sea mistuning	0.06	0.01	0.00
Total (%)	0.96	0.40	0.26

D. Hatton et al, HPQCD, 2005.01845, 2101.08103, 2102.09609

	$M_{\Upsilon} - M_{\eta_b}$	f_{Υ}	f_{η_b}
statistics	2.40	0.77	0.38
SVD cut	1.48	0.44	0.67
w_0	0.55	0.61	0.59
w_0/a	0.66	0.23	0.18
Z_V	-	0.29	-
M_{ϕ_h} dependence	0.03	0.01	0.00
$1/M_{\phi_h}$ dependence	0.05	0.02	0.01
$(am_h)^{2k}$ discretisation effects	1.14	0.17	0.18
$(a\Lambda)^{2k}$ discretisation effects	0.48	0.24	0.31
$(am_h)^2 (a\Lambda)^2$ discretisation effects	0.42	0.28	0.45
light and strange sea quark mistuning	g 1.45	0.73	0.98
charm sea quark mistuning	1.08	0.29	0.27
QED M_{ϕ_h} dependence	0.29	0.07	0.08
QED $1/M_{\phi_h}$ dependence	0.19	0.01	0.00
Total (%)	3.99	1.43	1.59
$\overline{m}_b/\overline{m}_c[m_{hh}^P] \overline{m}_b$	$b/\overline{m}_{c}[m_{hh}^{V}]$	$\overline{m}_b/\overline{m}_c$	[avg]

	111	ΙΙΙ	
$(am_h)^2 \rightarrow 0$	0.20	0.21	0.20
$w_0, w_0/a$	0.10	0.18	0.12
σ_{u}	0.12	0.12	0.09
g_{m}, ζ	0.05	0.05	0.05
m_{cc}	0.06	0.01	0.04
m_{bb}	0.03	0.00	0.02
$(am_h)^2 \delta m_{\mu ds}^{\text{sea}} \to 0$	0.06	0.07	0.06
$\delta m_c^{\rm sea} \to 0$	0.03	0.03	0.03
$d\tilde{m}_c/dm_{cc}$	0.03	0.02	0.02
Total (%)	0.27	0.32	0.27

15