

Studies of the X(3872) at Belle and Belle II: measurements and perspectives

Jens Sören Lange (Justus-Liebig-Universität Giessen) Workshop on Hadron Spectroscopy: The Next Big Steps MITP, Mainz, 17.03.2022

Outline

- Absolute branching fraction Decays to χ_{c1} Searches for partner states Production mechanism $(B \rightarrow K \pi X \text{ and } \gamma \gamma)$ • Width measurement (3-dim fit) Width measurement (small Q value) Production mechanism $(B^+ \text{ vs. } B^{0})$
- Search for molecule partner X(4014)

ABSOLUTE BRANCHING FRACTION

PDG 2020

χ_{c1}(3872)

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

also known as X(3872)

 $\begin{array}{l} {\sf Mass} \,\, m = \, 3871.69 \pm 0.17 \,\, {\sf MeV} \\ m_{\chi_{c1}(3872)} \, - \, m_{J/\psi} \, = \, 775 \, \pm 4 \,\, {\sf MeV} \\ {\sf Full} \,\, {\sf width} \,\, {\sf \Gamma} \, < \, 1.2 \,\, {\sf MeV}, \,\, {\sf CL} = \, 90\% \end{array}$

P	20	121
	20	

*χ*_{*c*1}(3872)

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

also known as X(3872)

 $\begin{array}{l} {\rm Mass} \,\,m=3871.65\pm 0.06\,\,{\rm MeV} \\ m_{\chi_{c1}(3872)}\,-\,m_{J/\psi}\,=\,775\,\pm\,4\,\,{\rm MeV} \\ {\rm Full}\,\,{\rm width}\,\,\Gamma\,=\,1.19\pm 0.21\,\,{\rm MeV} \quad ({\rm S}=1.1) \end{array}$

χ_{c1} (3872) DECAY MODES	Fraction (Γ_i)	/Γ) Con	fidence level	р (MeV/c)					
e^+e^-	< 2.8	imes 10 ⁻⁶	90%	1936					
$\pi^+\pi^- J/\psi(1S)$	(3.8± 1.	2) %		650					
$\pi^{+}\pi^{-}\pi^{0}J/\psi(1S)$	not seen			588					
$\omega \eta_c(1S)$	< 33	%	90%	368					
$\omega J/\psi(1S)$	(4.3± 2.	1) %		†					
$\phi \phi$	not seen			1646					
$D^0 \overline{D}{}^0 \pi^0$	$(49 \ +18 \ -20$) %		116					
$\overline{D}^{*0} D^0$	(37 ± 9) %		†					
$\gamma \gamma$	< 11	%	90%	1936					
$D^0 \overline{D}^0$	< 29	%	90%	519					
$D^+ D^-$	< 19	%	90%	502					
$\pi^0 \chi_{c2}$	< 4	%	90%	273					
$\pi^0 \chi_{c1}$	(3.4 ± 1.0)	6) %		319					
$\pi^0 \chi_{c0}$	< 70	%	90%	_					
$\pi^+\pi^-\eta_c(1S)$	< 14	%	90%	745					
$\pi^+\pi^-\chi_{c1}$	< 7	imes 10 ⁻³	90%	218					
р р	< 2.4	imes 10 ⁻⁵	95%	1693					
Radiative decays									
$\gamma D^+ D^-$	< 4	%	90%	502					
$\gamma \overline{D}{}^0 D^0$	< 6	%	90%	519					
$\gamma J/\psi$	(8 ± 4)	$) imes 10^{-3}$		697					
$\gamma \chi_{c1}$	< 9	imes 10 ⁻³	90%	344					
$\gamma \chi_{c2}$	< 3.2	%	90%	303					
$\gamma\psi$ (2S)	(4.5 ± 2.0)	0) %		181					
C-violating decays									
η J/ ψ	< 1.8	%	90%	491					

xc1(3872) DECAY MODES	Fraction (Γ_i/Γ)		<i>p</i> (MeV/ <i>c</i>)	
$\pi^+\pi^- J/\psi(1S)$	> 3.2 %		650	
$\omega J/\psi(1S)$	> 2.3 %		†	
$D^0 \overline{D}{}^0 \pi^0$	>40 %	7	117	
$\overline{D}^{*0} D^0$	>30 %	•	4	
$\pi^0 \chi_{c1}$	> 2.8 %		319	
$\gamma J/\psi$	$> 7 \times 10^{-3}$		697	
$\gamma \psi$ (25)	> 4 %		181	
$\pi^+\pi^-\eta_c(1S)$	not seen		745	
$\pi^+\pi^-\chi_{c1}$	not seen		218	
$p\overline{p}$	not seen		1693	

 $B^+ \to K^+ X_{c\bar{c}}$

Particular situation at $\Upsilon(4S)$: $m(\Upsilon(4S))=m_B+m_{\overline{B}}$ $\rightarrow B$ mesons at rest in cms system

Hierarchical full reconstruction of 1104 hadronic decaysNeuroBayes neural-network packageM. Feindt, F. Keller, M. Kreps, T. Kuhr, S. Neubauer, D. Zander, A. ZupancNucl. Instrum. Meth. A654 (2011) 432

Disadvantage: reconstruction efficiency small (requires tag side) $\epsilon \leq 0.26 \%$

 $B^+ \to K^+ X_{c\overline{c}}$

Belle, Phys. Rev. D97 (2018) 012005 711 fb⁻¹ (full Belle data set)

DECAYS

In the following, product branching fractions are given. $\underbrace{\mathcal{B}(B \to KX(3872)) \times \mathcal{B}(X(3872) \to ...)}$

 $\mathcal{B}_{absolute}$

Decays to χ_{c1}

- $X(3872) \rightarrow \chi_{c1}\pi^{+}\pi^{-}$ Belle, Phys. Rev. D 93 (2016) 052016 (711 fb⁻¹) upper limit $\mathcal{B} \leq 1.5 \times 10^{-6}$ (0.6% of all X(3872))
- $X(3872) \rightarrow \chi_{c1}\pi^0$ Belle, Phys. Rev. D 99 (2019) 111101 (711 fb⁻¹) upper limit $\mathcal{B} \leq 8.1 \times 10^{-6}$ (3.2% of all X(3872)) observed by BESIII, Phys. Rev. Lett. 122 (2019) 202001 $\mathcal{B} = 3.4 \pm 1.6 \%$

isospin violating decay

for charmonium small branching fraction

e.g.
$$\psi'
ightarrow J/\psi \pi^0$$
, $\mathcal{B} =$ (1.268 \pm 0.032) $imes$ 10⁻³

Searches for partner states

• Charged partner (I₃ partner), $X^{\pm} \rightarrow J/\psi \rho^{\pm}$ PRD 84 (2011) 052004 (711 fb⁻¹) upper limit $\mathcal{B} \leq 5.4 \times 10^{-6}$ (2.4% of all X(3872), if $\mathcal{B}(X^{\pm}) = \mathcal{B}(X^{0})$)

Reminder: $Z^{\pm,0}(3900)$ cannot be the isospin partner (wrong G-parity)

• C=-1 partner*,
$$X^{C-odd} \rightarrow J/\psi\eta$$

PTEP 2014 (2014) 4, 043C01 (711 fb⁻¹)
upper limit $\mathcal{B} \leq 3.8 \times 10^{-6}$
(1.7% all X(3872), if $\mathcal{B}(X^{C-odd}) = \mathcal{B}(X^{0})$)

*In tetraquark models

$$\frac{1}{\sqrt{2}}(S\overline{A}\pm\overline{S}A)$$

with S scalar diquark, A axialvector diquark

PRODUCTION MECHANISM

Production mechanism $B \rightarrow K \underline{\pi} X(3872)$ $K \pi X(3872)$

Evidence for $\gamma\gamma \rightarrow X(3872)$

- X(3872) has J^{PC} = 1⁺⁺ Landau–Yang theorem: coupling to two real photons is forbidden
- / MeV/c² Here: at least one photon is virtual Ψ(2S) $\Gamma_{\gamma\gamma}^{X(3872)} \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) = 5.5^{+4.1}_{-3.8} \pm 0.7 \ eV$ Events / Belle, Phys. Rev. Lett. 126 (2021) 122001 (825 fb^{-1}) $\Gamma_{ee}^{X(3872)} \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) \cdot \frac{1}{4\pi\alpha_{em}} \le 1.4 \ eV$ $< 0.13 \ eV$ 3.6 3.65 vertex $M(J/\psi\pi^+\pi^-)/GeV/c^2$ BESIII, Phys. Lett. B749 (2015) 414 $N_{\rm sig} = 2.9^{+2.2}_{-2.0}$ (stat.) ± 0.1 (syst.) Q² / GeV/c² compatible with prediction for charmonium X(3872) J. Kühn et al., Nucl. Phys. B 157 (1979) 125 X(3915) Significance 3.2σ (background 0.11±0.10 events)

Q² calculated from momentum of single tagging electron

3.6

3.8

3.9

 $M(J/\psi\pi^{4.1}+\pi^{4.2})/GeV/c^{4.3}$

X(3872)

Reference signal $(J^{PC}=1^{--})$

WIDTH

X(3872) width measurement at Belle

- 3-dim fit for $X \to J/\psi \pi^+\pi^- \to \text{kinematical over-constraint}$ access to observables smaller than detector resolution
- Upper limit was determined, $\Gamma_X < 1.2 MeV$ (90% C.L.) Belle, Phys. Rev. D84 (2011) 052004 close to later world average (1.19±0.21 MeV, Breit-Wigner fit, PDG 2021)
- Fit was validated with ψ' (as control signal), factor \simeq 4 narrower width $\Gamma_{\psi'}=0.52\pm0.11$ MeV (0.304 \pm 0.009 MeV, PDG 2011) \rightarrow offset bias 230 keV, systematic error 110 keV

From Belle to Belle II

Width of the X(3872) at Belle II, plan

- New approach: use X(3872) $\rightarrow D^0 \overline{D}^0 \pi^0$ decay only seen at BaBar and Belle small Q value of 7 MeV (469 MeV for J/ $\psi\pi\pi$)
- mass resolution 684 \pm 8 keV (1.93 \pm 0.04 MeV for J/ $\psi\pi\pi$)
- width can be measured down to 280 keV (3σ significance for 50 ab⁻¹) Reminder: Flatté fit 220⁺⁷⁰⁺¹¹⁰₋₆₀₋₁₃₀ keV (FWHM) LHCb, Phys. Rev. D102 (2020) 092005
- systematics still to be evaluated
- Future option: combined fit of $D^0 \overline{D}^0 \pi^0$ and $J/\psi \pi \pi$

PRODUCTION MECHANISM

X(3872) at Belle II, data

Unbinned maximum likelihood fit with triple Gaussian and 1st order Chebyshev polynomial By now, already factor 4 more data on tape (287.9 fb⁻¹, \sim 1/4 of Belle)

X(3872) in neutral and charged B meson decays

- If X(3872) is a $D\overline{D}^*$ molecule, ratio should be small (<0.1) B^0 , K^0 contain d quarks, B^+ , K^+ contain u quarks D^0 , \overline{D}^{*0} contain u quarks Braaten, Lu, Phys. Rev. D77 (2008) 014029
- If X(3872) is charmonium, hybrid, glueball, ratio should be large (=1)
- Exotic nature of X(3872) is already seen in present Belle II data but: simultaneous fit of B^0 and B^+ , and ratio was fixed

$$\frac{\mathcal{B}(B^0 \to K_s^0 \psi')}{\mathcal{B}(B^+ \to K^+ \psi')} = \frac{(5.8 \pm 0.5) \times 10^{-4}}{(6.24 \pm 0.20) \times 10^{-4}} \simeq 0.93$$
PDG 2021

$$\frac{\mathcal{B}(B^0 \to K_s^0 X(3872))}{\mathcal{B}(B^+ \to K^+ X(3872))} = \frac{(1.1 \pm 0.4) \times 10^{-4}}{(2.1 \pm 0.7) \times 10^{-4}} \simeq 0.52$$

X(4014)

X(4014) at Belle II, plan

- $D^{*0}\overline{D}^{*0}$ molecule, predicted by Törnqvist, Phys. Rev. Lett. 67 (1991) 556
- $I^{PC} = 2^{++}$

pure (charmonium, tetraquark) or mixture (molecule)

- Mass prediction 4012 MeV (threshold 4017 MeV) heavy quark spin symmetry to X(3872)Guo, Hidalgo-Duque, Nieves, Valderrama, Phys. Rev. D88 (2013) 054007
- *D*-wave decay to $D^0 \overline{D}^0$ possible, implies $\Gamma \simeq 10$ MeV

$$\begin{split} \Upsilon(4S) \to B^+ B^- & & \\ & & \searrow X(4014)K^+ & & \\ & & & \longrightarrow D^0 \bar{D}^0 \pi^0 \pi^0 \\ & & & & \swarrow K^- \pi^+ \\ & & & & & K^- \pi^+ \pi^0 \\ & & & & & K^- \pi^+ \pi^+ \pi^- \\ & & & & & K^- K^+ \\ & & & & & & K^0_S \pi^+ \pi^- \\ & & & & & & K^0_S \pi^+ \pi^- \\ \end{split} \qquad \begin{array}{c} \text{efficiency small} \\ \approx 1.0 \ \% \text{ for Belle} \\ \approx 1.5 \ \% \text{ for Belle II} \\ (\approx 15\% \text{ for } X \to J/\psi \pi \pi) \\ \end{array}$$

Belle

Belle II

Conclusion

- Absolute branching fraction was measured
- Width measurements can reach sub-MeV sensitivity (3-dim fit, small Q value)
- Where are the partner states?