

Bertram Kopf

Inter-experiment Partial Wave Analysis

Hadron Spectroscopy: The Next Big Steps MITP Virtual Workshop, 14-25 March 2022

Outline

- Introduction
 - > why coupled channel analyses with data from different experiments?
- Proper descriptions for the dynamics
 Fulfillment of unitarity and analyticity
- Coupled Channel analysis of $\bar{p}p \rightarrow K^{+}K^{-}\pi^{0}$, $\pi^{0}\pi^{0}\eta$, $\pi^{0}\eta\eta$ and $\pi\pi$ -scattering data
- Investigation of the spin-exotic I^G(J^{PC})= 1⁻(1⁻⁺) wave with p
 p
 p-, π-p- and ππ-data
- Use of the obtained parametrization for the dynamics on $\gamma\gamma$ reactions
- Summary and conclusion

Introduction

- Light mesons are bound states consisting of u-, d- and s-quarks
- Cover the non-perturbative QCD regime
- Description very challenging
 - Iattice QCD
 - > phenomenological models
- Observation and measurements of the resonance properties very challenging
 - > many overlapping resonances with same quantum numbers
 - > decays in different channels
 - distinction between conventional qq-mesons and exotics difficult

energy dependence of $\alpha_{\rm s}$

Access to the Inner Structure of a Resonance

- Characteristics of the production
 - γ induced processes include QED effects
 - > exotics with gluonic content should
 - → be mainly produced in gluon rich environments like radiative J/ψ decays, central production, or p̄p annihilation
 - → couple weakly to γ induced processes like $\gamma\gamma$ fusion

- Characteristics of the decay pattern
 - > glueballs: flavour blind decay with a rather narrow width
 - > molecules: decay into a meson pair close to threshold

4

- Determination of pole parameters and coupling strength to the production and decay systems are essential
- Analysis of only one single channel is not sufficient
- Coupled channel analyses of data from different production mechanisms and decay systems are needed and the most elegant way
- Advantages compared to single channel fits
 - common and unique description of the dynamics
 - > better description of threshold effects
 - better fulfillment of the conservation of unitarity
 - > more constraints due to common amplitudes

- Breit-Wigner functions widely used
 - > good approximation for isolated resonances appearing in a single channel
 - violate the unitarity
 - > extracted resonance parameters are not unique and depend on the production and decay process
- More sophisticated descriptions needed for
 - resonances decaying into multiple channels
 - Several resonances with the same quantum numbers appearing in the same channel
 - \succ resonances located at thresholds \rightarrow distortion of the line shape

Approaches with an adequate consideration

of unitarity and analyticity needed

(K-matrix, N/D-method, Two-potential decomposition)

Analyticity in K-Matrix Approach

- Scattering process described by T-matrix: $T = (I i K \rho)^{-1} K$
- Production process described via P- and F-vector: $F = (I i K \rho)^{-1} P$
- K-matrix with standard phase space factors: $\rho = \sqrt{\left[1 \left(\frac{m_a + m_b}{m}\right)^2\right] \left[1 \left(\frac{m_a m_b}{m}\right)^2\right]}$
 - violates constraints from analyticity: unphysical cuts for unequal masses
- Proper description with Chew-Mandelstam function from Phys Rev D19, 054008 (2015)
 - > ρ must be replaced by CM(s): $T = (I + K CM(s))^{-1} K$

Hadron Spectroscopy: Next Big Steps, 2022

PAWIAN

- PArtial Wave Interactive ANalysis software package
- Supports $\overline{p}p$ and e⁺e⁻-annihilation, $\gamma\gamma$ -fusion and πp and $\pi\pi$ scattering
- Hypothesis and other settings defined via configuration files
 - > spin formalisms: e.g. canonical, helicity, ...
 - > dynamics: Breit-Wigner, K-matrix, ...
- Channels with arbitrary number of final state particles
- Event based maximum likelihood fit using MINUIT2
- Support for parallelization
- Analysis tools: extraction of pole positions, branching fractions, ...
- Event generator, histogramming, efficiency correction, ...

PWA with $\bar{p}p$ Data from Crystal Barrel at LEAR

Analyses of Crystal Barrel at LEAR data are an excellent opportunity for the investigation of physics aspects relevant for $\overline{P}ANDA$

- In operation between 1989 and 1996
- Fixed target experiment
- $\overline{p}p$ annihilation at rest and in flight
 - > highest beam momentum 1.94 GeV/c
 - voverlap with PANDA
- Physics program
 - > spectroscopy of light mesons and search for exotic states

See talk about PANDA by M. Küßner

$\overline{p}p \rightarrow K^+ K^- \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta$

Eur. Phys. J. C (2020) 80:453

Crystal Barrel Collaboration Coupled channel analysis of $\bar{p} p \rightarrow \pi^0 \pi^0 \eta, \pi^0 \eta \eta$ and $K^+ K^- \pi^0$ at 900 MeV/c and of $\pi\pi$ -scattering data

M. Albrecht¹, C. Amsler^{4,5}, W. Dünnweber³, M. A. Faessler³, F. H. Heinsius¹, H. Koch¹, B. Kopf^{1,a}, U. Kurilla^{1,6}, C. A. Meyer², K. Peters^{1,6}, J. Pychy¹, X. Qin¹, M. Steinke¹, U. Wiedner¹

- Many a₀, a₂, f₀ and f₂ resonances appear in two or all three channels constraints due to common production amplitudes
- Exotic spin wave π_1 so far only seen in $\overline{p}p$ data at rest > also visible in pp in flight data ?
- Event based fits take into account the complete phase-space with amplitudes from the initial down to the final state

Single channel fit for $K^+K^-\pi^0$: a and f resonances are not distinguishable

Coupled channel fit for K⁺K⁻π⁰, π⁰π⁰η, π⁰ηη: a and f resonances are distinguishable

11

Why scattering data?

- Processes only characterized by elasticity and phase motion
 - > good and easy access to resonance properties
- Phase shifts and elasticity is properly taken into account also for p
 p data
- Available from measurements and theory for I=0 S- and D-wave and I=1 P-wave
- Good constraints for $f_{\text{0}},\,f_{\text{2}}$ and ρ resonances

$\overline{p}p \rightarrow K^+ K^- \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta$

Best Fit Result achieved for

- K-matrix description for
 - > f_0 with 5 poles and 5 channels
 - > f₂ with 4 poles and 4 channels
 - $\succ \rho$ with 2 poles and 3 channels
 - > a₀ and a₂ with 2 poles and 2 channels, each
 - ≻ π_1^0 → $\pi^0\eta$ in $\pi^0\pi^0\eta$ with 1 pole and 2 channels
 - > (K π)s-wave: fixed parameterization from FOCUS-experiment

Phys. Lett. B653 (2007) 1-11

- Breit-Wigner description for
 - $\rightarrow \Phi(1020) \rightarrow K^+ K^-$
 - > $\mathrm{K}^{*\pm}(892) \rightarrow \mathrm{K}^{\pm}\pi^{0}$

all pole positions and

coupling strengths are free parameters

 $\overline{p}p \rightarrow K^+ K^- \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta$

Hadron Spectroscopy: Next Big Steps, 2022

$\pi\pi$ Scattering Data

- All scattering data are well described
- $\pi\pi \rightarrow \pi\pi$ elasticity and
 - $\pi\pi \to K\overline{K},\,\eta\eta,\,\eta\eta'$ are not shown here

used data

Phys. Rev. D83(2011) 074004 Nucl. Phys B64 (1973) 134-162 Nucl. Phys B100 (1975) 205-224 J. Phys G40 (2013) 043001 Nucl. Phys B64 (1973) 134-162 Nucl. Phys B269 (1986) 485 Nouvo Cimento A80 (1984) 363

Phases for $\pi\pi \rightarrow \pi\pi$

Hadron Spectroscopy: Next Big Steps, 2022

- K-matrix contains all resonance parameters
- Masses and widths defined by the pole position in the complex energy plane of the T-matrix sheet closest to the physical sheet
- Related partial decay width can be extracted via the residues:

$$Res_{k\to k}^{\alpha} = \frac{1}{2\pi i} \oint_{C_{z\alpha}} \sqrt{\rho_k} \cdot T_{k\to k}(z) \cdot \sqrt{\rho_k} \, dz$$

More than 50 different resonance properties extracted on the relevant Riemann-sheets for f_0 , f_2 , a_0 , a_2 and ρ resonances

16

1⁻⁺ Wave in $\overline{p}p \rightarrow \pi^0 \pi^0 \eta$

- 1-+ wave seen in the decay $\pi^0\eta$
- K-matrix description with 1 pole and two channels $\pi\eta$ and $\pi\eta'$
 - > motivated by JPAC analysis with COMPASS data
 - > no data for πη'
 - > $\pi\eta$ ' channel is only used for unitarity
- Phase difference between the π_1 and a_2 wave from $T_{\pi\eta \rightarrow \pi\eta}$ in good agreement with COMPASS measurement Phys. Let Phys. Phys. Let Phys. Let Phys. Let Phys. Phys. Let Phys. Phy
- Pole position of the π_1 : (1404.7 \pm 3.5 (stat.) $^{+9.0}_{-17.3}$ (sys.)) MeV/ c^2 (628.3 \pm 27.1 (stat.) $^{+35.8}_{-138.2}$ (sys.)) MeV

Hadron Spectroscopy: Next Big Steps, 2022

Bertram Kopf, Ruhr-Universität Bochum

17

Phys. Lett. B740 (2015) 303-311 Phys. Lett. B811 (2020) 135913 (erratum)

JPAC Analysis of COMPASS Data

- Coupled channel analysis of the 1⁻⁺ and 2⁺⁺ wave in $\pi^- p \rightarrow \pi^- \eta^{(+)} p$
- 2 π_1 hybrid candidates below 2 GeV are listed in PDG
 - \succ at around 1.4 GeV only seen in $\pi\,\eta$
 - > at around 1.6 GeV seen in $\pi\,\eta$ ' but not in $\pi\,\eta$
 - > parameters obtained by Breit-Wigner fits
- Only one π_1 hybrid state predicted slightly below 2 GeV
- Enforcing analyticity and unitarity utilizing N/D method
- Mass shapes and phase shifts between 1⁻⁺ and 2⁺⁺ are considered
- Decay channels to $\rho \pi$, $b_1 \pi$ or $f_1 \pi$ not considered

Hadron Spectroscopy: Next Big Steps, 2022

JPAC Analysis of COMPASS Data

- JPAC analysis: peak at 1.4 GeV in $\pi\eta$ and 1.6 GeV in $\pi\eta$ ' are described by one pole at (1564 ± 24 ± 86) i(246 ± 27 ± 51) MeV
- Cannot be described by only one resonance with Breit-Wigner description

Hadron Spectroscopy: Next Big Steps, 2022

Coupled Channel Analysis with pp & COMPASS Data

- Extension: simultaneous fit of $\pi\pi$ -scattering data, $\overline{p}p \rightarrow K^+ K^- \pi^0$, $\pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $\pi^- p \rightarrow \pi^- \eta^{(')} p$
- Good description with one pole scenario for the 1⁻⁺ wave using K-matrix \rightarrow confirmation of the JPAC analysis based on N/D-method

Coupled Channel Analysis with pp & COMPASS Data

- Masses, widths and coupling strengths of the decays extracted from the poles in the complex energy plane
- π_1 mass is moving from 1.4 GeV/c² to 1.6 GeV/c² with $\pi\eta$ ' data

Name	Pole mass (MeV/ c^2)	Pole width (MeV)	$\Gamma_{\pi\eta'}/\Gamma_{\pi\eta}$ (%)	$\Gamma_{KK}/\Gamma_{\pi\eta}$ (%)	
a ₂ (1320)	$1318.7 \pm 1.9 \substack{+1.3 \\ -1.3}$	$107.5 \pm 4.6 \substack{+3.3 \\ -1.8}$	$4.6 \pm 1.5 {}^{+7.0}_{-0.6}$	$31 \pm 22^{+9}_{-11}$	
$a_2(1700)$	$1686 \pm 22 {}^{+19}_{-7}$	$412 \pm 75 {}^{+64}_{-57}$	$3.5 \pm 4.4 \substack{+6.9 \\ -1.2}$	$2.9 \pm 4.0 {+1.1 \\ -1.2}$	
π_1	$1623 \pm 47^{+24}_{-75}$	$455 \pm 88^{+144}_{-175}$	$554 \pm 110 {}^{+180}_{-27}$	-	

Table 1 Obtained masses, total widths and ratios of partial widths for the pole of the spin-exotic π_1 -wave and for the two poles in the a_2 -wave, the $a_2(1320)$ and the $a_2(1700)$. The first uncertainty is the statistical and the second the systematic one

Hadron Spectroscopy: Next Big Steps, 2022

Obtained K-Matrix Parameters for other Use Cases

Coupled Channel Analysis of yy Reactions @ BESIII

- Isospin 0 and 1 can be well separated in the K⁺K⁻ channel
- f₀, f₂, a₀ and a₂ poles and decay constants fixed to obtained Kmatrix parametrization from

Eur. Phys.J. C (2021) 81, 1056

Proper access to γγ-widths

$\gamma\gamma \rightarrow K^+K^-, \pi^0\pi^0 \text{ and } \pi^0\eta @ BESIII$

23

Obtained yy-Widths

M. Küßner, PhD 2022, RUB

- Extracted via pole residues of the F-vector on the relevant Riemannsheet
- Very accurate measurements for several f₀, f₂, a₀ and a₂ resonances with masses below 1.8 GeV/c²
- First determination of the f₂'(1525)widths for the helicities 0 and 2 separately

Future plans: PWA with additional data from radiative J/ ψ decays with comparison of the production strengths

Summary and Conclusion

- Determination of the resonance parameters and coupling strengths to different production and decay processes important for classifying states
- Coupled channel analyses of data from different production mechanisms and decay systems are needed
- Sophisticated descriptions of the dynamics needed by taking into account analyticity and unitarity
- Examples of analyses in the light mesons sector are shown with data from $\overline{p}p$ -annihilation, $\gamma\gamma$ -fusion, πp -reactions and $\pi\pi$ -scattering processes
 - > peaks at 1.4 GeV in $\pi\eta$ and at 1.6 GeV in $\pi\eta$ ' of the spin exotic 1⁻⁺ wave can be described by only one pole using K-matrix formalism

Back-up Slides

K-Matrix

Aitchison: "Nucl Phys A189 (1972) 417

S.U. Chung, E.Klempt "A Primer on K-matrix Formalism", BNL Preprint (1995)

• A two body scattering process can be fully described by the S-matrix

 $S = I + 2i\sqrt{\rho} T \sqrt{\rho}$

• T-matrix can be expressed by K-matrix: $T = (I - i K \rho)^{-1} K$

K-Matrix with P-Vector Approach

Aitchison: "The K-Matrix formalism for overlapping resonances", Nucl Phys A189 (1972) 417

- Generalization of the K-matrix formalism to the case of production of resonances in more complex reactions
- Dynamical function for P-vector approach: $F = (I i K \rho)^{-1} P$

• Example: $\overline{p}p \rightarrow f_0 \pi^0 \rightarrow (K\overline{K}) \pi^0$

Fit Results

Hadron Spectroscopy: Next Big Steps, 2022

Fit Results

Eur. Phys.J. C (2021) 81, 1056

Obtained Resonance Properties

name	relevant data	Breit-Wigner mass $[MeV/c^2]$	Breit-Wigner width Γ [MeV]			Eur. P	hys.J. C (2021) 81, 1056
K*(892) [±]	p p	$893.8 \pm 1.0 \pm 0.8$	$56.3 \pm 2.0 \pm 1.0$				
φ(1020)	p <i>p</i>	$1018.4 \pm 0.5 \pm 0.2$	4.2 (fixed)				
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]				
$f_0(980)^{++}$	scat	$977.8 \pm 0.6 \pm 1.4$	$98.8 \pm 6.6 \pm 11.2$				
$f_0(980)^{+++}$	scat	$992.6 \pm 0.3 \pm 0.5$	$61.2 \pm 1.2 \pm 1.7$				
$f_0(1370)$	scat	$1281 \pm 11 \pm 26$	$410 \pm 12 \pm 50$				
$f_0(1500)$	$\bar{p}p + \text{scat}$	$1511.0 \pm 8.5 \substack{+3.5 \\ -14.0}$	$81.1 \pm 4.5 \substack{+26.9 \\ -0.5}$				
$f_0(1710)$	$\bar{p}p + \text{scat}$	$1794.3 \pm 6.1 {}^{+47.0}_{-61.2}$	$281 \pm 32 {}^{+12}_{-80}$				
<i>f</i> ₂ (1810)	scat	$1769 \pm 26 {}^{+3}_{-26}$	$201 \pm 57 {+13 \atop -87}$				
$f_2(X)$	scat	$2119.9 \pm 6.4 \substack{+25.7 \\ -1.1}$	$343 \pm 11 {}^{+32}_{-11}$				
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]	$\Gamma_{\pi\eta^\prime}/\Gamma_{\pi\eta}$ [%]	-		
π_1	$\bar{p}p + \pi p$	$1623 \pm 47 {}^{+24}_{-75}$	$455\pm88~^{+144}_{-175}$	$554 \pm 110 {}^{+180}_{-27}$	-		
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]	$\Gamma_{KK}/\Gamma_{\pi\eta}$ [%]	-		
$a_0(980)^{}$	$\bar{p}p$	$1002.7 \pm 8.8 \pm 4.2$	$132 \pm 11 \pm 8$	$14.8 \pm 7.1 \pm 3.6$	-		
$a_0(980)^{-+}$	$\bar{p}p$	$1003.3 \pm 8.0 \pm 3.7$	$101.1 \pm 7.2 \pm 3.0$	$13.5 \pm 6.2 \pm 3.1$			
$a_0(1450)$	$\bar{p}p$	$1303.0 \pm 3.8 \pm 1.9$	$109.0 \pm 5.0 \pm 2.9$	$396 \pm 72 \pm 72$			
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]	$\Gamma_{KK}/\Gamma_{\pi\eta}$ [%]	$\Gamma_{\pi\eta'}/\Gamma_{\pi\eta}$ [%]		
<i>a</i> ₂ (1320)	$\bar{p}p + \pi p$	$1318.7 \pm 1.9 \substack{+1.3 \\ -1.3}$	$107.5 \pm 4.6 {+3.3}_{-1.8}$	$31 \pm 22^{+9}_{-11}$	$4.6 \pm 1.5 \substack{+7.0 \\ -0.6}$		
$a_2(1700)$	$\bar{p}p + \pi p$	$1686 \pm 22 + 19 - 7$	$412 \pm 75 \begin{array}{c} +64 \\ -57 \end{array}$	$2.9 \pm 4.0 {}^{+1.1}_{-1.2}$	$3.5 \pm 4.4 \substack{+6.9 \\ -1.2}$		
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]	Γ _{ππ} /Γ [%]	Γ_{KK}/Γ [%]	$\Gamma_{\eta\eta}/\Gamma$ [%]	-
<i>f</i> ₂ (1270)	$\bar{p}p + \text{scat}$	$1262.4 \pm 0.2 \substack{+0.2 \\ -0.3}$	$168.0 \pm 0.7 \stackrel{+1.7}{_{-0.1}}$	$87.7 \pm 0.3 {}^{+4.8}_{-4.4}$	$2.6 \pm 0.1 \stackrel{+0.1}{_{-0.2}}$	$0.3 \pm 0.1 \substack{+0.0 \\ -0.1}$	-
$f_2'(1525)$	$\bar{p}p + \text{scat}$	$1514.7 \pm 5.2 \substack{+0.3 \\ -7.4}$	$82.3 \pm 5.2 \substack{+11.6 \\ -4.5}$	$2.1 \pm 0.3 \substack{+0.8 \\ -0.0}$	$67.2 \pm 4.2 {}^{+5.0}_{-3.8}$	$9.8 \pm 3.8 \substack{+1.7 \\ -3.3}$	
<i>ρ</i> (1700)	$\bar{p}p + \text{scat}$	$1700 \pm 27 {}^{+13}_{-16}$	$181 \pm 25 \ ^{+0.0}_{-16}$	$13.6 \pm 1.2 \ ^{+0.9}_{-0.5}$	$0.8\pm 0.1 \ ^{+0.0}_{-0.0}$	-	31

Hadron Spectroscopy: Next Big Steps, 2022