Observation of an isoscalar resonance with exotic $J^{PC} = 1^{-+}$ quantum numbers in $J/\psi \rightarrow \gamma \eta \eta'$

arXiv:2202.00621, 2202.00623

Beijiang Liu

(Institute of High Energy Physics, CAS)

Hadron Spectroscopy: The Next Big Steps March 14-25, 2022 Mainz Institute for Theoretical Physics, Johannes Gutenberg U

World's largest $\tau - charm$ data sets in e^+e^- annihilation

Charmonium decays provide an ideal lab for light hadron physics

- Clean high statistics data samples
- Well defined initial and final states
 - Kinematic constraints
 - I(J^{PC}) filter
- "Gluon-rich" process

What's the role of gluonic excitation and how does it connect to the confinement?

Scalar glueball candidate: production properties

 $egin{aligned} \Gamma(J/\psi o \gamma G_{0^+}) &= rac{4}{27} lpha rac{|p|}{M_{J/\psi}^2} |E_1(0)|^2 = 0.35(8) keV \ \Gamma/\Gamma_{tot} &= 0.33(7)/93.2 = 3.8(9) imes 10^{-3} \end{aligned}$

CLQCD, Phys. Rev. Lett. 110, 021601 (2013)

Experimental results

- $\geq \mathrm{B}(\mathrm{J}/\psi \rightarrow \gamma \mathrm{f}_0(1710) \rightarrow \gamma K \overline{K}) = (8.5^{+1.2}_{-0.9}) \times 10^{-4}$
- $\succ \mathrm{B}(\mathrm{J}/\psi \rightarrow \gamma \mathrm{f}_{0}(1710) \rightarrow \gamma \pi \pi) = (4.0 \pm 1.0) \times 10^{-4}$
- $\geq \mathrm{B}(\mathrm{J}/\psi \rightarrow \gamma \mathrm{f}_0(1710) \rightarrow \gamma \omega \omega) = (3.1 \pm 1.0) \times 10^{-4}$
- ≻B(J/ψ → γf₀(1710) → γηη)=($2.35^{+0.13+1.24}_{-0.11-0.74}$)× 10⁻⁴
- \Rightarrow B(J/ $\psi \rightarrow \gamma f_0(1710)$) > 1.7× 10⁻³

B(J/ $\psi \rightarrow \gamma f_0(1710)$) is x10 large than that of $f_0(1500)$ B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma K_0^0 K_0^0)$ B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma K_0^0 K_0^0)$ B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$) B(J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta \eta$)

$f_0(1710)$ largely overlapped with scalar glueball

Branching fractions (10⁻⁴)

Recent coupled channel phenomenology analyses Phys.Lett.B 816 (2021) 136227 Eu

Eur.Phys.J.C 82 (2022) 1, 80

Scalar glueball candidate: decay properties

$\Gamma(G \to \pi\pi: K\bar{K}: \eta\eta: \eta\eta': \eta'\eta') = 3:4:1:0:1$

 $B(G \rightarrow \eta \eta')/B(G \rightarrow \pi \pi) < 0.04$, predicted in Phys. Rev. D 92, 121902

Using 10B of J/ ψ events, J/ $\psi \rightarrow \gamma \eta \eta'$, arXiv:2202.00621, 2202.00623 J/ $\psi \rightarrow \gamma \eta' \eta'$, arXiv:2201.09710

Hybrids: $q\bar{q}g$

GlueX@JLab BESIII

Lattice QCD Predictions: exotics $I^{G}(I^{PC}) = 1^{-}(1^{-+})$ 2.5Gev 6 $S\overline{S}$ $u\bar{u}$ 2.0GeV ud 0+-1-+ 2+-PRD 83 111502 (2011)

Only I=1 candidates π_1 have been observed yet

Isoscalar 1⁻⁺ is critical to establish the hybrid nonet

• Can be produced in the gluon-rich charmonium decays

Can decays to ηη' in P-wave, PRD 83, 014021 (2011), PRD 83, 014006 (2011)

Event selection

• J/
$$\psi \rightarrow \gamma \eta \eta'$$
, $\eta \rightarrow \gamma \gamma$, $\eta' \rightarrow \eta \pi^+ \pi^- / \gamma \pi^+ \pi^-$,

- Potential backgrounds are studied using an inclusive MC sample of 10B J/ψ decays
- No significant peaking background is observed in the invariant mass distribution of the η'
- Backgrounds are estimated by the η' sidebands in the data

Partial wave analysis

- Similar as the analyses of $J/\psi \rightarrow \gamma \eta \eta$ [Phys.Rev. D 87, 092009]and $J/\psi \rightarrow \gamma K_S K_S$ [Phys.Rev. D 98, 072003], based on the covariant tensor amplitudes [Eur. Phys. J. A 16, 537] and the GPUPWA framework [J. Phys. Conf. Ser. 219, 042031]
 - Isobars in $J/\psi \rightarrow \gamma X, X \rightarrow \eta \eta'$ and $J/\psi \rightarrow \eta X, X \rightarrow \gamma \eta'$ and $J/\psi \rightarrow \eta' X, X \rightarrow \gamma \eta$. X: constant-width, relativistic BW
- A combined unbinned maximum likelihood fit is performed for the two decay channels of η^\prime
 - sharing the same set of masses, widths, relative magnitudes, and phases
- Backgrounds estimated by η' sidebands are subtracted

$$S = -(\ln \mathcal{L}_{data} - \sum_{i} \omega_{i} \cdot \ln \mathcal{L}_{background})$$

All kinematically allowed known resonances with 0^{++} , 2^{++} , and $4^{++}(\eta \eta')$ and 1^{+-} and $1^{--}(\gamma \eta(\prime))$ are considered

Decay mode	0^{++}	2^{++}	4^{++}	
	$f_0(1500)$	$f_2(1525)$	$f_4(2050)$	
	$f_0(1710)$	$f_2(1565)$	$f_4(2300)$	
	$f_0(1810)[58]$	$f_2(1640)$	$f_4(2283)[57]$	
	$f_0(2020)$	$f_2(1810)$		
	$f_0(2100)$	$f_2(1910)$		
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2200)$	$f_2(1950)$		
	$f_0(2330)$	$f_2(2010)$		
	$f_0(2102)[57]$	$f_2(2150)$		
	$f_0(2330)[57]$	$f_2(2220)$		
		$f_2(2300)$		
		$f_2(2340)$		
		$f_2(2240)[57]$		
	1	1+-		PDG and
	$\omega(1420)$	$h_1(1415)$		
	$\omega(1650)$	$h_1(1595)$		[57] $\bar{p}p$ reactions at Crystal Barrel and PS172, Phys. Rept. 39
	$\phi(1680)$			[E9] $I/h \rightarrow v d w$ at RESIII Phys. Rev. D 97 022009
$J/\psi \to \eta^{(\prime)} X \to \gamma \eta \eta^{\prime}$	$\phi(2170)$			[30] $J/\psi \rightarrow \gamma \psi \omega$ at desili, Phys. Rev. D 87,052008
	$\rho(1450)$			
	$\rho(1700)$			
	$\rho(1900)$			Q

PDG-optimized set of amplitudes

Decay mode	Resonance	$M ({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{PDG}~(MeV)$	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$3.05 {\pm} 0.07$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	0.07 ± 0.01	7.6σ
	$f_0(2020)$	1935±5	266±9	1992	442	$1.67 {\pm} 0.07$	11.0σ
	$f_0(2100)$	2109 ± 11	253±21	2086	284	0.33 ± 0.03	5.2σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	2327±4	44 ± 5	2314	144	0.07 ± 0.01	8.5σ
	$f_2(1565)$	1542	122	1542	122	0.20 ± 0.03	6.2σ
	$f_2(1810)$	1815	197	1815	197	$0.37 {\pm} 0.03$	7.0σ
	$f_2(2010)$	2022±6	212±8	2011	202	1.36 ± 0.10	8.8σ
	$f_2(2340)$	2345	322	2345	322	0.25 ± 0.04	6.5σ
	$f_4(2050)$	2018	234	2018	234	0.11 ± 0.02	5.6σ
	$h_1(1415)$	1416	90	1416	90	0.14 ± 0.01	10.3σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1595)$	1584	384	1584	384	0.41 ± 0.04	9.7σ
	$\phi(2170)$	2160	125	2160	125	0.24 ± 0.03	5.6σ
$J/\psi \to \eta X \to \gamma \eta \eta'$	$h_1(1595)$	1584	384	1584	384	$0.50 {\pm} 0.03$	11.0σ
	$ \rho(1700) $	1720	250	1720	250	0.22 ± 0.03	8.8σ

The masses and widths of the resonances near $\eta\eta'$ threshold $(f_0(1500), f_2(1525), f_2(1565))$ and $f_2(1640)$ as well as those with small fit fractions (<3%) are always fixed to the PDG values

Components with statistical significance larger than 5 σ

PWA projections for PDG-optimized set

Search for new resonances

scans of additional resonance with different J^{PC}, masses and widths

Baseline set of amplitudes by adding the η_1 state

Decay mode	Resonance	$M~({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV})$	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81{\pm}0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ
	$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312\pm7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
	$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05{}^{+0.12}_{-0.02}$	8.7σ
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0^{++} PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01{}^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9σ

Comparing to the PDGoptimized set, In L of the baseline set is improved by 32 and the number of free parameters is reduced by 16

Contributions from the $f_0(2100)$, $h_1(1595)(\gamma \eta')$, $\rho(1700)(\gamma \eta')$, $\phi(2170)(\gamma \eta)$, $f_2(1810)$, and $f_2(2340)$, in the PDGoptimized set become insignificant (< 3σ), omitted Significance of the $f_4(2050)$ is reduced from 5.6 σ to 4.6 σ , but is still retained 13

PWA fit projections

PWA fit projections

.

-

Fit fractions in the PWA fit with the baseline set of amplitudes

Resonance	$f_0(1500)$	$f_0(1810)$	$f_0(2020)$	$f_0(2330)$	$h_1(1415)(\gamma\eta)$	$h_1(1595)$	$\eta_1(1855)$	$f_2(1565)$	$f_2(2010)$	$f_4(2050)$	0^{++} PHSP
$f_0(1500)$	21.9±1.4	-4.3 ± 0.4	16.2 ± 0.5	-1.0 ± 0.1	1.6 ± 0.2	-1.6 ± 0.9	0.2 ± 0.0	0.2 ± 0.1	0.6 ± 0.1	0.0 ± 0.0	13.4±1.1
$f_0(1810)$		1.4 ± 0.1	-5.6 ± 0.6	0.4 ± 0.0	-0.1 ± 0.0	0.6 ± 0.1	0.0 ± 0.0	-0.2 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	2.0 ± 0.3
$f_0(2020)$			29.5 ± 1.6	-3.7 ± 0.5	0.0 ± 0.2	-3.6 ± 0.4	0.2 ± 0.0	1.1 ± 0.1	0.1 ± 0.1	0.1 ± 0.0	$-15.9{\pm}1.8$
$f_0(2330)$				1.4 ± 0.2	0.1 ± 0.0	0.3 ± 0.1	0.0 ± 0.0	-0.1 ± 0.0	-0.2 ± 0.0	0.0 ± 0.0	2.6 ± 0.3
$h_1(1415)$					1.1 ± 0.2	-1.1 ± 0.3	-0.2 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	0.0 ± 0.0	2.3 ± 0.3
$h_1(1595)$						2.1 ± 0.3	0.5 ± 0.1	-0.3 ± 0.3	0.0 ± 0.2	0.1 ± 0.0	2.3 ± 1.0
$\eta_1(1855)$							3.5 ± 0.5	0.0 ± 0.0	-0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0
$f_2(1565)$								4.6 ± 0.7	-0.6 ± 0.8	0.0 ± 0.0	-0.9 ± 0.1
$f_2(2010)$									10.2 ± 0.8	-0.1 ± 0.1	0.2 ± 0.1
$f_4(2050)$										0.8 ± 0.2	0.0 ± 0.0
0^{++} PHSP											18.5 ± 1.9

Significance for additional resonances

Decay mode	Resonance	J^{PC}	ΔS	$\Delta N dof$	Sig.
	$f_2(1525)$	2^{++}	6.3	6	1.9σ
	$f_2(1810)$	2^{++}	2.7	6	0.7σ
	$f_0(1710)$	0^{++}	3.4	2	2.1σ
	$f_2(1910)$	2^{++}	3.9	6	1.1σ
	$f_2(1950)$	2^{++}	2.6	6	0.6σ
	$f_0(2100)$	0^{++}	1.1	2	1.1σ
	$f_2(2150)$	2^{++}	2.3	6	0.5σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2200)$	0^{++}	0.4	2	0.4σ
	$f_2(2220)$	2^{++}	8.6	6	2.6σ
	$f_2(2300)$	2^{++}	7.2	6	2.2σ
	$f_4(2300)$	4^{++}	2.3	6	0.5σ
	$f_0(2330)$	0^{++}	1.5	2	1.2σ
	$f_2(2340)$	2^{++}	6.3	6	1.9σ
	$f_0(2102)[57]$	0^{++}	0.1	2	0.2σ
	$f_2(2240)[57]$	2^{++}	2.9	6	0.7σ
	$f_2(2293)[57]$	2^{++}	4.1	6	1.2σ
	$f_4(2283)[57]$	4^{++}	0.9	6	0.1σ
	$ \rho(1450) $	1	3.4	2	2.1σ
	$ \rho(1700) $	$1^{}$	0.8	2	0.7σ
	$ \rho(1900) $	$1^{}$	0.0	2	0σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$\omega(1420)$	$1^{}$	5.3	2	2.8σ
	$\omega(1650)$	$1^{}$	2.6	2	1.7σ
	$\phi(1680)$	$1^{}$	4.3	2	2.5σ
	$\phi(2170)$	1	0.4	2	0.4σ
	$h_1(1415)$	1+-	1.3	4	0.5σ
	$h_1(1595)$	1^{+-}	8.1	4	2.9σ
	$ \rho(1450) $	$1^{}$	1.3	2	1.1σ
	$ \rho(1700) $	$1^{}$	3.1	2	2.0σ
$J/\psi \to \eta X \to \gamma \eta \eta'$	$\rho(1900)$	$1^{}$	6.1	2	3.0σ
	$\omega(1420)$	$1^{}$	2.5	2	1.7σ
	$\omega(1650)$	$1^{}$	0.8	2	0.7σ
	$\phi(1680)$	$1^{}$	2.1	2	1.5σ
	$\phi(2170)$	$1^{}$	0.1	2	0.1σ

• Assuming $\eta_1(1855)$ is an additional resonance, scans of with different masses and widths

The most significant additional contribution (4.4σ) comes from another exotic 1⁻⁺ component around 2.2 GeV with a very small fit fraction

all insignificant (< 3σ)

No significant contributions from additional resonances

Further checks on the 1^{-+} state $\eta_1(1855)$

- Changing the J^{PC} to the $\eta_1(1855),$ and the log-likelihoods are worse by at least 235 units
- BW Phase motion of $\eta_1(1855)$

from
$$\frac{1}{M^2 - s - iM\Gamma}$$
 to $\sqrt{\frac{1}{(M^2 - s)^2 + M^2\Gamma^2}}$

 \rightarrow In L worsen by 43 units

Further checks on the 1^{-+} state $\eta_1(1855)$

a clear asymmetry largely due to $\eta_1(1855)$ signal

Further checks on the 1^{-+} state $\eta_1(1855)$

Weight sum/(10 MeV/c²)

50

1.5

Angular distribution as a function of $M(\eta\eta')$ can be expressed modelindependently in terms of Legendre polynomial moment

$$\langle Y_l^0 \rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0(\cos\theta^i_\eta)$$

- for data, W_i is to implement background subtraction
- for MC, W_i is intensity for each event calculated in the PWA

The moments are related to the spin-0 (S), spin-1 (P) and spin-2 (D) amplitudes by

$$\sqrt{4\pi} \langle Y_0^0 \rangle = S^2 + P^2 + D^2$$

$$\sqrt{4\pi} \langle Y_1^0 \rangle = 2SP \cos \phi_P + 4PD \cos(\phi_P - \phi_D)$$

$$\sqrt{4\pi} \langle Y_2^0 \rangle = \frac{2}{\sqrt{5}} P^2 + \frac{2\sqrt{5}}{7} D^2 + 2SD \cos \phi_D$$

$$\sqrt{4\pi} \langle Y_4^0 \rangle = \frac{6}{7} D^2$$

need for the η_1 (1855) P-wave

fit projection (baseline fit) fit projection (exclude η)

25

 $M(\eta\eta')(GeV/c^2)$

For comparison

need for the η_1 (1855) P-wave

Weight sum/(10 MeV/c²)

Weight sum/(10 MeV/c²)

-20

1.5

100

50

0

1.5

2

2

Can not be described only with 1^{+-} and 1^{--} states in $\gamma\eta(')$

Baseline set of amplitudes

PDG-optimized set of amplitudes

Systematic uncertainties (event selection)

Common systematic uncertainties							
Sources	$\eta' \to \eta \pi^+ \pi^-$	$\eta' \to \gamma \pi^+ \pi^-$					
Pion tracking	/	2					
Four photon detection	2	4					
Number of J/ψ events	0.	43					
$\mathcal{B}(\eta \to \gamma \gamma)$	0	.2					
Total	4	.5					
Independent syste	Independent systematic uncertainties						
Sources	$\eta' \to \eta \pi^+ \pi^-$	$\eta' \to \gamma \pi^+ \pi^-$					
Another photon detection	1	-					
Kinematic fit	1.5	2.6					
η' mass resolution	0.3	0.2					
$\mathcal{B}(\eta' \to \eta \pi^+ \pi^-)$	0.5	-					
$\mathcal{B}(\eta' \to \gamma \pi^+ \pi^-)$	-	0.4					
$\mathcal{B}(\eta \to \gamma \gamma)$ for another one	0.2	-					
Total	1.9	2.6					
Combined result	4	.8					

Combined with the weighted least squares method

Systematic uncertainties (PWA)

- BW parametrization for $f_0(1500)$
 - replace the BW with a Flatte-like form $\Gamma(s) = g\Gamma(\frac{M^2}{s})(\frac{\rho(s)}{\rho(M^2)})^{2l+1} + (1-g)\Gamma_0 \quad \text{, g \sim0.02}$
- Fixed resonance parameters
 - varying within 1 σ of the PDG values
- Background uncertainty
 - different sideband regions and normalization factors
- Additional resonances
 - adding the most significant additional resonances for each possible J^{PC} into the baseline fit individually

S	$f_0(2020)$		$f_0(2330)$		$\eta_1(1855)$		$f_2(20)$	010)
Sources	ΔM	$\Delta\Gamma$	ΔM	$\Delta\Gamma$	ΔM	$\Delta\Gamma$	ΔM	$\Delta\Gamma$
Breit-Wiger formula	-1	+10	-1	+1	-1	+2	-4	+3
Resonance parameters	+1	-10	-3	+2	+2	-1	0	-2
Extra resonances	$^{+4}_{-2}$	$^{+9}_{-2}$	+7	$^{+1}_{-9}$	+4	$^{+1}_{-6}$	$^{+10}_{-5}$	+10
Backgroud uncertainty	-1	-4	+3	$^{+1}_{-7}$	+3	$^{+1}_{-5}$	-1	-5
Total	$^{+4}_{-3}$	$^{+13}_{-11}$	$^{+7}_{-3}$	$^{+3}_{-12}$	$^{+6}_{-1}$	$^{+3}_{-8}$	$^{+10}_{-7}$	$^{+10}_{-5}$

Sources	$f_0(1500)$	$f_0(1810)$	$f_0(2020)$	$f_0(2330)$	$\eta_1(1855)$	$f_2(1565)$	$f_2(2010)$	$f_4(2050)$	0 ⁺⁺ PHSP	$h_1(1415)(\gamma\eta)$	$h_1(1595)(\gamma\eta)$
Event selection						±	4.8				
Breit-Wigner formula	-1.7	+11.6	+6.9	+3.2	-1.1	+17.8	+0.2	+4.2	-0.6	-8.2	-4.1
Extra resonances	$^{+9.4}_{-1.0}$	$^{+30.4}_{-8.4}$	+10.0	$^{+7.8}_{-13.4}$	$^{+3.5}_{-10.4}$	$^{+31.5}_{-2.7}$	$^{+12.9}_{-6.5}$	$^{+44.4}_{-4.7}$	$^{+5.1}_{-12.2}$	$^{+11.0}_{-9.1}$	$^{+16.2}_{-2.2}$
Resonance parameters	-4.8	-25.6	-6.5	+3.6	-6.1	+5.5	+0.2	-1.4	-4.6	-11.4	-4.3
Backgroud uncertainty	$^{+0.5}_{-0.6}$	$^{+0.4}_{-7.5}$	$^{+0.8}_{-3.4}$	$^{+0.3}_{-10.4}$	$^{+0.2}_{-1.1}$	+11.0	-2.7	$^{+31.9}_{-6.5}$	-1.8	-8.8	$^{+8.4}_{-0.6}$
Total	$+10.6 \\ -7.1$	$+32.9 \\ -28.4$	$^{+13.1}_{-8.8}$	$^{+10.3}_{-17.6}$	+5.9 -13.1	$^{+38.5}_{-5.5}$	$^{+13.7}_{-8.5}$	$+55.0 \\ -9.5$	+7.0 -14.0	$^{+12.0}_{-19.5}$	$+18.8 \\ -8.0$

Summary and prospects

- An isoscalar 1^{-+} , $\eta_1(1855)$, has been observed in $J/\psi \rightarrow \gamma \eta \eta'$ (>19 σ) $M = (1855 \pm 9^{+6}_{-1}) \text{ MeV/c}^2$, $\Gamma = (188 \pm 18^{+3}_{-8}) \text{ MeV/c}^2$ $B(J/\psi \rightarrow \gamma \eta_1(1855) \rightarrow \gamma \eta \eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6}$ arXiv:2202.00621, 2202.00623
 - Hybrid? Molecule? Tetraquark?
 - Investigate production/decay mechanism and search for other partners in more reactions
- Further more, significant $J/\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta'$ has been observed, while $f_0(1710)$ is insignificant
 - $B(f_0(1710) \rightarrow \eta \eta')/B(f_0(1710) \rightarrow \pi \pi) < 1.61 \times 10^{-3}$ @90% C.L., which further supports the f(1710) has a large overlap with glueball

Glueball $\rightarrow \eta \eta'$ is expected to be suppressed

Thank you

Angular moments for PDG-optimized set

Event selection

- $J/\psi \rightarrow \gamma \eta \eta', \eta \rightarrow \gamma \gamma, \eta' \rightarrow \eta \pi^+ \pi^-$
- $\chi^2_{6C}(J/\psi \rightarrow \gamma \eta \eta \pi^+ \pi^-) < 30$
- $\chi^2_{4C}(J/\psi \rightarrow 5\gamma \pi^+ \pi^-) < \chi^2_{4C}(J/\psi \rightarrow 4\gamma \pi^+ \pi^-),$ $\chi^2_{4C}(J/\psi \rightarrow 5\gamma \pi^+ \pi^-) < \chi^2_{4C}(J/\psi \rightarrow 6\gamma \pi^+ \pi^-)$
- Select η^\prime
- Veto $J/\psi \to \varphi \eta'$
- Veto mis-reconstructed π^0 , η

- $J/\psi \rightarrow \gamma \eta \eta', \eta \rightarrow \gamma \gamma, \eta' \rightarrow \gamma \pi^+ \pi^-$
- $\chi^2_{5C}(J/\psi \rightarrow \gamma\gamma\eta\pi^+\pi^-)$ <20
- $\chi^2_{4C}(J/\psi \rightarrow 4\gamma \pi^+ \pi^-) < \chi^2_{4C}(J/\psi \rightarrow 3\gamma \pi^+ \pi^-),$ $\chi^2_{4C}(J/\psi \rightarrow 4\gamma \pi^+ \pi^-) < \chi^2_{4C}(J/\psi \rightarrow 5\gamma \pi^+ \pi^-)$
- Select η^\prime
- Veto $J/\psi \to \varphi \eta'$
- Veto mis-reconstructed π^0,η
- Veto fake-photon bkg $J/\psi \to \eta \pi^+\pi^-$