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Overview

We want employ line shapes to distinguish

Q
q

q
Q

e.g. Quarkonia or Tetraquarks

→ Compact object formed from Q̄Q or (Qq)

and (Q̄q̄)

and

q
Q

q

Q

Hadronic-Molecules

→ Extended object made of (Q̄q) and (Qq̄)

Bohr radius = 1/γ = 1/
√
2µEb

≫ 1 fm & confinement radius
for near threshold states

Tool: The Weinberg compositeness criterion
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Definition using non–rel. QM

Weinberg Phys.Rev.137(1965)B672, Baru et al. (2004)

Expand in terms of non–interacting quark and meson states

|Ψ〉 =
(

λ|ψ0〉
χ(p)|h1h2〉

)

,

here |ψ0〉 = elementary state and |h1h2〉 = two–hadron cont., then

λ2 = |〈ψ0|Ψ〉|2 = probability to find bare state in physical state

→ λ2 is the quantity of interest!

Crucial observation: S. Weinberg, Phys. Rev. 130(1963)776; 131, 440 (1963)

Non-pert. hadron-hadron interactions equivalent to
pole term + perturbative interaction

T V V= + TV ≡

=⇒ Dynamical information transferred into coupling
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Derivation

Therefore: Ĥhh = Ĥ0
hh = ~p 2/(2µ) contains only kinetic terms!

Ĥ|Ψ〉 = E|Ψ〉, Ĥ =

(

Ĥc V̂

V̂ Ĥ0
hh

)

−→ χ(p) = λ
f(p2)

E − p2/(2µ)

introducing the transition form factor 〈ψ0|V̂ |hh〉 = f(p2)

Therefore
|Ψ〉 = λ

(

|ψ0〉
− f(p2)

EB+p2/(2µ) |h1h2〉

)

,

For the normalization of the physical state we get

1 = 〈Ψ|Ψ〉 = λ2
(

1 +

∫

d3p

(2π)3
f2(p2)

(EB + p2/(2µ))2

)

provides connection between λ2 and hadronic properties

=⇒ Need to understand the integral
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Effective Coupling

using
∫

f2(p2)d3p

(p2/(2µ) + EB)2
=

4π2µ2f(0)2√
2µEB

+O
(√

EBµ

β

)

for s–waves; 1/β= range of forces; µf(0)2/(2π) = g2; γ =
√
2µEB

1 = λ2
(

1 +
µg2

γ
+O

(

γ

β

))

=⇒ g2 =
γ

µ

(

1− λ2

λ2

)

This gives for the residue, g2eff(NR) = (2π/µ)λ2g2:

g2eff(NR) = 2π(1− λ2)γ/µ2 ≤ 2πγ/µ2

(1− λ2) = Quantifies molecular component in physical state

The structure information is hidden in the

effective coupling, extracted from experiment,

independent of the phenomenology

used to introduce the pole(s)
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Connecting to effective range expansion

The scattering amplitude is in terms of the previous parameters

TNR(E) =
2π

µ

g2

E + EB + g2(ik + γ)

where k2 = 2µE & g2 = ∞ for molecule / g2 = 0 for compact state

The effective range expansion reads:

TNR(E) = −2π

µ

1

1/a+ (r/2)k2 − ik

and we get from matching coefficients

1

a
= −EB

g2
+ γ =⇒ a = −2

1− λ2

2− λ2

(

1

γ

)

+O
(

1

β

)

r = − 1

g2µ
=⇒ r = − λ2

1− λ2

(

1

γ

)

+O
(

1

β

)
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Weinbergs analysis and a generalisation

I. Matuschek et al., EPJA57(2021)3

Assume attractive interaction
(bound state a<0, all others a>0)

Molecules: |a| ≫ |r| and |r| ≃ range

Compact states: |a| ≪ |r| and

r < 0 with |r| ≫ range

Matuschek, VB, Guo, Hanhart 

When a changes sign (r fixed): Molecule → virtual state

Compact state → resonance

Subsummed in compositness X̄ = 1/
√

1 + |2r/a|
other approaches: Sekihara, Hyodo, Oset, Oller, Nieves, Jido ...

mostly relying on on-shell factorisation of the potential; little about virtual states
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χc1(3872) also known as X(3872)
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LHCb, PRD102(2020)092005

Data analysed employing for the rate C.H. at al., PRD76(2007)034007

Γρ(E)
∣

∣

∣
E − Ef +

i
2 [g

2
1

√
2µ1E + g22

√

2µ2(E − δ) + Γρ(E) + Γω(E) + Γ0]
∣

∣

∣

2

with Ef fixed to -7.18 MeV: g21 = g22 = g2 = 0.108± 0.003 such that

−r = 2/(µ1g
2) +

√

µ2/(2µ21δ) ≃ (3.8 + 1.4) fm ≫ 1/Mπ

Does this mean χc1(3872) is a compact state?
A. Esposito et al., PRD105(2022)L031503 & L. Maiani’s talk
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Effective range and Weinberg criterion

The second term in

−r = 2/(µ1g
2
1) +

g22
g21

√

µ2/(2µ21δ) ≃ (3.8 + 1.4) fm ≫ 1/Mπ

comes from isospin-symmetry, g21 = g22 = g2 and the expansion

ik2 =
√

2µ2(δ − k21/(2µ1)) =
√

2µ2δ −
1

2

√

µ2
2µ21δ

k21 +O
(

(

k21
µ1δ

)2
)

which “measures” the contribution from the charged channel and

does not have a proper isospin limit (δ → 0). However,

• it scales with g2 (→ ∞ for molecule)

• we thus see that this contribution is sizable
→ needs to be removed to understand structure

Thus the quantity relevant for the Weinberg analysis is thus

−reff. = 2/(µ1g
2) ≤ 3.8 fm
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Regarding the correlations

Γρ(E)
∣

∣

∣
E − Ef + i

2

[

g2
(√

2µ1E +
√

2µ2(E − δ)
)

+ Γρ(E) + Γω(E) + Γ0

]
∣

∣

∣

2

For E < 0 the parts in red define Ep, the real part of pole location:

Ep = Ef +
g2

2

(

√

2µ1|Ep|+
√

2µ2(δ + |Ep|)
)

=⇒ g2(Ef , Ep)

Since Ep ≪ δ one may ap-
proximate correlation pa-
rameter free

g2(Ef , 0) = −
√

2

µ2δ
Ef

To remove correlation:

Express Ef by Ep
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Consequence:

The formula that should be used in the analysis:

Γρ(E)
∣

∣

∣
E−Ep+

i
2

[

g2
(√

2µ1E∓iγ1+
√

2µ2(E−δ)−iγ2
)

+Γinel.(E)
]∣

∣

∣

2

for pole on the physical (unphysical) D0D̄∗ 0 sheet and

where γ1 =
√

2µ1|Ep| and γ2 =
√

2µ2(δ+|Ep|)

The LHCb data only provides lower bound for g

If one allows for ∆LL = 1, one finds g2 > 0.1 and accordingly

−reff. < 4 fm and X̄ =
1

√

1 + 2|reff./ℜ(a)|
> 0.94 ,

fully consistent with a molecular interpretation

Similar numbers emerge for the Tcc state ...
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How to get positive r?

→ The formulas were derived neglecting finite range corrections

→ The Wigner bound (causality!) requires r < R ∼ 1/β
E.P. Wigner, Phys.Rev 98(1955)145

=⇒ Zero range interactions call for neg. effective ranges

The longest range interaction is the one π exchange, however

in the charm system πDD̄ can go on-shell

=⇒ no fixed sign of potential

We need hadronic EFT to quantify the effects!
pert. pions: Mehen, Valderrama, Mikhasenko, ...; non-pert. pions: Baru, Filin, Du, Guo, C.H., ...

=⇒ three-body calculation for Tcc: rOPE = +0.4 fm
M. L. Du et al., PRD105 (2022)014024.

What lineshapes of resonances teach us about their nature – p. 12/15



Molecules with unstable constituents

E. Braaten and M. Lu, PRD76(2007)094028, C. H. et al., PRD81(2010)094028
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quasi bound state virtual state → Eb = 0.5 MeV
below nominal
threshold,

→ additional width:
Γinel. = 1.5 MeV

→ constituent width

0, 0.1, 1 MeV

Molecules with unstable const. can show peculiar line shapes

Strong rise above nominal threshold, because of

→ nearby pole

→ with large residue

Form depends on
interplay of scales
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Molecules with unstable constituents

E. Braaten and M. Lu, PRD76(2007)094028, C. H. et al., PRD81(2010)094028
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quasi bound state virtual state → Eb = 0.5 MeV
below nominal
threshold,

→ additional width:
Γinel. = 1.5 MeV

→ constituent width

0, 0.1, 1 MeV

e+e− → D∗D̄π data show
strong evidence for Y (4230) as

D1(2420)D̄ bound state with

Eb = 55 MeV
D1(2420) (Γ = 30 MeV)

mixing into D1(2430) (Γ = 300 MeV)
L.v.Detten et al., in preparation
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Conclusion

At present the data on χc1(3872) aka X(3872) and T+
cc are

consistent with a molecular interpretation, but so far a sizeable
compact component cannot be excluded.

For more definite statements we need

→ Reanalysis of LHCb data with correlations removed

→ Combined analysis of inelastic and elastic channels

→ Direct measurement of line shape (PANDA?)

→ Information on (iso)spin partner states

Line shapes carry important structure information

... thank you very much for your attention
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