
A theoretical perspective on

two-photon physics

Christoph Lehner
(Uni Regensburg)

March 18, 2022 – Hadron Spectroscopy: The Next Big Steps



Focus of this talk: theory of Hadronic Light-by-Light (HLbL)
scattering



Focus of this talk: . . . and mostly application to muon g-2



Two new avenues for a model-independent value for the HLbL
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Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]
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There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → � LV WDNHQ� ZH GH¿QH WKH GLVSHUVLRQ UHODWLRQ LQ WKH 0DQGHOVWDm variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from diffHUHQW WRSRORJLHV �VKRZQ LQ ¿J� ��� HDFK RI WKHP OLQNHG WR D VSHFL¿F VXE�SURFHVV�
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
WZR�SDUWLFOH LQWHUPHGLDWH VWDWHV�� %RWK DUH GH¿QHG E\ WKH Xnitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

7KH ¿UVW WRSRORJ\ LQ ¿J� � FRQVLVWV RI WKH SLRQ SROH� i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by
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where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
7KH RWKHU WRSRORJLHV LQ ¿J� � DUH REWDLQHG E\ VHOHFWLQJ WZR�Sion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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How to estimate uncertainty
of truncation of cuts/states?

7 quark-level topologies
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Dispersive analysis - recent results

I JHEP1704(2017)161 (Colangelo et al.): Pion-box plus S-wave rescattering

aπ−box
µ + aππ,π−pole LHC ,J=0

µ = −2.4(1)× 10−10

I PRL121(2018)112002 (Hoferichter et al.); 1808.04823: Pion-pole contribution

aπ−pole
µ = 6.26(30)× 10−10 reconstructing π → γ∗γ∗ form factor from

e+e− → 3π, e+e−π0 and π0 → γγ width

I PRD100(2019)034520 (Mainz): Pion-pole contribution

aπ−pole
µ = 6.23(23)× 10−10 (Lattice+Dispersive FF normalization by PrimEx)

I Recent results for kaon-box: aK−box
µ = −0.048(4)× 10−10 (2112.11106

(Miramontes et al.)), aK−box
µ = −0.048(1)× 10−10 (2202.11106 (Stamen et

al.))

Combining these results one finds: aπ−pole
µ + aπ−box

µ + aππµ + aK−box
µ = 3.9(3)× 10−10

Further estimates: aη,η
′

µ ≈ 3× 10−10, aaxial vector
µ ≈ 1× 10−10,

ashort distance
µ ≈ 1× 10−10 (see also lattice evaluations on subsequent slides)

Control of truncation error/short-distance constraints very important. For a complete
list of recent improvements, see TI snowmass contribution to appear very soon.

Need improvements, e.g., for coupling of axial-vector resonances to two-photons in 1-2
GeV region. (BESIII/LQCD?)
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g-2 Theory Initiative – Seattle consensusTABLE III. Comparison of two frequently used compilations for HLbL in units of 10�11 from 2009

and a recent update with our estimate. Legend: PdRV = Prades, de Rafael, Vainshtein (“Glasgow

consensus”); N/JN = Ny↵eler / Jegerlehner, Ny↵eler; J = Jegerlehner.

Contribution PdRV(09) [6] N/JN(09) [7, 138] J(17) [38] Our estimate

⇡0, ⌘, ⌘0-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)

⇡, K-loops/boxes �19(19) �19(13) �20(5) �16.4(2)

S-wave ⇡⇡ rescattering �7(7) �7(2) �5.98(1.20) �8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars � � � �
� 1(3)

tensors � � 1.1(1)

axial vectors 15(10) 22(5) 7.55(2.71) 6(6)

u, d, s-loops / short-distance � 21(3) 20(4) 15(10)

c-loop 2.3 � 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

C. Comparison to the Glasgow consensus and other compilations1617

The intense activity on the HLbL contribution of the last five years based on the dispersive1618

approach has been reported in this chapter and summarized above. It is useful to discuss1619

here in some detail what are the reasons behind the changes in the numbers compared to1620

the estimates used in 2009, even though on the surface they do not seem to be so large. We1621

will also comment on a few recent estimates. In table III we have collected the frequently1622

used compilations for HLbL from 2009 by Prades, de Rafael, and Vainsthein (“Glasgow1623

consensus,” PdRV(09)) [6] and Jegerlehner and Ny↵eler (N/JN(09)) [7, 138], and a recent1624

update of the latter which has appeared in the book by Jegerlehner (2nd edition, J(17)) [38].1625

Our estimate is also shown for comparison.1626

The main di↵erence of the first three estimates by PdRV [6], N/JN [7, 138], and J [38] to1627

our result is that they are based purely on model calculations, see also table I in section II1628

for details of the original works for some of the individual contributions. Some constraints1629

from theory, e.g. from ChPT at low energies or from short distances in perturbative QCD,1630

and from experiment are taken into account in those models, e.g. on the singly-virtual1631

pseudoscalar TFFs. But this model dependence makes it very di�cult to estimate the1632

uncertainty in a reliable way. On the other hand, our estimates for the numerically dominant1633

contributions from the light pseudoscalar poles ⇡0, ⌘, ⌘0 and for a substantial part of the two-1634

pion intermediate state in HLbL (pion-box and S-wave ⇡⇡ rescattering) are now based on1635

model-independent dispersion relations or Canterbury approximants and the error estimates1636

are largely driven by the precision of the input data. To emphasize this significant progress1637

we have evaluated the sum of these contributions and compared the di↵erent evaluations for1638

the corresponding subtotal in the line labeled as “subtotal” in table III.7 While the central1639

values are all quite close to each other (the largest discrepancy is with the Glasgow consensus,1640

which, however, includes a large part of the short-distance contribution in the pseudoscalar1641

7 To make a meaningful comparison, since the largest contribution among the scalars is due to the �/f0(500),

which is treated as a ⇡⇡ rescattering e↵ect here, we have considered the contribution of the scalars of

earlier evaluations in the line labeled “S-wave ⇡⇡ rescattering.” This is indeed justified for the scalar

contribution �6.8(2.0)⇥10�11 in the ENJL model from ref. [22], as confirmed in ref. [244]. The �/f0(500)

is also responsible for 50 � 80% of the value �6.0(1.2) ⇥ 10�11 from ref. [38], depending on the mixing.

61

aHLbL
µ × 1011

See also our whitepaper Phys. Rept. 887 (2020) 1-166
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7 quark-level topologies of direct lattice calculation

Hierarchy imposed by QED charges of dominant up- and down-quark contribution

Q4
u + Q4

d = 17/81 (Q2
u + Q2

d )2 = 25/81

(Q3
u + Q3

d )(Qu + Qd ) = 9/81

(Q2
u + Q2

d )(Qu + Qd )2 = 5/81

(Qu + Qd )4 = 1/81

Further insight for magnitude of individual topologies can be gained by studying
long-distance behavior of QCD correlation functions (Bijnens, RBC, . . .)
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Dominant diagrams in top row: connected and leading disconnected diagram

Further insight for magnitude of individual topologies can be gained by studying
long-distance behavior of QCD correlation functions (Bijnens, RBC, . . .)
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Development of HLbL lattice methodology (I)

I QED non-perturbatively and momentum-space
(PRL114(2015)012001)

I QED perturbatively and position-space

I QEDL (PRD93(2016)014503, PRL118(2017)022005): 1/L2

finite-volume errors (with linear extent L); noise reduction
through importance sampling

I QED∞: exponential finite-volume errors
(PRL115(2015)222003, EPJ Web Conf. 175(2018)06023),
subtraction prescriptions to reduce systematic errors
(PRD96(2017)034515, arXiv:1811.08320)

Color code: Mainz, RBC/UKQCD
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PRD93(2015)014503 (Blum, Christ, Hayakawa, Izubuchi, Jin, and

Lehner):

New sampling strategy with 10x reduced noise for same cost (red versus black):

Mµ
LbL(q) remains constant, if we try to extract F2(q2) using Eq ???, the noise for F2(q2) would still

go like 1/ q. This can be a serious problem because we are really interested in the value of F2(q
2)

in the q→0 limit. Since we always evaluate the amplitude at q =2π/L, the noise for F2(q2) would
be proportion to L.

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

Figure 22. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. Just like Fig ???, 5 other possible permutations of the three internal photons are
not shown. (L) This is the diagram that we have already calculated. (M) We need to compute sequential
source propagators at xop for each polarizations of the external photon. (R) We also need to compuate
sequential source propagators at xop, but with the external photon momentum in opposite direction, since
we need use γ5-hermiticity to reverse the direction of the propagators, which reverses the momentum of the
external photon as well.

The reason that amplitude is proportion to q is the external photon is couple to a conserved
current of a quark loop. Current conservation ensures that the amplitude vanishes if the external
momentum is zero. Although we implemented exact conserved current at xop and sum it over the
entire space time in the method described above, we didn’t compute all three possible insertions for
the external photon. So the current is only truly conserved after stochastic average over x and y. As
a result, the noise would not be zero when q =0. To fix this, we just need to compute all diagrams
in above figure, then the noise would be proportion to q as well.1 These additional diagrams are
also computationally accessible. We only need to compute sequential propagators for each possible
polarizations and momentums of the external photon. We normally compute three polarization
directions x, y, and t, which are perpendicular to the direction of the external momentum z. This
would be six times more work for the quark loop part of the computation, but the cost for the
muon part remains unchanged. We can adjust M to rebalance the cost, so the over all cost increase
might not be significant but the potential gain can be large especially in a large volume.

There is also another trick. When we sum over z to get the exact photon, we don’t have to sum over
the entire volume, instead, we only sum over the region where |x− y |< |x−z | and |x− y |< |y −z |.2
This trick will enhance the signal in short distance but suppress signal and noise in long distance
where the distance. This trick is called MinDis in the tables blow.

4.1 Zero Total Current Prove

Here we try to prove that the sum of a conserved current is zero if it vanishes at the boundary.

Given:

∂µjµ = 0, (19)

1. Although the current conservation is exact, in finite lattice with periodic boundry condition, around the world
effects will contribute to the noise even when the external momentum is zero. But this noise is suppressed expo-
nentially in the large volume limit. In summary, in the small q and large volume limit, the noise is roughly
O(q)+ O

(
e−mπL/2

)
.

2. We need multiply some different factors when two edges happened to have the same length.

19

Figure 9. A comparison of the results for F2(q
2)/(α/π)3 obtained in the original lattice QCD

cHLbL calculation [17] (diamonds) with those obtained on the same gauge field ensemble using the

moment method presented here (circles). The points from the original subtraction method with

q2 = (2π/24)2 = (457MeV)2 were obtained from 100 configurations and the evaluation of 81,000

point-source quark propagators for each value of the source-sink separation tsep. In contrast, the

much more statistically precise results from the moment method required a combined 26,568 quark

propagator inversions for both values of tsep and correspond to q2 = 0. The moment method value

for tsep = 32 is listed in Tab. IX.

make use of the most effective of the numerical strategies discussed above: the use of exact

photon propagators and the position-space moment method to determine F2 evaluated at

q2 = 0. Since these calculations are less computationally costly than those for QCD we

can evaluate a number of volumes and lattice spacings (all specified with reference to the

muon mass) and examine the continuum and infinite volume limits. We can then compare

our results, extrapolated to vanishing lattice spacing and infinite volume, with the known

result calculated in standard QED perturbation theory [33, 34]. This QED calculation both

serves as a demonstration of the capability of lattice methods to determine such light-by-light

scattering amplitudes and as a first look at the size of the finite-volume and non-zero-lattice-

spacing errors.

In Fig. 10 we show results for F2(0) computed for three different lattice spacings, i.e.

39
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Stochastically evaluate the sum over vertices x and y :

I Pick random point x on lattice

I Sample all points y up to a specific distance r = |x − y |
I Pick y following a distribution P(|x − y |) that is peaked at short distances
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Development of HLbL lattice methodology (II)

I PRL118(2016)022005: Physical-pion mass for leading
connected+disconnected diagrams at finite volume and lattice
spacing aHLbL

µ = 5.35(1.35)× 10−10

I PRD98(2018)074501: Forward scattering amplitude
(γ∗γ∗ → γ∗γ∗)

I Phys. Rev. D 100, 034520 (2019): Pion-pole contribution

aHLbL,π0

µ = 5.97(36)× 10−10

Color code: Mainz, RBC/UKQCD
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PRL118(2016)022005 (Blum, Christ, Hayakawa, Izubuchi, Jin, Jung, and

Lehner):

I Calculation at physical pion mass with finite-volume QED prescription (QEDL)
at single lattice cutoff of a−1 = 1.73 GeV and lattice size L = 5.5 fm.

I Connected diagram:

acHLbL
µ = 11.6(0.96)× 10−10

I Leading disconnected diagram:

adHLbL
µ = −6.25(0.80)× 10−10

I Large cancellation expected from pion-pole-dominance considerations is realized:
aHLbL
µ = acHLbL

µ + adHLbL
µ = 5.35(1.35)× 10−10

Potentially large systematics due to finite-volume QED!
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Development of HLbL lattice methodology (III)

I PRL124(2020)132002: a→ 0, V →∞, mπ ≈ 139 MeV:

aHLbL
µ = 7.87(3.06)(1.77)× 10−10

I Eur. Phys. J. C 80, 869 (2020): Only SU(3) symmetric point
(mπ = mK = 420 MeV), connected plus leading disconnected
diagrams, a→ 0 and V →∞

I Eur. Phys. J. C 81, 651 (2021): Also sub-leading diagrams

and down to mπ ≈ 200 MeV: aHLbL
µ = 10.68(1.47)× 10−10

I Burri @ Lattice 2021 pion pole: mπ ≈ 139 MeV,

aHLbL,π0

µ ∈ [5.86, 6.57]× 10−10 (statistical errors only)

I Chao @ Lattice 2021 pseudoscalar TFF: established control
over η, η′ in staggered quark formalism, promising statistical
signal

Color code: BMWc, ETMC, Mainz, RBC/UKQCD
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Hadronic Light-by-Light Scattering Contribution to the
Muon Anomalous Magnetic Moment from Lattice QCD
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We report the first result for the hadronic light-by-light scattering contribution to the muon anomalous
magnetic moment with all errors systematically controlled. Several ensembles using 2þ 1 flavors of
physical mass Möbius domain-wall fermions, generated by the RBC and UKQCD collaborations, are
employed to take the continuum and infinite volume limits of finite volume lattice QEDþ QCD. We find
aHLbLμ ¼ 7.87ð3.06Þstatð1.77Þsys × 10−10. Our value is consistent with previous model results and leaves
little room for this notoriously difficult hadronic contribution to explain the difference between the standard
model and the BNL experiment.

DOI: 10.1103/PhysRevLett.124.132002

Introduction.—The anomalous magnetic moment of the
muon is providing an important test of the standard model.
The current discrepancy between experiment and theory
stands between three and four standard deviations. An
ongoing experiment at Fermilab (E989) and one planned at
J-PARC (E34) aim to reduce the uncertainty of the BNL
E821 value [1] by a factor of four, and similar efforts are
underway on the theory side [2–31]. A key part of the latter
is to compute the hadronic light-by-light (HLbL) contri-
bution from first principles using lattice QCD [32–38].
Such a calculation, with all errors under control, is
crucial to interpret the anticipated improved experimental
results [39,40].
The magnetic moment is an intrinsic property of a spin-

1=2 particle, and is defined through its interaction with an
external magnetic field B, Hint ¼ −μ · B. Here

μ ¼ −g
e
2m

S; ð1Þ

where S is the particle’s spin, q and m are the electric
charge and mass, respectively, and g is the Landé g factor.
The Dirac equation predicts that g ¼ 2, exactly, so any

difference from 2 must arise from interactions. Lorentz and
gauge symmetries tightly constrain the form of the inter-
actions,

hμðp0ÞjJνð0ÞjμðpÞi

¼ −eūðp0Þ
!
F1ðq2Þγν þ i

F2ðq2Þ
4m

½γν; γρ&qρ
"
uðpÞ; ð2Þ

where Jν is the electromagnetic current, and F1 and F2 are
form factors, giving the charge and magnetic moment at
zero momentum transfer [q2 ¼ ðp0 − pÞ2 ¼ 0], or static
limit. uðpÞ and ūðpÞ are Dirac spinors. The anomalous part
of the magnetic moment is given by F2ð0Þ alone, and is
known as the anomaly,

aμ ≡ ðg − 2Þ=2 ¼ F2ð0Þ: ð3Þ

The desired matrix element in (2) is extracted in quantum
field theory from a correlation function of fields as depicted
in the Feynman diagrams shown in Fig. 1. Here we work in
coordinate (Euclidean) space and use lattice QCD for the
hadronic part which is intrinsically nonperturbative. QED is
treated using the same discrete, finite, lattice as used for the
hadronic part, while we remove the spatial zero modes of
the photon propagator. This method is called QEDL [41]. It
is perturbative with respect to QED, i.e, only diagrams
where the hadronic part is connected to the muon by three
photons enter the calculation.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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Lattice QCD ensembles at physical pion mass:

3

III. LATTICE SETUP

The simulation parameters are given in Tab. I. All parti-
cles have their physical masses (isospin breaking for the
up and down quark masses is not included). The dis-
crete Dirac operator is known as the (Möbius) domain
wall fermion ((M)DWF)) operator. Similarly the dis-
crete gluon action is given by the plaquette plus rectangle
Iwasaki gauge action. Additionally, three ensembles with
larger lattice spacing employ the dislocation-suppressing-
determinant-ratio (DSDR) to soften explicit chiral sym-
metry breaking e�ects for MDWFs [39]. We use All Mode
Averaging (AMA) [44] and Multi-grid Lanczos [45] tech-
niques to speed up the fermion propagator generation.
The muons and photons take discrete free-field forms.
The muons are DWFs with infinite size in the extra fifth
dimension, and the photons are non-compact in the Feyn-
man gauge. In the latter all modes with q = 0 are
dropped, a finite volume formulation of QED known as
QEDL [38].

48I 64I 24D 32D 48D 32Dfine
a≠1 (GeV) 1.730 2.359 1.015 1.015 1.015 1.378
a (fm) 0.114 0.084 0.194 0.194 0.194 0.143
L (fm) 5.47 5.38 4.67 6.22 9.33 4.58
Ls 48 64 24 24 24 32

mfi (MeV) 139 135 142 142 142 144
mµ (MeV) 106 106 106 106 106 106
# meas con 65 43 157 70 8 55

# meas discon 104 44 156 69 0 55

TABLE I. 2+1 flavors of MDWF gauge field ensembles gen-
erated by the RBC/UKQCD collaborations [40]. The lattice
spacing a, spatial extent L, extra fifth dimension size Ls,
muon pion mass mfi, and number of QCD configuration used
for the connected and the disconnected diagrams.

IV. RESULTS

Before moving to the hadronic case, the method was
tested in pure QED [32]. Results for several lattice spac-
ings and box sizes are shown in Fig. 4. The systematic
uncertainties are large, but under control. Note that the
finite volume errors are polynomial in 1/L and not ex-
ponential, due to the photons which interact over a long
range. The data are well fit to the form

aµ(L, a) = aµ

1
1 ≠ b2

(mµL)2 + b3
(mµL)3

2
(4)

◊
1
1 ≠ c1(mµa)2 + c2(mµa)4

2
.

The continuum and infinite volume limit is F2(0) =
46.9(2)stat ◊ 10≠10 for the case where the lepton mass
in the loop is the same as the muon mass, which is quite
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consistent with the well known perturbative value [41],
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Our physical point calculation [33] started on the 483,
a≠1 = 1.730 GeV, Iwasaki ensemble listed in the first col-
umn of Tab. I, for which we found acon

µ = 11.60(0.96)stat◊
10≠10, adiscon

µ = ≠6.25(0.80)stat ◊ 10≠10, and atot
µ =

(multiple volumes and lattice spacings)
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QED test (replace quark loop by lepton loop):

3

III. LATTICE SETUP

The simulation parameters are given in Tab. I. All parti-
cles have their physical masses (isospin breaking for the
up and down quark masses is not included). The dis-
crete Dirac operator is known as the (Möbius) domain
wall fermion ((M)DWF)) operator. Similarly the dis-
crete gluon action is given by the plaquette plus rectangle
Iwasaki gauge action. Additionally, three ensembles with
larger lattice spacing employ the dislocation-suppressing-
determinant-ratio (DSDR) to soften explicit chiral sym-
metry breaking e�ects for MDWFs [39]. We use All Mode
Averaging (AMA) [44] and Multi-grid Lanczos [45] tech-
niques to speed up the fermion propagator generation.
The muons and photons take discrete free-field forms.
The muons are DWFs with infinite size in the extra fifth
dimension, and the photons are non-compact in the Feyn-
man gauge. In the latter all modes with q = 0 are
dropped, a finite volume formulation of QED known as
QEDL [38].

48I 64I 24D 32D 48D 32Dfine
a≠1 (GeV) 1.730 2.359 1.015 1.015 1.015 1.378
a (fm) 0.114 0.084 0.194 0.194 0.194 0.143
L (fm) 5.47 5.38 4.67 6.22 9.33 4.58
Ls 48 64 24 24 24 32

mfi (MeV) 139 135 142 142 142 144
mµ (MeV) 106 106 106 106 106 106
# meas con 65 43 157 70 8 55

# meas discon 104 44 156 69 0 55

TABLE I. 2+1 flavors of MDWF gauge field ensembles gen-
erated by the RBC/UKQCD collaborations [40]. The lattice
spacing a, spatial extent L, extra fifth dimension size Ls,
muon pion mass mfi, and number of QCD configuration used
for the connected and the disconnected diagrams.

IV. RESULTS

Before moving to the hadronic case, the method was
tested in pure QED [32]. Results for several lattice spac-
ings and box sizes are shown in Fig. 4. The systematic
uncertainties are large, but under control. Note that the
finite volume errors are polynomial in 1/L and not ex-
ponential, due to the photons which interact over a long
range. The data are well fit to the form

aµ(L, a) = aµ

1
1 ≠ b2

(mµL)2 + b3
(mµL)3

2
(4)

◊
1
1 ≠ c1(mµa)2 + c2(mµa)4

2
.

The continuum and infinite volume limit is F2(0) =
46.9(2)stat ◊ 10≠10 for the case where the lepton mass
in the loop is the same as the muon mass, which is quite
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Our physical point calculation [33] started on the 483,
a≠1 = 1.730 GeV, Iwasaki ensemble listed in the first col-
umn of Tab. I, for which we found acon

µ = 11.60(0.96)stat◊
10≠10, adiscon

µ = ≠6.25(0.80)stat ◊ 10≠10, and atot
µ =

3

III. LATTICE SETUP

The simulation parameters are given in Tab. I. All parti-
cles have their physical masses (isospin breaking for the
up and down quark masses is not included). The dis-
crete Dirac operator is known as the (Möbius) domain
wall fermion ((M)DWF)) operator. Similarly the dis-
crete gluon action is given by the plaquette plus rectangle
Iwasaki gauge action. Additionally, three ensembles with
larger lattice spacing employ the dislocation-suppressing-
determinant-ratio (DSDR) to soften explicit chiral sym-
metry breaking e�ects for MDWFs [39]. We use All Mode
Averaging (AMA) [44] and Multi-grid Lanczos [45] tech-
niques to speed up the fermion propagator generation.
The muons and photons take discrete free-field forms.
The muons are DWFs with infinite size in the extra fifth
dimension, and the photons are non-compact in the Feyn-
man gauge. In the latter all modes with q = 0 are
dropped, a finite volume formulation of QED known as
QEDL [38].

48I 64I 24D 32D 48D 32Dfine
a≠1 (GeV) 1.730 2.359 1.015 1.015 1.015 1.378
a (fm) 0.114 0.084 0.194 0.194 0.194 0.143
L (fm) 5.47 5.38 4.67 6.22 9.33 4.58
Ls 48 64 24 24 24 32

mfi (MeV) 139 135 142 142 142 144
mµ (MeV) 106 106 106 106 106 106
# meas con 65 43 157 70 8 55

# meas discon 104 44 156 69 0 55

TABLE I. 2+1 flavors of MDWF gauge field ensembles gen-
erated by the RBC/UKQCD collaborations [40]. The lattice
spacing a, spatial extent L, extra fifth dimension size Ls,
muon pion mass mfi, and number of QCD configuration used
for the connected and the disconnected diagrams.

IV. RESULTS

Before moving to the hadronic case, the method was
tested in pure QED [32]. Results for several lattice spac-
ings and box sizes are shown in Fig. 4. The systematic
uncertainties are large, but under control. Note that the
finite volume errors are polynomial in 1/L and not ex-
ponential, due to the photons which interact over a long
range. The data are well fit to the form

aµ(L, a) = aµ

1
1 ≠ b2

(mµL)2 + b3
(mµL)3

2
(4)

◊
1
1 ≠ c1(mµa)2 + c2(mµa)4

2
.

The continuum and infinite volume limit is F2(0) =
46.9(2)stat ◊ 10≠10 for the case where the lepton mass
in the loop is the same as the muon mass, which is quite
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Our physical point calculation [33] started on the 483,
a≠1 = 1.730 GeV, Iwasaki ensemble listed in the first col-
umn of Tab. I, for which we found acon

µ = 11.60(0.96)stat◊
10≠10, adiscon

µ = ≠6.25(0.80)stat ◊ 10≠10, and atot
µ =
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Connected diagram (QCD+QED):

4

5.35(1.35)stat � 10�10 for the connected, leading dis-
connected, and total HLbL contributions to the muon
anomaly, respectively. The errors quoted are purely sta-
tistical. We have since improved the statistics on the
leading disconnected diagram with measurements on 39
additional configurations, and the contribution becomes
�6.03(60)�10�10. Since then we have computed on sev-
eral additional ensembles in order to take the continuum
and infinite volume limits (see Tab. I).

The results are displayed in Fig. 6 along with curves ob-
tained with the following equation:

aµ(L, aI, aD) = aµ

�
1 � b2

(mµL)2 (5)

�cI1(aI GeV)2 � cD1 (aD GeV)2 + cD2 (aD GeV)4
�

where aI, aD represent the lattice spacings for the Iwasaki
and I-DSDR ensembles respectively. For the Iwasaki en-
sembles, we define the variable aD to be zero and vice
versa. Therefore the lattice spacing is always equal to
a = aI + aD. We allow di�erent a2 coe�cients for
the Iwasaki and I-DSDR ensembles as the gauge ac-
tions are di�erent. The lattice spacings for the I-DSDR
ensembles are not small enough to allow us to ignore
the a4 e�ects, and therefore we include them in the fit.
As we only have two lattice spacings for the I-DSDR
ensembles, with both a2 and a4 e�ects unknown, we
cannot extrapolate to the continuum just with the I-
DSDR ensembles. Therefore, based on this fit form,
the continuum limit is obtained from the two Iwasaki
ensembles, and the I-DSDR ensembles are used to ob-
tain the volume dependence only. In particular, the
32Dfine ensemble does not a�ect the fitted aµ at all. It
only helps to determine the parameter cD2 , which pro-
vides evidence for the size of the potential O(a4) sys-
tematic errors. We find for the connected, disconnected,
and total contributions, acon

µ = 23.76(3.96)stat(4.89)sys �
10�10, adiscon

µ = �17.12(3.46)stat(4.41)sys � 10�10, atot
µ =

6.80(4.65)stat(1.56)sys �10�10, respectively. For the total
contribution, we fit the total contribution for each ensem-
ble, which is slightly di�erent from the sum of the fitted
results from the connected and the disconnected parts.
Notice there is a large cancellation between the connected
and disconnected diagrams that persists for a � 0 and
L � �, so even though the individual contributions are
relatively well resolved, the total is not. The cancella-
tion is expected since hadronic light-by-light scattering
at long distance is dominated by the �0 which contributes
to both diagrams, but with opposite sign [35, 42, 43]. No-
tice also that the a2 and 1/L2 corrections are individually
large but also tend to cancel in the sum.

The systematic errors mostly result from the higher or-
der discretization and finite volume e�ects which are not
included in the fitting formula Eq. (5). We therefore
estimate the errors through the change of the results af-
ter adding a corresponding term in the fitting formula.
For O(1/L3), we add another 1/(mµL)3 term with the

con discon tot

aµ 23.76(3.96) -17.12(3.46) 6.80(4.65)
sys O(1/L3) 2.34(0.41) 1.72(0.32) 0.83(0.56)
sys O(a4) 0.88(0.53) 0.83(0.46) 1.08(0.98)

sys O(a2 log(a2)) 0.21(0.18) 0.28(0.14) 0.06(0.21)
sys O(a2/L) 4.18(2.37) 3.93(2.30) 0.50(2.38)

sys strange con 0.30 0 0.30
sys sub-discon 0 0.50 0.50

sys all 4.89(2.17) 4.41(2.15) 1.56(0.90)

TABLE II. Central value and various systematic errors. Num-
bers in parentheses are statistical error for the corresponding
values.

con discon tot

aµ 24.16(2.30) -17.12(3.46) 7.20(3.98)
sys hybrid O(a2) 0.20(0.45) 0 0.20(0.45)

sys O(1/L3) 2.34(0.41) 1.72(0.32) 0.83(0.56)
sys O(a4) 0.93(0.32) 0.83(0.46) 1.07(0.97)

sys O(a2 log(a2)) 0.23(0.08) 0.05(0.16) 0.05(0.16)
sys O(a2/L) 4.43(1.38) 3.93(2.30) 0.72(2.06)

sys strange con 0.30 0 0.30
sys sub-discon 0 0.50 0.50

sys all 5.12(1.32) 4.41(2.15) 1.65(1.13)

TABLE III. Central value and various systematic errors, use
the hybrid continuum limit for the connected diagrams. Num-
bers in parentheses are statistical error for the corresponding
values.

same coe�cient as the 1/(mµL)2 term. For O(a4) ef-
fects, we add an a4 term also for the Iwasaki ensembles
with coe�cient similar to the I-DSDR ensembles. For
O(a2 log(a2)) e�ects, we multiply the discretization ef-
fect terms in Eq. (5) by (1 � (�S/�) log(a2 GeV)). For
O(a2/L), we multiply the discretization e�ect terms in
Eq. (5) by (1 � 1/(mµL)). In addition, for the only two
contributions which we have not included in the present
HLbL calculation: (a) strange quark contribution to the
connected diagrams; (b) sub-leading disconnected dia-
grams’ contribution. We have performed lattice calcula-
tions with the QED� approach [47] on the 24D ensemble
to estimate the systematic errors. These systematic er-
rors are added in quadrature and summarized in Tab. II.
In the supplementary materials, these systematic errors
are discussed in more detail.

While the large relative error on the total is a bit unsat-
isfactory, we emphasize that our result represents an im-
portant estimate on the hadronic light-by-light scattering
contribution to the muon anomaly, with all systematic er-
rors controlled. It appears that this contribution cannot
bring the Standard Model and the E821 experiment in
agreement.
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FIG. 6. Infinite volume extrapolation. Connected (top), dis-
connected (middle), and total (bottom). We have use the
hybrid method to calculate the continuum limit for the con-
nected contribution.

In fact we can do even a bit better with the data on
hand. As seen in Fig. 5, which shows the cumulative
sum of all contributions up to a given separation of the
two sampled currents in the hadronic loop, the total con-
nected contribution saturates at a distance of about 1
fm for all ensembles. This suggests the region r >≥ 1
fm adds mostly noise and little signal, and the situation
gets worse in the limits. A more accurate estimate can
be obtained by taking the continuum limit for the sum
up to r = 1 fm, and above that by taking the contri-
bution from the relatively precise 483 ensemble. We in-
clude a systematic error on this long distance part since
it is not extrapolated to a = 0. The infinite volume
limit is taken as before. This hybrid procedure yields
acon
µ = 24.16(2.30)stat(5.12)sys ◊ 10≠10, with a statisti-

cal error that is roughly 2◊ smaller and the additional
O(a2) systematic error from the hybrid procedure is only
0.20 ◊ 10≠10. Unfortunately a similar procedure for the
disconnected diagram is not reliable, as can be seen in the
lower panel of Fig. 5. The cumulative plots do not reach

plateaus around 1 fm, but instead tend to fall signifi-
cantly up to 2 fm, or more. Once the cut moves beyond
1 fm it is no longer e�ective. The di�erent behavior be-
tween the two stems from the di�erent sampling strate-
gies used for each [32]. Using the improved connected
result, we find our final result for QEDL,

atot
µ = 7.20(3.98)stat(1.65)sys ◊ 10≠10, (6)

where the error is mostly statistical. We also include
all systematic errors added in quadrature, including the
hybrid O(a2) error of the connected diagram. The sys-
tematic errors are summarized in Tab. III.

V. SUMMARY AND OUTLOOK

We have presented results for the hadronic light-by-light
scattering contribution to the muon g ≠ 2 from Lattice
QCD+QED calculations with all errors under control.
Large discretization and finite volume corrections are ap-
parent but under control, and the value in the continuum
and infinite volume limits is compatible with previous
model and dispersive treatments, albeit with a large sta-
tistical error. Despite the large error, which results after
a large cancellation between quark- connected and dis-
connected diagrams, our calculation suggests that light-
by-light scattering can not be behind the approximately
3.7 standard deviation discrepancy between the Standard
Model and the BNL experiment E821. Future calcula-
tions will reduce the error significantly. The calculations
presented here strengthen the much anticipated test of
the Standard Model from the new experiments at Fermi-
lab and J-PARC, with the former planning to announce
first results near the beginning of 2020.
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Leading disconnected diagram (QCD+QED):

4

5.35(1.35)stat � 10�10 for the connected, leading dis-
connected, and total HLbL contributions to the muon
anomaly, respectively. The errors quoted are purely sta-
tistical. We have since improved the statistics on the
leading disconnected diagram with measurements on 39
additional configurations, and the contribution becomes
�6.03(60)�10�10. Since then we have computed on sev-
eral additional ensembles in order to take the continuum
and infinite volume limits (see Tab. I).

The results are displayed in Fig. 6 along with curves ob-
tained with the following equation:

aµ(L, aI, aD) = aµ

�
1 � b2

(mµL)2 (5)

�cI1(aI GeV)2 � cD1 (aD GeV)2 + cD2 (aD GeV)4
�

where aI, aD represent the lattice spacings for the Iwasaki
and I-DSDR ensembles respectively. For the Iwasaki en-
sembles, we define the variable aD to be zero and vice
versa. Therefore the lattice spacing is always equal to
a = aI + aD. We allow di�erent a2 coe�cients for
the Iwasaki and I-DSDR ensembles as the gauge ac-
tions are di�erent. The lattice spacings for the I-DSDR
ensembles are not small enough to allow us to ignore
the a4 e�ects, and therefore we include them in the fit.
As we only have two lattice spacings for the I-DSDR
ensembles, with both a2 and a4 e�ects unknown, we
cannot extrapolate to the continuum just with the I-
DSDR ensembles. Therefore, based on this fit form,
the continuum limit is obtained from the two Iwasaki
ensembles, and the I-DSDR ensembles are used to ob-
tain the volume dependence only. In particular, the
32Dfine ensemble does not a�ect the fitted aµ at all. It
only helps to determine the parameter cD2 , which pro-
vides evidence for the size of the potential O(a4) sys-
tematic errors. We find for the connected, disconnected,
and total contributions, acon

µ = 23.76(3.96)stat(4.89)sys �
10�10, adiscon

µ = �17.12(3.46)stat(4.41)sys � 10�10, atot
µ =

6.80(4.65)stat(1.56)sys �10�10, respectively. For the total
contribution, we fit the total contribution for each ensem-
ble, which is slightly di�erent from the sum of the fitted
results from the connected and the disconnected parts.
Notice there is a large cancellation between the connected
and disconnected diagrams that persists for a � 0 and
L � �, so even though the individual contributions are
relatively well resolved, the total is not. The cancella-
tion is expected since hadronic light-by-light scattering
at long distance is dominated by the �0 which contributes
to both diagrams, but with opposite sign [35, 42, 43]. No-
tice also that the a2 and 1/L2 corrections are individually
large but also tend to cancel in the sum.

The systematic errors mostly result from the higher or-
der discretization and finite volume e�ects which are not
included in the fitting formula Eq. (5). We therefore
estimate the errors through the change of the results af-
ter adding a corresponding term in the fitting formula.
For O(1/L3), we add another 1/(mµL)3 term with the

con discon tot

aµ 23.76(3.96) -17.12(3.46) 6.80(4.65)
sys O(1/L3) 2.34(0.41) 1.72(0.32) 0.83(0.56)
sys O(a4) 0.88(0.53) 0.83(0.46) 1.08(0.98)

sys O(a2 log(a2)) 0.21(0.18) 0.28(0.14) 0.06(0.21)
sys O(a2/L) 4.18(2.37) 3.93(2.30) 0.50(2.38)

sys strange con 0.30 0 0.30
sys sub-discon 0 0.50 0.50

sys all 4.89(2.17) 4.41(2.15) 1.56(0.90)

TABLE II. Central value and various systematic errors. Num-
bers in parentheses are statistical error for the corresponding
values.

con discon tot

aµ 24.16(2.30) -17.12(3.46) 7.20(3.98)
sys hybrid O(a2) 0.20(0.45) 0 0.20(0.45)

sys O(1/L3) 2.34(0.41) 1.72(0.32) 0.83(0.56)
sys O(a4) 0.93(0.32) 0.83(0.46) 1.07(0.97)

sys O(a2 log(a2)) 0.23(0.08) 0.05(0.16) 0.05(0.16)
sys O(a2/L) 4.43(1.38) 3.93(2.30) 0.72(2.06)

sys strange con 0.30 0 0.30
sys sub-discon 0 0.50 0.50

sys all 5.12(1.32) 4.41(2.15) 1.65(1.13)

TABLE III. Central value and various systematic errors, use
the hybrid continuum limit for the connected diagrams. Num-
bers in parentheses are statistical error for the corresponding
values.

same coe�cient as the 1/(mµL)2 term. For O(a4) ef-
fects, we add an a4 term also for the Iwasaki ensembles
with coe�cient similar to the I-DSDR ensembles. For
O(a2 log(a2)) e�ects, we multiply the discretization ef-
fect terms in Eq. (5) by (1 � (�S/�) log(a2 GeV)). For
O(a2/L), we multiply the discretization e�ect terms in
Eq. (5) by (1 � 1/(mµL)). In addition, for the only two
contributions which we have not included in the present
HLbL calculation: (a) strange quark contribution to the
connected diagrams; (b) sub-leading disconnected dia-
grams’ contribution. We have performed lattice calcula-
tions with the QED� approach [47] on the 24D ensemble
to estimate the systematic errors. These systematic er-
rors are added in quadrature and summarized in Tab. II.
In the supplementary materials, these systematic errors
are discussed in more detail.

While the large relative error on the total is a bit unsat-
isfactory, we emphasize that our result represents an im-
portant estimate on the hadronic light-by-light scattering
contribution to the muon anomaly, with all systematic er-
rors controlled. It appears that this contribution cannot
bring the Standard Model and the E821 experiment in
agreement.
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FIG. 6. Infinite volume extrapolation. Connected (top), dis-
connected (middle), and total (bottom). We have use the
hybrid method to calculate the continuum limit for the con-
nected contribution.

In fact we can do even a bit better with the data on
hand. As seen in Fig. 5, which shows the cumulative
sum of all contributions up to a given separation of the
two sampled currents in the hadronic loop, the total con-
nected contribution saturates at a distance of about 1
fm for all ensembles. This suggests the region r >≥ 1
fm adds mostly noise and little signal, and the situation
gets worse in the limits. A more accurate estimate can
be obtained by taking the continuum limit for the sum
up to r = 1 fm, and above that by taking the contri-
bution from the relatively precise 483 ensemble. We in-
clude a systematic error on this long distance part since
it is not extrapolated to a = 0. The infinite volume
limit is taken as before. This hybrid procedure yields
acon
µ = 24.16(2.30)stat(5.12)sys ◊ 10≠10, with a statisti-

cal error that is roughly 2◊ smaller and the additional
O(a2) systematic error from the hybrid procedure is only
0.20 ◊ 10≠10. Unfortunately a similar procedure for the
disconnected diagram is not reliable, as can be seen in the
lower panel of Fig. 5. The cumulative plots do not reach

plateaus around 1 fm, but instead tend to fall signifi-
cantly up to 2 fm, or more. Once the cut moves beyond
1 fm it is no longer e�ective. The di�erent behavior be-
tween the two stems from the di�erent sampling strate-
gies used for each [32]. Using the improved connected
result, we find our final result for QEDL,

atot
µ = 7.20(3.98)stat(1.65)sys ◊ 10≠10, (6)

where the error is mostly statistical. We also include
all systematic errors added in quadrature, including the
hybrid O(a2) error of the connected diagram. The sys-
tematic errors are summarized in Tab. III.

V. SUMMARY AND OUTLOOK

We have presented results for the hadronic light-by-light
scattering contribution to the muon g ≠ 2 from Lattice
QCD+QED calculations with all errors under control.
Large discretization and finite volume corrections are ap-
parent but under control, and the value in the continuum
and infinite volume limits is compatible with previous
model and dispersive treatments, albeit with a large sta-
tistical error. Despite the large error, which results after
a large cancellation between quark- connected and dis-
connected diagrams, our calculation suggests that light-
by-light scattering can not be behind the approximately
3.7 standard deviation discrepancy between the Standard
Model and the BNL experiment E821. Future calcula-
tions will reduce the error significantly. The calculations
presented here strengthen the much anticipated test of
the Standard Model from the new experiments at Fermi-
lab and J-PARC, with the former planning to announce
first results near the beginning of 2020.
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FIG. 6. Infinite volume extrapolation. Connected (top), dis-
connected (middle), and total (bottom). We have use the
hybrid method to calculate the continuum limit for the con-
nected contribution.

In fact we can do even a bit better with the data on
hand. As seen in Fig. 5, which shows the cumulative
sum of all contributions up to a given separation of the
two sampled currents in the hadronic loop, the total con-
nected contribution saturates at a distance of about 1
fm for all ensembles. This suggests the region r >≥ 1
fm adds mostly noise and little signal, and the situation
gets worse in the limits. A more accurate estimate can
be obtained by taking the continuum limit for the sum
up to r = 1 fm, and above that by taking the contri-
bution from the relatively precise 483 ensemble. We in-
clude a systematic error on this long distance part since
it is not extrapolated to a = 0. The infinite volume
limit is taken as before. This hybrid procedure yields
acon
µ = 24.16(2.30)stat(5.12)sys ◊ 10≠10, with a statisti-

cal error that is roughly 2◊ smaller and the additional
O(a2) systematic error from the hybrid procedure is only
0.20 ◊ 10≠10. Unfortunately a similar procedure for the
disconnected diagram is not reliable, as can be seen in the
lower panel of Fig. 5. The cumulative plots do not reach

plateaus around 1 fm, but instead tend to fall signifi-
cantly up to 2 fm, or more. Once the cut moves beyond
1 fm it is no longer e�ective. The di�erent behavior be-
tween the two stems from the di�erent sampling strate-
gies used for each [32]. Using the improved connected
result, we find our final result for QEDL,

atot
µ = 7.20(3.98)stat(1.65)sys ◊ 10≠10, (6)

where the error is mostly statistical. We also include
all systematic errors added in quadrature, including the
hybrid O(a2) error of the connected diagram. The sys-
tematic errors are summarized in Tab. III.

V. SUMMARY AND OUTLOOK

We have presented results for the hadronic light-by-light
scattering contribution to the muon g ≠ 2 from Lattice
QCD+QED calculations with all errors under control.
Large discretization and finite volume corrections are ap-
parent but under control, and the value in the continuum
and infinite volume limits is compatible with previous
model and dispersive treatments, albeit with a large sta-
tistical error. Despite the large error, which results after
a large cancellation between quark- connected and dis-
connected diagrams, our calculation suggests that light-
by-light scattering can not be behind the approximately
3.7 standard deviation discrepancy between the Standard
Model and the BNL experiment E821. Future calcula-
tions will reduce the error significantly. The calculations
presented here strengthen the much anticipated test of
the Standard Model from the new experiments at Fermi-
lab and J-PARC, with the former planning to announce
first results near the beginning of 2020.
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Subleading diagrams:
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FIG. 9. Sub-leading disconnected diagrams’ contribution. We
only include the second diagram in Fig. 3. Only light quark
contribution is calculated except for the tadpole part, where
we reuse the calculation for the disconnected diagrams in
HVP calculations described in Ref. [3] and both light quark
and strange quark contribution is included. The remaining
diagrams are equally or more suppressed.

Based on the experiences from the QED test, result from
the fit-product-form-2L-2a-2ad-4ad fit the data better.
However, in QCD calculations, fit-plus-form-2L-2a-2ad-
4ad leads to smaller statistical error. At present level
of accuracy, smaller statistical error is more important
than potentially smaller systematic error. In particular,
the systematic error is largely cancelled between the con-
nected diagrams and the disconnected diagrams, while
the statistical error does not. The fitting results with all
the fitting forms are also summarized in Tab VII.
We have also performed the calculation without the
hybrid continuum limit. The results are shown in
Tabs. VIII, IX, X.
Finally, the detailed results and plots for each fitting
forms with or without the hybrid continuum limit are
listed in remaining tables and plots.
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Summary of results:

limits. A more accurate estimate can be obtained by taking
the continuum limit for the sum up to r ¼ 1 fm, and above
that by taking the contribution from the relatively precise
483 ensemble. We include a systematic error on this long
distance part since it is not extrapolated to a ¼ 0. The
infinite volume limit is taken as before. This hybrid
procedure yields aconμ ¼ 24.16ð2.30Þstatð5.11Þsys × 10−10,
with a statistical error that is roughly 2× smaller and the
additional Oða2Þ systematic error from the hybrid pro-
cedure is only 0.20 × 10−10. Unfortunately a similar pro-
cedure for the disconnected diagram is not reliable, as can
be seen in the lower panel of Fig. 6. The cumulative plots
do not reach plateaus around 1 fm, but instead tend to fall
significantly up to 2 fm, or more. Once the cut moves
beyond 1 fm it is no longer effective. The different behavior
between the two stems from the different sampling strat-
egies used for each [33]. Using the improved connected
result, we find our final result for QEDL,

atotμ ¼ 7.87ð3.06Þstatð1.77Þsys × 10−10; ð6Þ

where the error is mostly statistical. We also include all
systematic errors added in quadrature, including the hybrid

Oða2Þ error of the connected diagram. The systematic
errors are summarized in Table III.
Summary and outlook.—We have presented results for

the hadronic light-by-light scattering contribution to the
muon g − 2 from Lattice QCDþ QED calculations with all
errors under control. Large discretization and finite volume
corrections are apparent but under control, and the value in
the continuum and infinite volume limits is compatible with
previous model and dispersive treatments, albeit with a
large statistical error. Despite the large error, which results
after a large cancellation between quark-connected and
disconnected diagrams, our calculation suggests that light-
by-light scattering can not be behind the approximately 3.7
standard deviation discrepancy between the standard model
and the BNL experiment E821. Future calculations will
reduce the error significantly. The calculations presented
here strengthen the much anticipated test of the standard
model from the new experiments at Fermilab and J-PARC,
with the former planning to announce first results soon.
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FIG. 6. Cumulative contributions to the muon anomaly, con-
nected (upper) and disconnected (lower). r is the distance
between the two sampled currents in the hadronic loop (the
other two currents are summed exactly) and the horizontal axis is
the cumulative contributions from r and below: 243 IDSDR
(squares), 243 IDSDR (squares), 323 IDSDR (crosses), 483

Iwasaki (diamonds), and 643 Iwasaki (plusses).

TABLE III. Central value and various systematic errors, use the
hybrid continuum limit for the connected diagrams. Numbers in
parentheses are statistical error for the corresponding values.

con discon tot

aμ 24.16(2.30) −16.45ð2.13Þ 7.87(3.06)
sys hybrid Oða2Þ 0.20(0.45) 0 0.20(0.45)
sys Oð1=L3Þ 2.34(0.41) 1.72(0.32) 0.83(0.56)
sys Oða4Þ 0.88(0.31) 0.71(0.28) 0.95(0.92)
sys Oða2 logða2ÞÞ 0.23(0.08) 0.25(0.09) 0.02(0.11)
sys Oða2=LÞ 4.43(1.38) 3.49(1.37) 1.08(1.57)
sys strange con 0.30 0 0.30
sys subdiscon 0 0.50 0.50
sys all 5.11(1.32) 3.99(1.29) 1.77(1.13)
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Combined with data-driven result in Theory Initiative whitepaper result
(Phys. Rept. 887 (2020) 1-166): aHLbL

µ = 9.2(1.8)× 10−10
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Abstract We compute the hadronic light-by-light scatter-
ing contribution to the muon g − 2 from the up, down, and
strange-quark sector directly using lattice QCD. Our calcu-
lation features evaluations of all possible Wick-contractions
of the relevant hadronic four-point function and incorporates
several different pion masses, volumes, and lattice-spacings.
We obtain a value of aHlbl

µ = 106.8(15.9) × 10−11 (adding
statistical and systematic errors in quadrature), which is con-
sistent with current phenomenological estimates and a pre-
vious lattice determination. It now appears conclusive that
the hadronic light-by-light contribution cannot explain the
current tension between theory and experiment for the muon
g − 2.

1 Introduction

The anomalous magnetic moment of the muon, aµ ≡ (g −
2)µ/2, is one of the most precisely measured quantities of
the Standard Model (SM) of particle physics. Its value is of
considerable interest to the physics community as, currently,
there exists a 3.7σ tension between the experimental determi-
nation of Ref. [1] and the current theoretical evaluation (see
Ref. [2] and references therein). Although the central value
of the theoretical prediction is overwhelmingly dominated
by QED effects, its uncertainty is dominated by low-energy
QCD contributions. If the tension persists under more pre-
cise scrutiny, it is possible that a 5σ discrepancy could appear,
heralding an indirect determination of Beyond the Standard
Model (BSM) physics.

A new series of experimental results (E989 at Fermilab
[3] and E34 at J-PARC [4]) intend to increase the precision

a e-mail: meyerh@uni-mainz.de (corresponding author)

of the experimental determination by a factor of about four;
as it stands, the error on aµ is at the level of 63×10−11. Sim-
ilarly, the theory community is striving to reduce the error
of their determination to match the upcoming experimental
precision. One of the contributions that is of specific inter-
est is the hadronic vacuum polarisation (HVP), which enters
at O(α2

QED). Being a QCD quantity dominated by hadronic
scales, this contribution can be directly obtained from first-
principles lattice QCD calculations, although currently its
most precise estimate [2,5–11] comes from dispersive meth-
ods and is 6931(40) × 10−11. Significant progress has been
made in recent years within the lattice approach [12–22], and
these determinations are quickly becoming competitive with
the dispersive approach.

A much smaller contribution to the overall (g−2)µ comes
from hadronic light-by-light scattering (Hlbl), entering at
O(α3

QED). However, this quantity is currently only known
at the 20% level: the recent evaluation of Ref. [2], omitting
an estimate of the small charm-quark contribution, amounts
to [23–35] 89.0(19.0) × 10−11. Thus the absolute uncer-
tainty of the Hlbl contribution is only about half that of the
recent average [2] for the HVP. To match the expected exper-
imental precision, it is thought that the Hlbl contribution
aHlbl
µ needs to be known with a precision of around 10%.

The task of directly computing this contribution using lattice
QCD methods is quite daunting, as it requires the compu-
tation of connected and disconnected four-point functions.
Few lattice groups have even performed measurements of
the leading contributions, and none with the desired preci-
sion. The most-precise lattice determination to date [36] uses
the finite-volume QEDL prescription and quotes a value of
(adding their statistical and systematic errors in quadrature)
78.7(35.4) × 10−11. In [37], we provided an estimate at the

123

Final result, summary and outlook
I Our estimate for ahlbl

µ at the physical point: ahlbl
µ = 106.8(15.9) ◊ 10≠11.

I We provide the first lattice determination of ahlbl
µ at the physical point

including all 5 Wick-contraction topologies from the 4-pt function, with an
overall precision of 15%.

I The required precision for ahlbl
µ is met and the HLbL does not seem to be able

to explain the discrepancy between theory and experiment.
I Outlook:

I A better understanding of the hadronic composition of HLbL by describing the
lattice integrand.

I Identification of the charged PS-loop contribution.
I Further investigation of the chiral behavior of ahlbl

µ .
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the (2 + 2) contribution more negative and the approach to the continuum limit making it
less negative.

C. Combined light-quark results

Due to the significant cancellation between the connected and the (2+2) contribution, we
find it useful to take the ensemble-by-ensemble sum of the contributions and then perform
the extrapolation. For this sum, our data cannot resolve any of the terms non-analytic in
m2

⇡ of Eq. (22), and it appears that these contributions largely cancel. We find that the fit
ansatz

aµ(m2
⇡, m⇡L, a2) = aµ(0,1, 0)(1 + Am2

⇡ + Be�m⇡L/2 + Ca2), (23)

describes our data very well. This ansatz assumes that any potential singular terms in our
data cancel to a large extent, an assumption that we address along with the discussion
of systematics in Section VIII. Here we simply note that, in addition to the cancellation
between the connected and the (2+2) contribution, the chirally singular behaviour expected

in a
Conn+(2+2)
µ from the ⇡0 exchange and the charged pion loop is numerically suppressed

over the pion-mass interval 135 to 200 MeV, due to a partial cancellation between these two
long-distance contributions.
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FIG. 8. Chiral-continuum-infinite-volume extrapolation of the sum of the light-quark, fully-

connected and (2 + 2) contributions to aHlbl
µ . See the caption of Fig. 6 (right panel).

Fig. 8 shows an extrapolation for the sum of the light-quark, fully-connected and (2 +
2) disconnected contributions. It appears in the plot that no chiral curvature is present
in this combination and the error grows at lighter pion masses; this is due to the large
cancellation between the connected and disconnected contributions. Considering the final
column in Tab. IV, we do not appear to benefit from a cancellation of statistical errors due
to correlations between the two measurements. It is also clear that the approach to the
infinite volume is less severe in the combination of these two quantities compared to fitting
them individually; this is likely due to large cancellations in the long-distance contributions
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topology, we deem it legitimate to assign the value of zero to the strange contribution. This
comes with no contribution to the error budget, as this will be irrelevant compared to our
overall level of precision for aHlbl

µ . Note that the mere charge factor suppresses the strange
(2 + 1 + 1) contribution relative to the light (2 + 1 + 1) by a factor of five. As for the
(1 + 1 + 1 + 1) contribution, its observed smallness on the right panel of Fig. 15 does not
come as a surprise, in particular since its charge factor weights it five times less than the
already-small (2 + 1 + 1). Any improvement to either of these quantities would have a
completely negligible e↵ect on the final result for aHlbl

µ , at our current level of precision.

VIII. THE TOTAL aHlbl
µ

In this section we investigate two approaches to determining the contribution of the
two leading light-quark contributions to aHlbl

µ : the first consists of fitting the sum of the
two contributions and the second consists of adding the results of individual fits to the
fully-connected and (2 + 2) contributions using various ansätze. We investigate possible
systematics in our approach by comparing the results with terms in a or a2 and by performing
cuts in m⇡L, a2, and m2

⇡.

A. Sum and fit
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FIG. 16. Chiral-continuum-infinite-volume fits to the sum of the light-quark fully-connected and

(2 + 2) disconnected contributions. The vertical lines represent the result given in Eq. (28) with

its statistical (dashed lines) and full uncertainty (solid lines).

We find that the fit Ansatz of Eq. (23) describes our data well. At the same time, a term
linear in a instead of a2 also gives a good fit (�2/dof < 1 for all fits in this section). The
results for these fits can be found in Fig. 16 and are listed in Tab. XI in Appendix B. There
is a systematic di↵erence between the fits in a and a2, with the former pulling the final value
up a little. Applying the various cuts has little impact on the central value, and only the cut
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Current status
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Summary of lattice efforts and outlook

I Two groups (RBC/UKQCD and Mainz) now have complete
first-principles QCD+QED results for the HLbL; the two
independent results agree with each other

I Additional groups have joined HLbL efforts with progress
reports for the pion TFF (ETMC) and the η, η′ TFF (BMW)
at recent Lattice 2021

I Further improvements expected in following years (such as
reduced statistical error for RBC/UKQCD, physical pion mass
for Mainz)
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