T_{cc}^+ coupled channel analysis and predictions

[Based on M. Albaladejo, arXiv:2110.02944]

Miguel Albaladejo (IFIC)

Hadron Spectroscopy: The Next Big Steps. March 16, 2022

Outline

1 Introduction

(2) D^*D scattering and $DD\pi$ production modelling

3 Results and predictions

Introduction		
000		

Quark model in the singly heavy sector

 Quark model crit is still our baseline: "In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons-from the pion to the upsilon-can be described in a unified framework." [Godfrey, Isgur, PR,D32,189(85)]

• The discovery of $D_{50}^*(2317)$ in 2003 (and $D_{51}(2460)$ later on) is "equivalent" to the discovery of X(3872) in charmonium-like system.

[BABAR, PRL,90,242001('03)] [CLEO, PR,D68,032002('03)]

Introduction		
000		

Quark model in the singly heavy sector

• Quark model *cī* is still our baseline: "In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons-from the pion to the upsilon-can be described in a unified framework." [Godfrey, Isgur, PR,D32,189(85)]

• The discovery of $D_{50}^*(2317)$ in 2003 (and $D_{51}(2460)$ later on) is "equivalent" to the discovery of X(3872) in charmonium-like system.

[BABAR, PRL,90,242001('03)] [CLEO, PR,D68,032002('03)]

Introduction		
000		

Quark model in the singly heavy sector

• Quark model $c\bar{n}$ is still our baseline: "In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons—from the pion to the upsilon—can be described in a unified framework." [Godfrey, Isgur, PR,D32,189(85)]

• The discovery of $D_{50}^*(2317)$ in 2003 (and $D_{51}(2460)$ later on) is "equivalent" to the discovery of X(3872) in charmonium-like system.

[BABAR, PRL,90,242001('03)] [CLEO, PR,D68,032002('03)]

Introduction		
000		

T_{cc}^+ and previous predictions

- T_{cc}^+ is a **tetraquark** with constituent $cc\bar{u}\bar{d}$
- Models give broad range of predictions.
- Not observed until now (only \(\mathbf{E}_{cc}^{++}\) [LHCb]\) [PRL,119,112001(17)]
- LQCD: not conclusive in the charm sector; more agreement in the bottom sector.

[Leskovec et al.,PR,D100,014503(19)] [Bicudo et al.,PR,D103,114506(21)]

Introduction		
000		

T_{cc}^+ and previous predictions

- T_{cc}^+ is a **tetraquark** with constituent $cc\bar{u}\bar{d}$
- Models give broad range of predictions.
- Not observed until now (only \(\mathbf{E}_{cc}^{++}\) [LHCb]\) [PRL,119,112001(17)]
- LQCD: not conclusive in the charm sector; more agreement in the bottom sector.

[Leskovec *et al.*,PR,D100,014503('19)] [Bicudo *et al.*,PR,D103,114506('21)]

Introduction		
000		

Tetraquark? Molecule *vs* **compact tetraquarks**

- [PRL,115(15),072001] "Observation of J/ψ resonances consistent with **pentaquark** states in $\Lambda_b^0 \to J/\psi K^- p$ decays"
- [2109.01038] "Observation of an exotic narrow doubly charmed tetraquark"
- [2109.01056] "Study of the doubly charmed **tetraquark** T_{cc}^+ "
- Misleading nomenclature (not LHCb fault!)

- Nomenclature A: A tetraquark is anything with constituent 4q. Compact tetraquarks vs molecular tetraquarks.
- Nomenclature B: Tetraquarks vs molecules

	Scattering and production	
	•0	
Production Model		

Scattering and production	
00	

*D***D* scattering amplitude

• Coupled *T*-matrix for the $D^{*+}D^0$, $D^{*0}D^+$ channels:

$$T^{-1}(E) = V^{-1}(E) - \mathcal{G}(E) ,$$

• $I_z = 0$: the isospin decomposition reads:

$$\begin{split} \left| D^{*+} D^0 \right\rangle &= -\frac{1}{\sqrt{2}} \left(\left| D^* D, I = 1 \right\rangle + \left| D^* D, I = 0 \right\rangle \right) , \\ \left| D^{*0} D^+ \right\rangle &= -\frac{1}{\sqrt{2}} \left(\left| D^* D, I = 1 \right\rangle - \left| D^* D, I = 0 \right\rangle \right) , \end{split}$$

V(E): **interaction** kernels written in terms of $C_{I=0,1}$ (constants):

 $\mathcal{G}(E)$: **loop functions** of the $D^{*+}D^0$, $D^{*0}D^+$ channels:

$$V(E) = \frac{1}{2} \begin{pmatrix} C_0 + C_1 & C_1 - C_0 \\ C_1 - C_0 & C_0 + C_1 \end{pmatrix} \qquad \qquad G_i(E) = \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{e^{-\frac{2\vec{k}^2}{\Lambda^2}}}{E - E_{\text{th}}^i - \frac{\vec{k}^2}{2\mu_i}}$$

• Width of the D^* : the loop functions are analytically continued to complex values of the D^* mass, $m_{D^*} \rightarrow m_{D^*} - i\Gamma_{D^*}/2.$

- Two values for the cutoff, $\Lambda=0.5$ GeV and $\Lambda=1.0$ GeV.
- The *V*-matrix elements depend now on the cutoff, $C_l(\Lambda)$.

	Results and predictions	

Results: Fit

• Exp. resolution taken from LHCb ($\delta \simeq 400 \text{ keV}$):

$$\overline{\mathcal{N}}_{\mathsf{ev}}(E) = \int \mathrm{d}E' \, R_{\mathsf{LHCb}} \, \left(E, E'\right) \, \mathcal{N}_{\mathsf{ev}}(E')$$

Parameter	$\Lambda = 1.0 \text{ GeV}$	$\Lambda=0.5~\text{GeV}$
$C_0(\Lambda)$ [fm ²]	-0.7008(22)	-1.5417(121)
$C_1(\Lambda)$ [fm ²]	-0.440(79)	-0.71(27)
β/α	0.228(108)	0.093(79)
χ^2/dof	0.95	0.92

- Good agreement (χ^2 /dof = {0.92, 0.95})
- Check: pull of the data seems randomly distributed.
- Statistical uncertainties obtained by MC bootstrap of the data

	Results and predictions	
	0000	

Spectroscopy

• Bound state pole in *T*-matrix, det (1 - VG) = 0:

$$T_{ij}(E) = \frac{\widetilde{g}_i \widetilde{g}_j}{E^2 - \left(M_{\tau_{cc}^+} - i \,\Gamma_{\tau_{cc}^+}/2\right)^2} + \cdots$$

- Width: $m_{D^*} i \Gamma_{D^*}/2 \Rightarrow M_{T_{cc}^+} i \Gamma_{T_{cc}^+}/2$
- Pole position (wrt $D^{*+}D^0$ threshold):

Λ (GeV)	$\delta M_{T_{cc}^+}$ (keV)	$\Gamma_{T_{cc}^+}$ (keV)
1.0	-357(29)	77(1)
0.5	-356(29)	78(1)

• Good agreement with LHCb determination:

	$\delta M_{T^+_{cc}}$ (keV)	$\Gamma_{T_{cc}^+}$ (keV)
[2109.01038]	-273(61)	410(165)
[2109.01056]	-360(40)	48(2)

- Our width is somewhat larger than the ~ 50 keV obtained by LHCb and [Feijoo et al., 2108.02730], [Ling et al., 2108.00947].
- [Du *et al.*, 2110.13765]: $\Gamma_{T_{cc}^+}$ depending on the model used.

 Results similar to [LHCb, 2109.0156] (top) and [Feijoo et al., 2108.02730; Du et al., 2110.13765] (bottom).

	Results and predictions	
	0000	

Molecular state?

• Weinberg compositeness [Weinberg, PR,137,B672('65)] : $P = 1 - Z \simeq \frac{\mu^2 g^2}{2\pi\gamma_B} = -g^2 G'(E_B)$

0.6

- We get $P_{D^{*+}D^0} = 0.78(5)(2)$, $P_{D^{*0}D^+} = 0.22(5)(2)$, $\sum_i P_i = 1$
- Isospin limit, $P_l = 1$ (for l = 0 or 1): purely molecular state (model built-in!)
- Relation to ERE parameters a, r [Weinberg('65)]

 This result must be applied to a single channel case: isospin limit

Λ (GeV)	0.5	1.0
E_B (keV)	833(67)	856(53)
$a_{l=0}$ (fm)	-5.57(25)	-5.18(16)
<i>r_{I=0}</i> (fm)	0.63	1.26

	Results and predictions	
	0000	

Molecular state?

- Weinberg compositeness [Weinberg, PR,137,B672('65)] : $P = 1 Z \simeq rac{\mu^2 g^2}{2\pi\gamma_B} = -g^2 G'(E_B)$
- We get $P_{D^{*+}D^0} = 0.78(5)(2)$, $P_{D^{*0}D^+} = 0.22(5)(2)$, $\sum_i P_i = 1$
- Isospin limit, $P_l = 1$ (for l = 0 or 1): purely molecular state (model built-in!)
- Relation to ERE parameters a, r [Weinberg('65)]+[Albaladejo, Nieves: 2203.04864]

$$a = -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} - 2\delta r \left(\frac{1-Z}{2-Z}\right)^2 + \cdots,$$

$$r = -\frac{1}{\gamma_B} \frac{Z}{1-Z} + \delta r + \cdots.$$

 $\underbrace{\underbrace{e}}_{0,0}^{-2} \underbrace{e}_{NLO}(Z, \delta r = 1.3 \text{ m})}_{a_{COM}} \underbrace{e}_{0,0}(Z)$

 This result must be applied to a single channel case: isospin limit

Λ (GeV)	0.5	1.0
E_B (keV)	833(67)	856(53)
$a_{l=0}$ (fm)	-5.57(25)	-5.18(16)
<i>r</i> _{<i>l</i>=0} (fm)	0.63	1.26

	Results and predictions ○○○●	
11000		

HQSS partner

- Heavy-Quark Spin Symmetry (HQSS) predicts that heavy-meson interactions are independent of the heavy-quark spin in the limit $m_Q \rightarrow \infty$.
- Relation between $D^*D^* \rightarrow D^*D^*$ and $D^*D \rightarrow D^*D$ amplitudes.
- The interaction kernels of the $I(J^{P}) D^{*}D^{*}$ systems are related to those of the $D^{*}D$ ones as:

$$\begin{split} &\left\langle D^*D^*,\,0(1^+)\,\left|\hat{V}\right|\,D^*D^*,\,0(1^+)\right\rangle = \left\langle D^*D,\,0(1^+)\,\left|\hat{V}\right|\,D^*D,\,0(1^+)\right\rangle = V_0\,,\\ &\left\langle D^*D^*,\,1(2^+)\,\left|\hat{V}\right|\,D^*D^*,\,1(2^+)\right\rangle = \left\langle D^*D,\,1(1^+)\,\left|\hat{V}\right|\,D^*D,\,1(1^+)\right\rangle = V_1\,. \end{split}$$

• We predict the existence of T_{cc}^{*+} , a D^*D^* molecular state, HQSS partner of T_{cc}^+ , with a binding energy (wrt the different D^*D^* thresholds) of **1.1–1.5 MeV**.

		$\delta M_{T_{cc}^*}$	(keV)	
	Isoscalar	solution	Isovector	solution
	$\Lambda = 1.0 \text{GeV}$	$\Lambda = 0.5 \text{GeV}$	$\Lambda = 1.0 \text{GeV}$	$\Lambda = 0.5 \text{GeV}$
D*+D*+			-1580(71)	-1156(79)
$D^{*+}D^{*0}$	-1561(71)	-1148(79)	-1561(71)	-1148(79)
$D^{*0}D^{*0}$			-1543(71)	-1140(79)

- Similar predictions are obtained in a later work [Dai, Molina, and Oset, 2110.15270]
- Previous works predicting D^*D^* states: [Molina *et al.*, PR,D82,014010('10); Liu *et al.*, PR,D99,094018('19)].

		Summary ●○
Size		

• Can we address the question of 4q, $q\bar{q}$, molecule based on the size of the object?

• For $\pi\pi$ scattering, σ meson: MA, Oller, PR,D86,034003(12)

$$\sqrt{\langle r^2
angle^S_\sigma} \simeq 0.44 ~{
m fm}~{
m vs}~\sqrt{\langle r^2
angle^S_\pi} \simeq 0.81 ~{
m fm}$$

• Perhaps only theoretical? Future lattice QCD calculations?

Briceño et al., PR,D103,114512('21) [and refs. therein]

		Summary ○●
Summary		

- Hadron spectroscopy keeps living exciting times, as shown by the discovery of the T_{cc}^+ state: a tetraquark with double charm.
- We have analyzed a coupled channel (D^{*+}D⁰, D^{*0}D⁺) T-matrix, where one would expect the T⁺_{cc} to show up.
- A simple production model allows a good description of the data with few parameters
- A bound state originating from the I = 0 interaction appears in the *T*-matrix, identified with the T_{cc}^+ state.
- This state is found to be largely molecular.
- A D^*D^* molecular state (T_{cc}^*) is predicted with a binding energy of ~ 1–1.5 MeV (w.r.t. D^*D^* threshold), and with $I(J^P) = O(1^+)$ or $1(2^+)$ depending on T_{cc}^+ isospin.
- Our results are similar to several earlier and later theoretical works [Feijoo, Liang, and Oset, 2108.02730; Du *et al.*, 2110.13765; Dai, Molina, and Oset, 2110.15270]

T_{cc}^+ coupled channel analysis and predictions

[Based on M. Albaladejo, arXiv:2110.02944]

Miguel Albaladejo (IFIC)

Hadron Spectroscopy: The Next Big Steps. March 16, 2022

Results and predictions

Quark model in the charmonium sector

• $\chi_{cl}(1P)$ well established, "very CQM model" state.

• X(3872) discovered by Belle [PRL,91,262001('03)] (also 2003!)

 $P^{PC} = 1^{++}$ and $\Gamma \sim 1$ MeV established by LHCb [PR,D92,011102('15);PR,D102,092005('20); JHEP,08(2020),123].

• $\chi_{cl}(2P)$ Not established. Influence of open thresholds? Is X(3872) a molecular states?

• Z_c states have l = 1, clearly "tetraquarks" ($c\bar{c}u\bar{d}, ...$)

Isospin I = 0 or I = 1, and fit degeneracy

- **Q**: Can I know the T_{cc}^+ isospin from **this** analysis? **A**: No
- There's a degeneracy in the solutions: the model is "invariant" under a simultaneous exchange: $C_0 \leftrightarrow C_1$ and $\beta \leftrightarrow -\beta$
- Physically, this is due to the fact that $D^0 D^0 \pi^+$ has $I_z = 0$, so you cannot know whether T_{cc}^+ is $|I_z\rangle = |1 0\rangle$ or $|0 0\rangle$.
- We will keep both solutions I = 0 or I = 1 for T_{cc}^+ and discuss their differences (whenever they exist!)
- LHCb [2109.01056] has shown an additional spectrum, $D^+D^0\pi^+$ ($I_z = 1$), in which no sign of a T_{cc}^{++} is observed, but with much less statistics:

000	00	0000	00
0000		0000	00

000	00	0000	00
000	00	0000	00

Other parameterizations

- Other paramterizations could lead to different line shapes and/or properties: pole position, scattering length, molecular probability,...
- No large variations are observed when the most inmediate generalizations are employed
- In particular, always large molecular probability

$$V_0(s) = C_0(\Lambda) \longrightarrow V_0(s) = C_0(\Lambda) + b_0(\Lambda)k^2$$
, (2a)

$$V_0(s) = C_0(\Lambda) \longrightarrow V_0(s) = \frac{d_0(\Lambda)}{E - M_0(\Lambda)}$$
, (2b)

$$V_1(s) = C_1(\Lambda) \longrightarrow V_1(s) = C_1(\Lambda) + b_1(\Lambda)k^2$$
. (2c)

Nomenclatures about Z

	Reasonable		
• $Z \simeq 0$ is a molecule	$\circ~Z\simeq 1$ is a compact state		
 (mostly molecular, mixed with so small compact component) 	me • (mostly compact, mixed with some small molecular component)		
Purist			
• Only $Z = 0$ is a molecule	• Only $Z = 1$ is a compact state		
Extremist (biased)			
• Only $Z = 0$ is a molecule!	• $Z \simeq 1$ is a compact state		
	Extremist (biased)		
• $Z \simeq 0$ is a molecule	• Only $Z = 1$ is a compact state!		