

Light Meson Studies at BESIII

Xiaoqing Yuan

Institute of High Energy Physics, CAS (On behalf of the BESIII Collaboration)

14-25 March 2022, Mainz (Remotely) Hadron Spectroscopy: The Next Big Steps

Outline:

1) η/η' Physics

- **2** η/η' Samples at BESIII
- 3 η/η' Meson Studies • $\eta' \to \pi^0 \pi^0 \pi^0 \pi^0$ • $\eta' \to \gamma \gamma \eta$ • $\eta' \to \pi^+ \pi^- e^+ e^-$
 - $\eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^-$
 - \bullet Absolute Branching Fractions of η Decay Modes

Summary and Outlook

3 K K 3 K

η/η' Physics

- Both η and η' play an important role in understanding the low energy quantum chromodynamics (QCD).
- Decays of the η/η' probe a wide variety of physics issues, such as $\pi^0-\eta$ mixing, light quark masses and pion-pion scattering.
- In particular the η' meson, much heavier than the Goldstone bosons of broken chiral symmetry, plays a special role as the predominant singlet state arising from the strong axial U(1) anomaly.
- In addition, the decays of both η and η' mesons are used to search for processes beyond the Standard Model (SM) and to test fundamental discrete symmetries.

η Decays	Physics Highlights	η' Decays	Physics Highlights
$\eta \to \gamma \gamma \pi^{0}$	ChPT	$\eta' o \pi\pi$	CPV
$\eta ightarrow \gamma B$	Leptophobic dark boson	$\eta' o \gamma\gamma$	Chiral anomaly
$\eta \to \pi^0 \pi^0 \pi^0$	m _u -m _d	$\eta' \to \gamma \pi \pi$	Box anomaly
$\eta \to \pi^+ \pi^- \pi^0$	m _u -m _d , CV	$\eta' ightarrow \pi^+ \pi^- \pi^0$	m _u -m _d , CV
$\eta \to \gamma \gamma \gamma$	CPV	$\eta' o \pi^{0} \pi^{0} \eta$	cusp effect

η/η' from J/ψ Decays at BESIII

- 1.3 billion J/ψ events (collected in 2009 and 2012)
 - η/η' from J/ ψ radiative decays: 6.8 \times 10 $^{6}\eta'$, 1.4 \times 10 $^{6}\eta$
 - η/η' from J/ψ hadronic decays: 8.5 \times $10^5\eta'$, 3.3 \times $10^6\eta$
- More data collected since 2018, 10 billion J/ψ events in total now
- Unique opportunity to investigate the decays of η/η' .

Recent Works on η/η' Meson Studies at BESIII

Based on 1.3 billion J/ψ events:

- $\eta' \rightarrow \pi^0 \pi^0 \pi^0 \pi^0$

$$- \eta' \to \gamma \gamma \eta$$

-
$$\eta' \rightarrow \pi^+ \pi^- e^+ e^-$$

-
$$\eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^-$$

Based on 10 billion J/ψ events:

- Absolute branching fractions of η decay modes

 $\eta' \to \pi^0 \pi^0 \pi^0 \pi^0 \pi^0$

Suppressed due to S-wave CP-violation.

- CP-conserving higher-order contributions:
 - D-wave pion loop
 - Production of two f₂ tensor mesons
- D-wave contribution^[1]:
 - At the level of 10^{-8}
 - Based on ChPT and VMD models
- Upper limits obtained by GAMS- $4\pi^{[2]}$:
 - 3.2×10^{-4} at the 90% C.L.

[1] Feng-Kun Guo, Bastian Kubis, and Andreas Wirzba, Phys. Rev. D 85, 014014 (2012).

[2] S. V. Donskov et al., Mod. Phys. Lett. A 29, 1450213 (2014).

 $\eta' \to \pi^0 \pi^0 \pi^0 \pi^0$

Phys. Rev. D 101, 032001 (2020)

- $J\psi \to \gamma \eta', \ \eta' \to 4\pi^0$
- Signal contribution negligible.
- \bullet Upper limit: 4.94×10^{-5} at the 90% C.L.
- Approximately a factor of six smaller than the previous most stringent result.

$\eta' \to \gamma \gamma \eta$

- Branching fraction of $\eta' \rightarrow \gamma \gamma \eta$ is predicted to be 2.0 × 10⁻⁴ within the frameworks of linear σ model and the VMD model^[3, 4].
- Upper limit reported by GAMS-4 $\pi^{[5]}$: 8 imes 10⁻⁴ at the 90% C.L.

- [3] R. Jora, Nucl. Phys. Proc. Suppl. 207, 224 (2010).
- [4] R. Escribano et al., Phys. Rev. D 102, 034026 (2020).
- [5] S.V. Donskov et al., Phys. Atom. Nucl. 78, 1043 (2015)

MITP 2022

イロト イヨト イヨト

$\eta' \to \pi^+\pi^- e^+ e^-$

Branching fraction of $\eta' \rightarrow \pi^+\pi^- e^+ e^-$:

- Theoretical predictions:
- Two different VMD models^{[6]}: (2.17 \pm 0.21) \times 10^{-3} and (2.27 \pm 0.13) \times 10^{-3}
- ChPT model $^{[7]}$: $(2.13^{+0.17}_{-0.31})\times 10^{-3}$
- $\bullet~$ Most precise measurement before $^{[8]}:~(2.11\pm0.12_{\textit{stat.}}\pm0.15_{\textit{syst.}})\times10^{-3}$

Possible CP-violating contribution^[9-11]:

- An electric dipole type transition
- Manifest itself as an asymmetry of $\sin 2\varphi$:

$$\mathcal{A}_{arphi} = rac{N(\sin 2arphi > 0) - N(\sin 2arphi < 0)}{N(\sin 2arphi > 0) + N(\sin 2arphi < 0)} \qquad (1$$

• Previous measurement of \mathcal{A}_{φ} : consistent with zero

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

^[6] T. Petri, PhD thesis, Forschungszentrum Julich, (2010), arXiv:1010.2378[nucl-th].

^[7] B. Borasoy and R. Nissler, Eur. Phys. J. A 33, 95 (2007).

^[8] M. Ablikim et al., (BESIII Collaboration), Phys. Rev. D 87, 092011 (2013).

^[9] C. Q. Geng, J. N. Ng, and T. H. Wu, Mod. Phys. Lett. A 17, 1489 (2002).

^[10] D.-N. Gao, Mod. Phys. Lett. A 17, 1583 (2002).

^[11] L. Gan, B. Kubis, E. Passemar, and S. Tulin, (2020), arXiv:2007.00664hep-ph.

$\eta' \to \pi^+\pi^- e^+ e^-$

Measurement of branching fraction:

• To minimize the uncertainty of the number of J/ψ , the tracking efficiency, and the particle identification efficiency, the branching fraction is calculated according to

$$\mathcal{B}(\eta' \to \pi^{+}\pi^{-}e^{+}e^{-}) = \mathcal{B}(\eta' \to \pi^{+}\pi^{-}\gamma) \cdot \frac{\mathcal{N}_{\eta' \to \pi^{+}\pi^{-}e^{+}e^{-}} \cdot \varepsilon_{\eta' \to \pi^{+}\pi^{-}\gamma}}{\mathcal{N}_{\eta' \to \pi^{+}\pi^{-}\gamma} \cdot \varepsilon_{\eta' \to \pi^{+}\pi^{-}e^{+}e^{-}}}$$
(2)

The B(η' → π⁺π⁻γ) is referred from PDG, N_i is the event yield in channel i, ε_i is the corresponding efficiency.

Phys. Rev. D 103, 092005 (2021)

- Signal region: $|M_{\pi^+\pi^-e^+e^-} - m_{\eta'}| < 0.02 \, {\rm GeV}/c^2$
- Signal purity: 98% based on MC simulations of $\eta' \to \pi^+\pi^-\gamma$
- $\mathcal{B}(\eta' \rightarrow \pi^+ \pi^- e^+ e^-)$: (2.42 ± 0.05_{stat.} ± 0.08_{syst.}) × 10⁻³ consistent with the predictions

. Measurement of \mathcal{A}_{φ} :

$$\mathcal{A}_{arphi} = rac{N(\sin 2arphi > 0) - N(\sin 2arphi < 0)}{N(\sin 2arphi > 0) + N(\sin 2arphi < 0)}$$

- Due to the limited momentum resolution, some events with a true value $\sin 2\varphi < 0$ are reconstructed with a value $\sin 2\varphi > 0$. The fraction of such events, α is estimated with signal MC sample.
- Corrected \mathcal{A}_{φ} :

$$\mathcal{A}_{\varphi,\,\text{corr.}} = \frac{\mathcal{A}_{\varphi,\,\text{rec.}}}{1 - 2\alpha} \tag{3}$$

• Result: $\mathcal{A}_{\varphi} = (2.9 \pm 3.7_{stat.} \pm 1.1_{syst.})$ %, consistent with zero.

$\eta' \to \pi^+\pi^-\mu^+\mu^-$

- Predictions on $\mathcal{B}(\eta' \to \pi^+\pi^-\mu^+\mu^-)^{[6,12,13]}$:
- in the range of $(1.5-2.5)\times 10^{-5}.$
- No significant signal has been observed before this work.
- Most stringent upper limit measured before^[13]:
- $\mathcal{B}(\eta'
 ightarrow \pi^+\pi^-\mu^+\mu^-) < 2.9 imes 10^{-5}$ at the 90% C.L.

- [12] A. Faessler, C. Fuchs and M. I. Krivoruchenko, Phys. Rev. C 61, 035206 (2000).
- [13] B. Borasoy and R. Nissler, Eur. Phys. J. A 33, 95 (2007).

Absolute Branching Fractions of η Decay Modes

- Decays of η meson are sensitive to a wide variety of physics issues.
- No **absolute branching fractions**(BFs) of η decays have been measured due to difficulty of tagging its inclusive decays.
- A method for tagging inclusive decays of η is developed.

 $J/\psi \rightarrow \gamma \eta, \ \eta \rightarrow anything, \ \gamma \rightarrow e^+e^-(\gamma \text{ conversion process})$

- γ conversion: a photon with energy greater than twice the mass of electron convert to e^+e^- when passing near the nucleus of an atom.
- Energy resolution of the radiative photon could be improved by a factor of 2.
- Number of η can be extracted from recoil mass spectrum of γ

Absolute Branching Fractions of η Decay Modes

• Step 1: Inclusive decays

$$B(J/\psi \to \gamma \eta) = \frac{N_{J/\psi \to \gamma \eta}^{obs}}{N_{J/\psi} \cdot \varepsilon f}$$

 $N_{J/\psi \to \gamma \eta}^{obs}$ and $N_{J/\psi}$: observed η yield and number of J/ψ events.

 ε : detection efficiency obtained from MC simulation

 $f\colon$ correct the difference in γ conversion efficiencies between data and MC

Phys. Rev. D 104, 092004 (2021)

 $B(J/\psi \to \gamma \eta) = (1.067 \pm 0.005_{stat.} \pm 0.023_{syst.}) \times 10^{-3}$ PDG: (1.108 ± 0.027) × 10⁻³ (before this work)

MITP 2022

Light Meson Studies at BESIII

(4)

Absolute Branching Fractions of η Decay Modes

• Step 2: Exclusive decays

Phys. Rev. D 104, 092004 (2021)

	$\mathcal{B}(\eta ightarrow X)/\mathcal{B}(\eta ightarrow \gamma \gamma)$	
Х	This Work	CLEO
π 0 _π 0	$0.802 \pm 0.002 \pm 0.014$	$0.884 \pm 0.022 \pm 0.019$
$\pi^+\pi^-\pi^0$	$0.578 \pm 0.001 \pm 0.008$	$0.587 \pm 0.011 \pm 0.009$
$\pi^+\pi^-\gamma$	$0.110 \pm 0.001 \pm 0.002$	$0.103 \pm 0.004 \pm 0.004$

	$\mathcal{B}(\eta ightarrow X)$ (%)		
X	This Work	CLEO	PDG
$\gamma\gamma$	$39.86 \pm 0.04 \pm 0.99$	$38.45 \pm 0.40 \pm 0.36$	39.41 ± 0.20
$\pi^{0}\pi^{0}\pi^{0}$	$31.96 \pm 0.07 \pm 0.84$	$34.03{\pm}0.56{\pm}0.49$	32.68±0.23
$\pi^+\pi^-\pi^0$	$23.04 \pm 0.03 \pm 0.54$	$22.60{\pm}0.35{\pm}0.29$	22.92 ± 0.28
$\pi^+\pi^-\gamma$	$4.38 \pm 0.02 \pm 0.10$	$3.96{\pm}0.14{\pm}0.14$	$4.22 {\pm} 0.08$

MITP 2022

Summary and Outlook

- Large J/ψ decay sample at BESIII provides an excellent laboratory to study light meson decays.
- η/η' studies:
 - Search for $\eta' \to \pi^0 \pi^0 \pi^0 \pi^0$
 - Upper limit: 4.94×10^{-5} at the 90% C.L.
 - Search for $\eta' \to \gamma \gamma \eta$
 - $\mathcal{B}(\eta' \rightarrow \gamma \gamma \eta) = (8.25 \pm 3.41_{stat.} \pm 0.72_{syst.}) \times 10^{-5}$ (Statistical significance: 2.6 σ)
 - Upper limit: 1.33×10^{-4} at the 90% C.L.
 - Search for $\eta' \rightarrow \pi^+\pi^- e^+ e^-$
 - $\mathcal{B}(\eta' \to \pi^+\pi^-e^+e^-) = (2.42 \pm 0.05_{stat.} \pm 0.08_{syst.}) \times 10^{-3}$
 - $A_{\varphi} = (2.9 \pm 3.7_{stat.} \pm 1.1_{syst.}) \%$
 - Search for $\eta' \to \pi^+\pi^-\mu^+\mu^-$
 - $\mathcal{B}(\eta' \to \pi^+ \pi^- \mu^+ \mu^-) = (1.97 \pm 0.33_{stat.} \pm 0.18_{syst.}) \times 10^{-5}$ (Statistical significance: 8σ)
 - \bullet Absolute branching fractions of η decay modes
 - $\mathcal{B}(J/psi \to \gamma \eta) = (1.067 \pm 0.005_{stat.} \pm 0.023_{syst.}) \times 10^{-3}$
 - $\mathcal{B}(\eta \to \gamma \gamma) = (39.86 \pm 0.04_{stat.} \pm 0.99_{syst.})\%, \ \mathcal{B}(\eta \to \pi^{0}\pi^{0}\pi^{0}) = (31.96 \pm 0.07_{stat.} \pm 0.84_{syst.})\%$
 - $\mathcal{B}(\eta \to \pi^+\pi^-\pi^0) = (23.04 \pm 0.03_{stat.} \pm 0.54_{syst.})\%, \ \mathcal{B}(\eta \to \pi^+\pi^-\gamma) = (4.38 \pm 0.02_{stat.} \pm 0.10_{syst.})\%$

イロト イヨト イヨト -

- With the 10 billion J/ψ decay sample available now, more interesting results can be expected:
 - Standard Model precision tests
 - $(g-2)_{\mu}$, η/η' transition form factor, ...
 - Discrete symmetry tests
 - C and CP-voilation, ...
 - Search for η/η' rare decays
 - Search for light BSM particles
 -

Backup

æ

イロト イヨト イヨト イヨト

Beijing Electron Positron Collider II (BEPC II)

2004: BEPCII/BESIII construction Double-ring e^+e^- collider running in tau-charm energy region Beam energy: 1-2.3 GeV(1-2.45 GeV since 2019) Design luminosity: $1 \times 10^{33} cm^{-2} s^{-1}$ 2009-today: BESIII physics runs

$\eta' ightarrow \pi^+ \pi^- \eta$	Phys. Rev. D 83, 012003 (2011)
$\eta/\eta' ightarrow \pi^+\pi^-, \pi^0\pi^0$	Phys. Rev. D 84, 032006 (2011)
$\eta' \to \pi^+ \pi^- \pi^0, \pi^0 \pi^0 \pi^0$	Phys. Rev. Lett. 108, 182001 (2012)
$\eta/\eta' ightarrow$ invisible	Phys. Rev. D 87, 012009 (2013)
$\eta/\eta' ightarrow \pi^+ e u$	Phys. Rev. D 87, 032006 (2013)
$\eta^\prime ightarrow 3(\pi^+\pi^-)$	Phys. Rev. D 88, 091502 (2013)
$\eta' ightarrow 2(\pi^+\pi^-), \pi^+\pi^-\pi^0\pi^0$	Phys. Rev. Lett. 112, 251801 (2014)
$\eta' ightarrow \gamma e^+ e^-$	Phys. Rev. D 92, 012001 (2015)
$\eta \to \pi^+ \pi^- \pi^0, \eta/\eta' \to \pi^0 \pi^0 \pi^0$	Phys. Rev. D 92, 012014 (2015)
$\eta' ightarrow \omega e^+ e^-$	Phys. Rev. D 92, 051101 (2015)
$\eta' o K\pi$	Phys. Rev. D 93, 072008 (2016)
$\eta' \to \rho \pi$	Phys. Rev. Lett. 118, 012001 (2017)
$\eta' \to \gamma \gamma \pi^0$	Phys. Rev. D 96, 012005 (2017)
$\eta' \to \gamma \pi^+ \pi^-$	Phys. Rev. Lett. 120, 242003 (2018)
$\eta' ightarrow \eta \pi^+ \pi^-, \eta \pi^0 \pi^0$	Phys. Rev. D 97, 012003 (2018)

3

<口 > < 部 > < 문 > < 문 >

BESIII Publications on η/η' Decays (continue)

η^\prime branching fractions	Phys. Rev. Lett. 122, 142002 (2019)
$\eta' \to \gamma \gamma \eta$	Phys. Rev. D 100, 052015 (2019)
$\eta' \to \pi^0 \pi^0 \pi^0 \pi^0$	Phys. Rev. D 101, 032001 (2020)
$\eta' \to \pi^+ \pi^- \mu^+ \mu^-$	Phys. Rev. D 103, 072006 (2021)
$\eta' ightarrow \pi^+\pi^- e^+e^-$	Phys. Rev. D 103, 092005 (2021)
η branching fractions	Phys. Rev. D 104, 092004 (2021)

3

▶ ▲ 돈 ▶ ▲ 돈 ▶