



# **Overview of recent spectroscopy results in two-photon interactions**



Wenjing Zhu (zhuwj@ihep.ac.cn) Fudan University on behalf of the Belle Collaboration

# Outlines

- Two-photon interactions
- Charmonium(-like) states
- Accelerators and detectors
- X(3872) observation
- X(3872) production in two-photon interaction
- The 2P triplets near 3.9 GeV
- X(4350) discovery
- $\gamma \gamma \rightarrow \gamma \psi(2S)$  at Belle
- Summary

# **Two-photon interactions**



Nuclear Physics B 523 (1998) 423-438

#### Meson-photon transition form factors and resonance cross-sections in $e^+e^-$ collisions

G.A. Schuler<sup>a,1</sup>, F.A. Berends<sup>a,b</sup>, R. van Gulik<sup>b</sup> <sup>a</sup> Theory Division, CERN, CH-1211 Geneva 23, Switzerland <sup>b</sup> Instituut-Lorentz, University of Leiden, Leiden, The Netherlands

Received 3 November 1997; revised 15 January 1998; accepted 29 January 1998

- Meson-photon-photon transition form factors for S-, P-, and Dwave states are calculated.
- >  $Q^2$  dependence of the (single) form factor governs the production of mesons.
- $\triangleright e^+e^-$  cross section for 1<sup>+</sup> states do not vanish at low  $Q^2$



# Charmonium(-like) states



-4-

GeV/*c*<sup>2</sup>. [Phys. Rev. D 72, 054026 (2005)]

# **Accelerators and detectors**



# X(3872) observation

$$\chi_{c1}(3872)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

also known as X(3872)This state shows properties different from a conventional  $q\overline{q}$  state. A candidate for an exotic structure. See the review on non- $q\overline{q}$  states.

- The observation of X(3872) solved the issue for the existence as charmonium states that are expected to be below threshold for decays to open charm and narrow.
- Production
  - In pp / $par{p}$  collision : rate similar to charmonium
  - In *B* decays: *KX* similar to  $c\bar{c}$ ,  $K^*X$  smaller than  $c\bar{c}$









JHEP 04, 154 (2013)

3.7 3.75 3.8 3.85 3.9 3.95



#### X(3872) production in two-photon interaction

• The charmoniumlike state X(3872) has been observed in various interaction, but not searched for in two-photon interactions

Phys.Rev.Lett.126.122001(2021)

• Mesons with  $J^{PC} = 1^{++}$  can be produced if one or both photons are highly virtual — denoted as  $\gamma^*$ 



• The value of two-photon decay width, obtained from this measurement, is sensitive to the internal structure of the X(3872).

#### X(3872) production in two-photon interaction

#### Phys.Rev.Lett.126.122001(2021)



■ With future advances in calculations of  $\tilde{\Gamma}_{\gamma\gamma}$  for non- $c\bar{c}$  states and higher luminosities accumulated by Belle II, this method will clarify the understanding of the *X*(3872).

• Assuming the  $Q^2$  dependence of a  $c\bar{c}$  meson model



□ With 0.032 <  $\mathcal{B}(X(3872) \rightarrow \pi^+\pi^-J/\psi)$ < 0.061 at 90% C.L.,  $\tilde{\Gamma}_{\gamma\gamma} = 20 - 500$  eV, this is consistent with the  $c\bar{c}$  model prediction. [NPB 523, 423 (1998), PRD 83, 114015 (2011)]

#### The 2P triplets near 3.9 GeV

 $\chi_{c2}(3930)$ 

 $I^{G}(J^{PC}) = 0^{+}(2^{++})$ 

- X(3930) discovered by Belle
   [Phys. Rev. Lett. 96, 082003 (2006)]
- ✓ Identified as χ<sub>c2</sub>(2P) candidate
   by Babar [Phys. Rev. D 81, 092003 (2010)]



- > The first radially excited  $\chi_{cJ}$  states are predicted to have masses between 3.9 and 4.0 GeV/ $c^2$ , which is considerably above  $D\overline{D}$  threshold.
- ➤ The results of this paper on mass, decay angular distributions, and Γ<sub>γγ</sub>𝔅(→ DD̄) are all consistent with expectations for the χ'<sub>c2</sub>, the 2<sup>3</sup>P<sub>2</sub> charmonium state.



| Resonance         | Mass (GeV/ $c^2$ )             | Width (MeV)            |  |
|-------------------|--------------------------------|------------------------|--|
| $\chi_{c0}(3930)$ | $3.9238 \pm 0.0015 \pm 0.0004$ | $17.4 \pm 5.1 \pm 0.8$ |  |
| $\chi_{c2}(3930)$ | $3.9268 \pm 0.0024 \pm 0.0008$ | $34.2 \pm 6.6 \pm 1.1$ |  |

- D D̄ resonant structure has previously been observed in the χ<sub>cJ</sub>(3930) region; however it has usually been assumed to arise from the χ<sub>cJ</sub>(3930) resonance.
   Clear demonstrate that both
  - spin-0 and spin-2 contributions are necessary. -9-

#### The 2P triplets near 3.9 GeV



- Three of the new states were discovered by Belle in the 3.90-3.95  $GeV/c^2$ .
- They appear in different production and decay processed, and are usually considered to be distinct particles, however there is no decisive evidence.
  - These values are consistent with those of the Y(3940), and close to those of the Z(3930).
  - Helicity-0 component is allowed, a  $J^{PC} = 2^{++}$ assignment is possible.

X(3915) from Belle:

- $M = (3915 \pm 3 \pm 2)$  MeV;
- $\Gamma = (17 \pm 10 \pm 3) \text{ MeV}$
- $N^{\text{sig}} = 49 \pm 14 \pm 4$  events
- Signif. =  $7.7\sigma$ .

Belle: PRL104, 092001(2010)

```
X(3915) was expected to be \chi_{c0}(2P)
candidate.
```

X(3915) From BaBar:

•  $M = (3919.4 \pm 2.2 \pm 1.6) \text{ MeV}/c^2$ ;

3.95

4

m(J/ψω) (GeV/c<sup>2</sup>)

4.05

4.1

4.15

4.2

- $\Gamma = (13 \pm 6 \pm 3)$  MeV;
- $N^{\rm sig} = 59 \pm 10$ :
- Signif. =  $7.6 \sigma$ .
- Data largely prefer  $J^P = 0^{\pm}$  over  $2^+$ .

BaBar: PRD86.072002(2012)

#### The 2P triplets near 3.9 GeV

- The charmoniumlike state X(3915) was observed in the same B decay mode by both Belle an BABAR.
- The X(3915) was identified as the  $\chi_{c0}(2P)$  in the 2014 PDG.
- However,  $\chi_{c0} \rightarrow D\overline{D}$  decay mode is expected to be dominant but has not been observed.  $X(3915) \rightarrow J/\psi\omega$ , would be OZI suppress for the  $\chi_{c0}(2P)$ .



The new state X(3860) is a better candidate for the χ<sub>c0</sub>(2P) charmonium state the X(3915), since its properties are well matched to expectations for the χ<sub>c0</sub>(2P).
 The preferred quantum numbers of the X(3860) are J<sup>PC</sup> = 0<sup>++</sup>.

### X(4350) discovery

(4350)

$$I^{G}(J^{PC}) = 0^{+}(?^{?+})$$

OMITTED FROM SUMMARY TABLE Seen by SHEN 10 in the  $\gamma\gamma \rightarrow J/\psi\phi$ . Needs confirmation.



 $m(X(4350)) = [4350.6^{+4.6}_{-5.1}(stat) \pm 0.7(syst)] \text{ MeV}/c^2$  $\Gamma(X(4350)) = [13^{+18}_{-9}(stat) \pm 4(syst)] \text{ MeV}$ 

• The first investigation of the  $\gamma \gamma \rightarrow \phi J/\psi$  is to search for high mass states with  $J^{PC} = 0^{++}$  or  $2^{++}$ , such as the tetraquark states and molecular states that are predicted by various models.

- The mass of this structure is consistent with the predicted values of a  $c\bar{c}s\bar{s}$  tetraquark state with  $J^{PC} = 2^{++}$ , and a  $D_s^{*+}D_{s0}^{*-}$ molecular state.
- The possibility that X(4350) could be an excited *P*-wave charmonium state( $\chi''_{c2}$ ).

Both  $\chi_{c0}(2P)$  and  $\chi_{c2}(2P)$  can be produced in two-photon collision and decay to  $\gamma\psi(2S)$  via E1 transition. [Phys. Rev. D 72, 054026 (2005)]

The partial widths are expected to be  $\Gamma(\chi_{c0}(2P) \rightarrow \gamma \psi(2S)) \approx 135$  keV and  $\Gamma(\chi_{c2}(2P) \rightarrow \gamma \psi(2S)) \approx 207$  keV according to Godfrey-Isgur relativized potential model. [Phys. Rev. D 72, 054026 (2005)]

•  $\psi(2S)$  reconstructed from  $J/\psi\pi^+\pi^-$ , and  $J/\psi$  reconstructed from  $e^+e^-$  or  $\mu^+\mu^-$ .



arXiv: 2105.06605(2021)



- ➤ We apply  $M^2_{rec}(\gamma\psi(2S)) > 10(\text{GeV}/c^2)^2$ to remove most ISR events.
- The transverse momenta of  $\psi(2S)$  and  $\gamma\psi(2S)$  are used to suppress the ISR background further.



We apply P<sup>\*</sup><sub>t</sub>(ψ(2S)) > 0.1GeV/c and P<sup>\*</sup><sub>t</sub>(γψ(2S)) < 0.2GeV/c to suppress the ISR background with selection efficiencies of (97.1±0.3)% and (67.8±0.7)%, respectively.</p>

Fitting to the  $M(\gamma \psi(2S))$  distribution

 $f_{PDF} = f_{R_1} + f_{R_2} + f_{ISR} + f_{bkg} + f_{SB}$ 



arXiv: 2105.06605(2021)

 $R_1$  near 3.92 GeV/ $c^2$ :  $N_1 = 31 \pm 11$  events,  $3.1\sigma$ including systematic uncertainties.

 $R_2$  near 4.01 GeV/ $c^2$ :  $N_2 = 19 \pm 7$  events, study on look-elsewhere effect show a global significance of 2.8 $\sigma$ .

- ◆  $R_1$  may be X(3915),  $\chi_{c2}$ (3930), or mix of them. Assuming  $R_1$  is the  $\chi_{c2}$ (3930), a rough estimation shows Γ( $\chi_{c2}$ (3930) →  $\gamma\psi(2S)$ ) = 200~300keV. [207 keV calculated by GI model in PRD 72, 054026 (2005)]
- R<sub>2</sub> has the same mass and width with 2<sup>++</sup> partner of X(3872)
  predicted in PRD 88, 054007 (2013), Eur. Phys. J. C 75, 547 (2015)



| Resonant parameters                                        | J = 0                    | J=2               |
|------------------------------------------------------------|--------------------------|-------------------|
| $M_{R_1}$                                                  | $3922.4 \pm 6.5 \pm 2.0$ |                   |
| $\Gamma_{R_1}$                                             | $22\pm17\pm4$            |                   |
| $\Gamma_{\gamma\gamma}\mathcal{B}(R_1 \to \gamma\psi(2S))$ | $9.8\pm3.6\pm1.2$        | $2.0\pm0.7\pm0.2$ |
| $M_{R_2}$                                                  | $4014.3\pm$              | $4.0 \pm 1.5$     |
| $\Gamma_{R_2}$                                             | $4\pm11\pm6$             |                   |
| $\Gamma_{\gamma\gamma}\mathcal{B}(R_2 \to \gamma\psi(2S))$ | $6.2\pm2.2\pm0.8$        | $1.2\pm0.4\pm0.2$ |

#### Summary

- ✓ Data taking at Belle has been stopped for more than 10 years, new exciting results continue to be produced by Belle Collab.
- ✓ Two states are reported in the study of the two-photon process  $\gamma\gamma \rightarrow \gamma\psi(2S)$  for the first time with the full Belle data sample, two structures possibly the  $\chi_{c0}(2P)$  and  $\chi_{c2}(2P)$  are observed in the radiative transition final state  $\gamma\psi(2S)$ .
- ✓ Some study on the states near 3.9 GeV/ $c^2$  have been observed the *P*-wave triplets to figure out the full picture of XYZ states, particularly for *X*(3872).
- ✓ A narrow peak with significance of 3.2 $\sigma$  (named X(4350)) is observed in the process of  $\gamma\gamma \rightarrow \phi J/\psi$ ; the mass and width of this structure are measured in this work.
- The production rate of two photon interaction is typically low, much larger data samples are essential to more instructive results, super-high luminosity experiments, such as Belle II, are great hopes.

