INTRODUCTION	LATTICE CALCULATIONS	Results	Summary
00	00000	00000000	000

Open charm spectroscopy from lattice QCD

Sinéad M. Ryan Trinity College Dublin

Hadron Spectroscopy: The Next Big Steps, MITP, March 16, 2022

Open charm - a rich arena with puzzles $\dot{\sigma}$ challenges

- Excited and hybrid mesons in *D* and *D*_s spectra.
- The D_0^* and the D_{s0}^* a lattice perspective
 - D_0^* lightest scalar charm-light resonance: $m_{D_0^*} \sim 2343$ MeV, broad enhancement.
 - PDG average: D_{s0}^* lies below D_0^* what can lattice say about this puzzling hierarchy?

INTRODUCTION	LATTICE CALCULATIONS	Results	Summary
0•	00000	00000000	000

AN ACTIVE FIELD

Selection of other lattice QCD studies of $D\pi$ and DK scattering

- Mohler et al. PRD87 034501 (2013), 1208.4059
- Liu et al. PRD87 014508 (2013), 1208.4535
- Mohler et al. PRL 111, 222001 (2013), 1308.3175
- Lang et al. PRD90, 034510 (2014), 1403.8103
- Bali et al. PRD96, 074501 (2017), 1706.01247
- Alexandrou et al PRD101 034502 (2020), 1911.08435
- Gregory et al. 2106.15391

Other work

- Martínez Torres et al. JHEP 05 (2015) 153, 1412.1706
- Albaladejo et al. PLB767, 465 (2017), 1610.06727
- Du et al. PRD98 094018 (2018), 1712.07957
- Guo et al. PRD98 014510 (2018), 1801.10122
- Guo et al. EPJ C79, 13 (2019), 1811.05585

INTRODUCTION	LATTICE CALCULATIONS	Results	Summary
00	•0000	00000000	000

LATTICE CALCULATIONS

- Earlier lattice study of D^{*}₀ in Dπ scattering found a resonance close to the PDG average [Mohler et al, 1208.4059]
- HadSpec objective: determine pole positions, understand mass ordering and light-quark mass dependence of the two states. This talk draws results from
 - *D* and *D_s* spectroscopy [1610.01073]
 - $D_0^*(2300)$ in $D\pi \to D\pi$ at $m_{\pi} = 239$, 391 MeV [2102.04973]
 - $D_{s0}^{*}(2317)$ in $DK \rightarrow DK$ at $m_{\pi} = 239, 391$ MeV [2008.06432]
- Anisotropic lattice: a_s/a_t ∼ 3.5, a_s ∼ 0.12 fm on a range of volumes.
- $N_f = 2 + 1$, Wilson (clover) fermions with 2 pion masses and $a_t^{-1}(m_{\Omega})$.
- Large operator bases including: fermion bilinears ΨΓΨ and meson-meson operators e.g. DK using optimised D and K operators; projected to irreps of the lattice

a_s	∼ 0.11 fm
$a_t^{-1}(m_\Omega)$	∼ 5.7 GeV
mπ	239, 391 MeV
mπL	4-6
Nf	2+1

Cheung, Thomas, Wilson, Moir, Peardon, SR JHEP 02 (2021) 100 [2008.06432] Gayer, Lang, SR, Tims, Thomas. Wilson JHEP 07 (2021) 123 [2102.04973]

INTRODUCTION	LATTICE CALCULATIONS	Results	Summary
00	00000	00000000	000

DISPERSION RELATIONS - SANITY CHECKS!

• Parameters (m_c, ξ) tuned once for η_c .

• Agreement across volumes and for pseudoscalar and vectors in D and Ds.

INTRODUCTION	LATTICE CALCULATIONS	Results	Summary
00	0000	00000000	000

The method (briefly)

Using distillation - compute correlation functions

 $C_{ij} = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_i^{\dagger}(0) | 0 \rangle$

with a large basis of operators including relevant structures

$$\bar{\Psi} \Gamma D \dots \Psi; \quad \sum_{\vec{p}_1, \vec{p}_2} C\left(\vec{P}, \vec{p}_1, \vec{p}_2\right) \Omega_{M_1}(\vec{p}_1) \Omega_{M_2}(\vec{p}_2)$$

• Solve as a GEVP $C_{ij}(t)V_j^{(n)} = \lambda_n(t, t_0)C_{ij}(t_0)v_j^{(n)}$ to yield E_n via fits to sums of exponentials.

Introduction	LATTICE CALCULATIONS	Results	Summary
00	00000	00000000	000

The finite energy levels - example from DK I=0

INTRODUCTION LAT	ATTICE CALCULATIONS	Results	Summary
00 00	0000	00000000	000

Energy spectrum \rightarrow infinite volume amplitudes

• Lüscher method (and extensions) relate energy levels in finite volume to scattering information (t-matrix) in infinite volume.

 $det \left[1 + i\rho(s) \cdot \mathbf{t}(s) \cdot (1 + i\mathcal{M}(s, L))\right] = 0$

• Elastic scattering \rightarrow one-to-one map $E_{cm} \leftrightarrow t(E_{cm})$

- Parametric form of t-matrix undetermined by Lüscher condition but unitarity, causality, analyticity provide constraints.
- Use a range of parameterisations of *t*: K-matrix, effective range, ...
- Analytically continue **t** in complex (*E_{cm}*) plane and look for poles.

The D and Ds Spectrum

Precision spectroscopy of single-hadron states including hybrid mesons

INTRODUCTION	LATTICE CALCULATIONS	Results	Summary
00	00000	0000000	000

OPEN CHARM SPECTRUM (D MESON) FOR $J \leq 4$

• Single hadron operators only, including hybrid-like operators.

JHEP12 (2016) 089

INTRODUCTION	LATTICE CALCULATIONS	Results	Summary
00	00000	0000000	000

AN OPEN-CHARM HYBRID SUPERMULTIPLET

• This is $m_{\pi} \sim 391$ MeV. Similar pattern for $m_{\pi} \sim 236$ MeV.

JHEP05 (2013) 021

Lightest hybrid supermultiplets^[HadSpec:2008.02656]: same pattern and scale in -onia and light^[HadSpec:1106.5515] sectors.

 0^{-+}

1--

 2^{-+}

1-+

1-+

2-+

1---

 0^{-+}

$D\pi$ scattering & the D_0^*

INTRODUCTION	LATTICE CALCULATIONS	Results	Summary
00	00000	00000000	000
			(

$D\pi$ (I=1/2) and the D_0^{st}

- First HadSpec study of $D\pi \rightarrow D\pi$ at $m\pi = 391$ MeV: shallow bound state ($\sim 2 \pm 1$ MeV below threshold)
- At $m_{\pi} = 239$ MeV: pole migrates into complex plane (~ 77 ± 64 MeV above threshold)

- Find D_0^* resonance pole, $m = (2194 \pm 64)$ MeV, $\Gamma = (425 \pm 224)$ MeV. Mass below reported experimental value (despite unphysical light quarks)
- Strong coupling of poles to $D\pi$ channel in both cases.

DK scattering and the D_{s0}^*

000 0000000 000000 000	INTRODUCTION	LATTICE CALCULATIONS	RESULTS	Summary
······································	00	00000	000000000	000

DK (I=0) AMPLITUDES

Elastic DK scattering in S and P-wave Sharp turn-on in S-wave at threshold

From 22 energy levels ($m_{\pi} = 239$ MeV) & 34 energy levels ($m_{\pi} = 391$ MeV)

INTRODUCTION	LATTICE CALCULATIONS	Results	Summary
00	00000	00000000	000

DK I=0 S-wave poles

Also find a deeply bound state in P-wave, D_s^* , but not strongly influencing DK scattering at these energies

Bound-state pole strongly coupled to S wave DK $\Delta E = 25(3)$ MeV for $m_{\pi} \sim 239$ MeV. $Z \leq 0.11$ $\Delta E = 57(3)$ MeV for $m_{\pi} \sim 391$ MeV. $Z \sim 0.13(6)$ c.f. experiment $\Delta E \sim 45$ MeV (decays to $D_5 \pi^0$)

Weinberg compositeness, $0 \le Z \le 1$ assuming binding sufficiently weak

INTRODUCTION	LATTICE CALCULATIONS	Results	SUMM
00	00000	00000000	•00

Summary: the $D_0^* - D_{s0}^*$ mass hierarchy

- mapped out the energy-dependence of scattering amplitudes using lattice QCD
- Isospin 0, DK:
 S-wave bound state, D^{*}_{s0}(2317)
- Isospin 1/2, $D\pi$: S-wave bound state/resonance, D_0^* (2300)
- Locations of poles follow expectations from SU(3) symmetry. Puzzling D_0^* heavier than D_{s0}^* not reproduced by this study.
 - Exotic flavour isospin 0 $D\overline{K}$: S-wave virtual bound state?
 - Further investigation of light quark mass dependence?
 - Higher up in energy, inelastic (3-hadron) scattering effects?

ARY

Introduction	LATTICE CALCULATIONS	Results	SUMMARY
00	00000	00000000	000

Summary

- QCD describes the properties of observed matter in terms of fundamental variables and their interactions.
- Significant progress in lattice calculations in the last 10 years although many open questions and unsolved problems.
- Extensive analyses by HadSpec of excited and exotic spectroscopy and scattering in light, heavy-light and heavy quark regimes.
- Just a snapshop of activity ... ongoing work in different quark mass regimes, pion masses and including three-particle thresholds from HadSpec.

INTRODUCTION	LATTICE CALCULATIONS	Results	Summary
00	00000	00000000	000

Summary

- QCD describes the properties of observed matter in terms of fundamental variables and their interactions.
- Significant progress in lattice calculations in the last 10 years although many open questions and unsolved problems.
- Extensive analyses by HadSpec of excited and exotic spectroscopy and scattering in light, heavy-light and heavy quark regimes.
- Just a snapshop of activity ... ongoing work in different quark mass regimes, pion masses and including three-particle thresholds from HadSpec.

Thanks for listening!

