

Measuring the hadronic corrections to the anomalous magnetic moment of the muon

Precision Physics, Fundamental Interactions and Structure of Matter

March 18, 2022 Achim Denig Johannes Gutenberg University Mainz

4

New direct $(g-2)_{\mu}$ Measurement FNAL

GU

2019: Standard Model Prediction of $(g-2)_{\mu}$

Hadronic contribution **non-perturbative**, the **limiting** contribution

NNLO (1.2 ± 0.01) $\cdot 10^{-10}$

 $a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$ \rightarrow HVP: Hadronic Vacuum Polarization ($\cong 687 \dots 694 \pm 2.4 \dots 4.1$) $\cdot 10^{-10}$ $BDJ19 \quad DHMZ19 \quad FJ17 \quad KNT19$ $a_{\mu}^{HVP, LO} \times 10^{10} \quad 687.1(3.0) \quad 694.0(4.0) \quad 688.1(4.1) \quad 692.8(2.4)$

→ HLbL: Hadronic Light-by-Light (10.5 ± 2.6) · 10⁻¹⁰ Glasgow "consensus" value

Achim Denig

7

LTH 1234 LUTP 20-20

PSI-PR-20-0

ZU-TH 18/20

FERMILAB-PUB-20-207-1 CERN-TH-2020-075 INT.PUB.20.021 IFT-UA M/CSIC-20-74 KEK Prentint 2020-LMU-ASC 18/20 MITP/20-028 MAN/HEP/2020/00 196 pages, 103 figures LIWTHEN 2020, L4

The anomalous magnetic moment of the muon in the Standard Model

T. Aoyama^{1,2,3}, N. Asmussen⁴, M. Benayoun⁵, J. Bijnens⁶, T. Blum^{7,8}, M. Bruno⁹, I. Caprini¹⁰ C. M. Calame¹¹, N. Asimassen, M. Benayoun, J. Bijneis, J. Dinim, J. M. Banil, N. Davierl, C. M. Carloni, Calame¹¹, N. (28):121, G. Colangelol⁴, F. Curciarellol¹³, H. Cayel⁷, I. Danilkin¹², M. Davierl⁷ C. T. H. Davies¹⁹, M. Della Morte³⁰, S. I. Eidelman¹²², A. X. El-Khadra^{23,24}, A. Gérardin²³, D. Giusti^{26,27} M. Gotterman²⁸, Steven Gottlieb²⁹, V. Gülpers³⁰, F. Hagelslein¹⁴, M. Hayakawa^{31,2}, G. Herdotza³⁵, D. W. Hertzog³, A. Hoecker³⁴, M. Hoferichter^{14,35}, B.-L. Hoid¹⁶, R. J. Hudspith^{12,13}, F. Ignatov²¹, T. Izubuchi^{17,3}, F. Jegerlehner⁸⁶ L. Jin^{7,8}, A. Keshavarzi³⁹, T. Kinoshitt^{34,1}, B. Kubis³⁶, A. Kupich²¹, A. Kupich²², I. Laub¹⁴, C. Lehne^{5,26}, J. Liub¹⁴, C. Lehne^{5,26}, J. Liub¹⁴, C. Lehne^{5,26}, J. Liub¹⁴, C. Lehne^{5,26}, J. Kupich^{24,35}, J. Laub¹⁴, C. Lehne^{5,26}, J. Liub^{14,47}, B. Malaescu⁷, K. Maltman^{44,45}, M. K. Marinkovic^{44,47}, P. Masiuan^{44,49} A. S. Meyer³⁷, H. B. Meyer^{12,13}, T. Mibe¹, K. Miura^{12,13,3}, S. E. Muller⁵⁰, M. Nio^{2,51}, D. Nomura^{52,53}, A. Nyffeler¹ V. Pascalutsa¹², M. Passera¹⁴, E. Perez del Rio¹⁵, S. Periv^{44,49}, A. Portelli¹⁵, M. Procura⁵⁶, C. F. Redme¹⁴, B. L. Roberts⁵⁷, P. Sánchez-Paertas⁴⁹, S. Serednyakov²¹, B. Shwartz²¹, S. Simula²⁷, D. Stöckineer⁵⁸ H. Stöckinger-Kim58, P. Stoffer59, T. Teubner60, R. Van de Water24, M. Vanderhaeghen12,13, G. Venanzoni61 G. von Hippel12, H. Wittig12,13, Z. Zhang18, M. N. Achasov²¹, A. Bashir⁶², N. Cardoso⁴⁷, B. Chakraborty⁶³, E.-H. Chao¹², J. Charles²⁵, A. Crivellin^{64,6} D. Deineka¹², A. Denig^{12,13}, C. DeTar⁶⁶, C. A. Dominguez⁶⁷, A. E. Dorokhov⁶⁸, V. P. Druzhinin²¹, G. Eichmann^{69,6} M. Fael⁷⁰, C. S. Fischer⁷¹, E. Gámiz⁷², Z. Gelzer²³, J. R. Green⁹, S. Guellati-Khelifa⁷³, D. Hatton¹⁹, N. Hermansson-Truedsson¹⁴, S. Holz³⁶, B. Hörz⁷⁴, M. Knecht²⁵, J. Koponen¹, A. S. Kronfeld²⁴, J. Laiho⁷ S. Leupold⁴², P. B. Mackenzie³⁴, W. J. Marciano³⁷, C. McNeile⁷⁶, D. Mohler^{12,13}, J. Monnard¹⁴, E. T. Neil⁷ A. V. Nesterenko⁶⁸, K. Ottnad¹², V. Pauk¹², A. E. Radzhabov⁷⁸, E. de Rafael²⁵, K. Rava⁷⁹, A. Risch¹² A. Rodríguez-Sánchez⁶, P. Roig⁸⁰, T. San José^{12,13}, E. P. Solodov²¹, R. Sugar⁸¹, K. Yu. Todyshev²¹, A. Vainshtein⁸ A. Vaquero Avilés-Casco⁶⁶, E. Weil⁷¹, J. Wilhelm¹², R. Williams⁷¹, A. S. Zhevlakov⁷⁸ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukaba 305-0801, Japan 2 Nishing Center RIKIN Wake 351-0198 Japan ¹Koksyanhi Mankawa Institute for the Origin of Patricles and the Universe (KMI), Nagoya University Nagoya 464-8602, Japa ⁶School of Physics and Astronomy, University of Southampton, Saukampton, Southampton, ⁶Department of Astronomy and Theoretical Physics, Land University. Solvegatan 14A, 22362 Land, Sweden riment of Physics, 196 Auditorium Road, Unit 3016, University of Connecticut, Storrs, CT 06269-3046, USA ¹Operment of Physics, 10 Nadaviran Root, Unit 2004, Uniterity of Construint, Surver, 17 (2005) 2004, USA ⁸ERDS R08, Research Carefor Bendrahmen Wannau Uniterity, 1906, NI 1970, USA ⁸Bendrahmen Versteinen Bendrahmen Variante Uniterity, 1906, NI 1970, USA ¹⁰Bendrahmen Versteinen Bendrahmen (1996) 2007, ert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Born, Sidlerstrasse 5, 3012 Born, Switzerland Dipartimento di Fisica e Astronomia "Btore Majorana" Università di Catania, Itali ⁶Laboratori Nazionali di Frascati dell'INFN, Frascati, Italy ¹⁷Institute of Physics, University of Silesia, 41-500 Chorgow, Poland 18 IJCLah. Université Paris-Saclay and CNRS/IN2P3, 91405 Orsay, France ¹⁹SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom ²⁰IMADA and CP3-Origins, University of Southern Denmark, Odenac, Denmark ²¹Budker Institute of Nuclear Physics, 11 Lawrentyev St., and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia ²²Lebedev Physical Institute, 53 Leninskiy Pr., Moscow 119333, Russi

Goal: theory consensus value of muon g-2 SM prediction (most relevant hadronic contributions!)

- Working groups on HVP, HLbL, LatticeQCD, ...
- Four collaboration meetings and various workshops on subtopics
- Scrutiny of various theoretical evaluations

2020

00

 ∞

C

 \frown

Hadronic Vacuum Polarization (HVP)

Estimate of (g-2) Theory Initiative based on dispersive approach (including higher orders): (693.1 ± 4.0) \cdot 10⁻¹⁰ was (\cong 687 ... 694 ± 2.4 ... 4.1) \cdot 10⁻¹⁰

GU

Initial State Radiation (ISR)

Initial State Radiation aka Radiative Return

- No systematic variation of E_{beam}
- High statistics thanks to high luminosity

DAPHNE

 Precise knowledge of radiative corrections mandatory (H_{rad})

PHOKHARA event generator

Systematic Uncertainties on $\rho(770)$ peak

- ISR BABAR 0.5%
- ISR KLOE 0.6% (average of 3 analyses)
- ISR BESIII 0.9%
- Energy Scan CMD2 0.8%*

* limited in addition by statistics

GU

 376.9 ± 6.3

 366.9 ± 2.1

395

 $368.2 \pm 1.5 \pm 3.3$

400

405

- LA Analysis Source **BESIII 2016** Normalization to 2.9/fb $\mu^+\mu^-\gamma$ events (Update) Photon efficiency 0.2 0.2 Pion tracking efficiency 0.3 Pion ANN efficiency 0.2 0.3 Pion e-PID efficiency 0.2 0.1 Angular acceptance 0.1 0.1 Background subtraction 0.1 0.1 Unfolding procedure 0.2 0.2 0.5 Luminosity L FSR correction 0.2 0.2 Vacuum polarization 0.2 -Radiator function 0.5 0.5 Sum Systematics 0.9 Statistical error 0.4 0.3
- BESIII aims for new two-pion analysis with precision goal of 0.5% (tagged analysis)

 BESIII aims for new two-pion analysis with precision goal of 0.5% (tagged analysis) Tagged analysis

 BESIII aims for an improved measurement of the mass range above 1 GeV (untagged analysis)

Source	BESIII 2016	LA Analysis
	2.9/fb	Normalization to
	(Update)	$\mu^+\mu^-\gamma$ events
Photon efficiency	0.2	-
Pion tracking efficiency	0.3	0.2
Pion ANN efficiency	0.2	0.3
Pion e-PID efficiency	0.2	0.1
Angular acceptance	0.1	0.1
Background subtraction	0.1	0.1
Unfolding procedure	0.2	0.2
Luminosity $\mathcal L$	0.5	-
FSR correction	0.2	0.2
Vacuum polarization	0.2	-
Radiator function	0.5	-
Sum Systematics	0.9	0.5
Statistical error	0.4	0.3

Result found to be above prediction of pQCD!

Achim Denig

Conclusions & Outlook HVP

- JGU
- HVP error (and therefore SM prediction of muon g-2) largely limited by KLOE– BABAR discrepancy of the pion FF measurement
- Existing BESIII and SND measurements (0.9%, 0.8% error) not yet precise enough to rule out either KLOE or BABAR
- New ISR measurements expected from BABAR, BESIII, BELLE-II: Try to push systematic uncertainties down to 0.5% or better
- New energy scans from VEPP-2000/Novosibirsk (CMD-3, SND): expect similar accuaracy
- Better accuaracy from higher multiplicity states and R_{incl} (KEDR, BESIII)

Conclusions & Outlook HVP

- JG
- HVP error (and therefore SM prediction of muon g-2) largely limited by KLOE
 BABAR discrepancy of the pion FF measurement
- Existing BESIII and SND measurements (0.9%, 0.8% error) not yet precise enough to rule out either KLOE or BABAR
- New ISR measurements expected from BABAR, BESIII, BELLE-II: Try to push systematic uncertainties down to 0.5% or better
- New energy scans from VEPP-2000/Novosibirsk (CMD-3, SND): expect similar accuaracy
- Better accuaracy from higher multiplicity states and R_{incl} (KEDR, BESIII)

→ Assuming agreement among new BABAR, BESIII, BELLE-II, CMD-3, KLOE and individual accuracies on the 0.5% level (or eventually better)

Achim De

REDUCTION OF UNCERTAINTY OF HVP BY FACTOR OF 2 IN REACH !

the muon anomaly

Yet another puzzle? Lattice QCD calculation of HVP

Hadronic Light-by-Light Contribution (HLbL)

Estimate of (g-2) Theory Initiative: (9.2 ± 1.8) $\cdot 10^{-10}$ was (10.5 ± 2.6) $\cdot 10^{-10}$

Data-Driven Approaches (e.g. Pion-Pole)

Dispersion Relations being developed using experimental measurements of meson transition form factors! Colangelo et al '14; Pauk, Vanderhaeghen '14

Data-Driven Approaches (e.g. Pion-Pole)

 $\pi^{0}, \eta^{(\prime)}, \pi\pi, ...$

 e^+

 e^+

Dispersion Relations being developed using experimental measurements of meson transition form factors! Colangelo et al '14; Pauk, Vanderhaeghen '14

Problem: double-virtual TFFs needed, for which no measurements exist yet!

Way out: use theory calculations for double-virtual TFFs:

- Lattice QCD calculation
- Dispersive analysis

Achim Denig

Data-Driven Approaches (e.g. Pion-Pole)

- Lattice QCD calculation
- Dispersive analysis

Achim Denig

Spacelike FFs $\gamma \gamma^* \rightarrow P$

Selection criteria

- 1 electron (positron) detected
- 1 positron (electron) along beam axis
- Meson fully reconstructed
- ightarrow cut on angle of missing momentum

Momentum transfer

- tagged: $Q^2 = -q_1^2 = -(p p')^2$ \rightarrow Highly virtual photon
- untagged: $q^2 = -q_2^2 \sim 0 \text{ GeV}^2$ \rightarrow Quasi-real photon

Single Tag Method

 $Q^2 = 4 \cdot E \cdot E' \cdot \sin^2(\theta/2)$

EKHARA event generator Czyż, Ivashyn

IGU

28

Unprecedented accuracy of BESIII Relevant Q² range for HLbL Very good agreement with recent dispersive analysis and of Lattice QCD calculation

Q² range below 0.3 GeV² accessible at BESIII with data from lower c.m. energy

Achim Denig

IGI

Unprecedented accuracy of BESIII Relevant Q² range for HLbL Very good agreement with recent dispersive analysis and of Lattice QCD calculation

Q² range below 0.3 GeV² accessible at BESIII with data from lower c.m. energy Theory initiative was able to significantly reduce the HLbL error (data-driven approach) and also inclusion of first Lattice QCD results

 Dedicated programme at BESIII (in gamma-gamma interactions) as well at A2/MAMI (Dalitz decays of mesons) to provide TFF measurements

Conclusion & Outlook HLbL

Usage of theoretical tools to relate meson decays & reactions

Dedicated program at various facilities in the world (Europe, US, Asia)

Conclusions: Yes, we have good reasons to be excited!

Conclusions

- 20 year old BNL measurement of g-2 confirmed by FNAL
 4.2σ discrepancy to SM, J-PARC project upcoming!
- Final interpretation of FNAL result needs a continued program in hadron physics
- HVP: By combining new BESIII data on pion FF with KLOE and future data from BELLE II, CMD-3, and re-analysis of BABAR
 → reduction of uncertainty by a factor of 2 in a global effort!
- HLbL: new generation of transition FF measurements ongoing at various places,

 further reduction of uncertainty in reach (assume factor 1.5)

Conclusions

- 20 year old BNL measurement of g-2 confirmed by FNAL
 4.2σ discrepancy to SM, J-PARC project upcoming!
- Final interpretation of FNAL result needs a continued program in hadron physics
- HVP: By combining new BESIII data on pion FF with KLOE and future data from BELLE II, CMD-3, and re-analysis of BABAR
 → reduction of uncertainty by a factor of 2 in a global effort!
- HLbL: new generation of transition FF measurements ongoing at various places,

 further reduction of uncertainty in reach (assume factor 1.5)

Assumption: central value of SM stable and uncertainty will improve to $\pm 2.3 \cdot 10^{-10}$! Scenario: New experimental value stays constant, factor 4 exptl. improvement

 $\rightarrow \Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = (25.1 \pm 2.7) \cdot 10^{-10} (9.4\sigma) !!!$

