Hadron Spectroscopy: The Next Big Steps 14–25 Mar 2022 Mainz Institute for Theoretical Physics, Johannes Gutenberg University Europe/Berlin timezone

From the line shape of X(3872) and $T_{cc}(3875)$ to their structure *Luciano Maiani CERN and INFN, Sezione di Roma 1*

Introduction

1. Exotics: the new wave

new wave (cont'd)

• Starting from 2016, new kinds of exotic hadrons have been discovered:

- $J/\Psi \phi$ resonances, $di - J/\Psi$ resonances,

- open strangeness Exotics: $Z_{cs}(3082)$ and $Z_{cs}(4003)$
- No pion exchange forces could bind them as hadron molecules made by color singlet mesons
- molecular models applied to the have to stand on the existence of "phenomenological forces" with undetermined parameters
- The New Exotics arise very naturally as $([cq]^{\bar{3}}[\bar{c}\bar{q}']^3)_1$ bound in color singlet
- the compact tetraquark model makes a firm prediction: hidden charm tetraquarks must form *complete multiplets flavor SU(3)*, with mass differences determined by the quark mass difference $m_s m_u$.
- with Z_{cs}(3082) and Z_{cs}(4003) we can almost fill two tetraquark nonets with the expected scale of mass differences

Two nonets: Solution 1 (preferred)

L. Maiani, A. D. Polosa and V. Riquer, Sci. Bull. 66 (2021), 1616, arXiv:2103.08331

A well defined shopping list towards completion:

- $X_{s\bar{s}}, M = 4076$ (Sol. 2 : 4121), decays: $\eta \psi, \eta_c \phi, D_s^* \bar{D}_s$ (if phase space allows)
- the I=1 partner of X(3872), decays: $X^+ \to J/\psi \ \rho^{\pm} \to J/\psi \ \pi^+ \pi^0$
- the I=0 partners of $Z_c(3900)$ and $Z_c(4020)$, possibly decaying into: $J/\psi + f_0(500)$ (aka $\sigma(500)$)
- •There is a *third nonet* associated to $Z_c(4020)$, $J^{PC} = 1^{+-}$: a third Z_{cs} is required, Mass=4150 4170 •*LHCb sees a Z_{cs}(4220)*, $J^P = 1^+$ or 1^- : *is it too heavy*? A bold proposal:

2. Molecule or compact? Back to the fundamentals

• for a neutron-proton pair, the question posed by Weinberg was; is the deuteron a bound state or is there an "elementary" dibaryon ?

Molecule or compact? the QCD framework

- We know for sure that QCD produces hidden charm, confined hadron states: charmonia, $D^*\bar{D} + \bar{D}^*D$. ??? Do confined tetraquarks exist??
- Suppose we switch off the interactions between confined hadrons. The space of possible hidden charm states is made by two components

How can we know?

• The key is the $D^*\overline{D}$ scattering amplitude, *f*, that near threshold (k=center of mass momentum~0) can be parametrised as

$$f^{-1} = k \cot \delta(k) - ik = -\kappa_0 + \frac{1}{2}r_0k^2 - ik + \dots$$

• With Weinberg, we find S. Weinberg, Phys.Rev. 137, (1965) B672

$$\kappa_0^{-1} = 2\frac{1-Z}{2-Z}\kappa^{-1} + O(1/m_{\pi}); \ r_0 = -\frac{Z}{1-Z}\kappa^{-1} + O(1/m_{\pi})$$
valid for a shallow resonance

$$\kappa^{-1} = \sqrt{2\mu B}, B = M(D^*) + M(D) - M(X)$$
 (the "binding energy")

- It turns out that *the parameters* κ_0 , r_0 *can be determined from the X(3872) (or* T^+_{cc}) *line-shape* R. Aaij *et al.* (LHCb), PRD **102**, (2020) 092005
- in the molecular case (Z=0) one has $r_0 = O(1/m_{\pi})...$
- ... and, for attractive potentials, one can show that the unspecified part of $O(1/m_{\pi})$ is positive:

$$r_0 > 0$$

Reported as the solution to a Problem in Landau and Lifshitz, *Quantum Mechnics* H.Bethe, 1949, gives a concise demonstration see A. Esposito *et al.* Phys. Rev. **D 105** (2022), L031503

3. X lineshape: from Breit-Wigner to scattering lengths

• Consider $D^{*0}\overline{D}^0$ scattering above threshold. If there is a resonance slight below, the amplitude takes the Breit-Wigner form

$$f = -\frac{\frac{1}{2}g_{BW}^2}{E - m_{BW} + \frac{i}{2}g_{BW}^2k}$$
 (A)
• for E= $\frac{k^2}{2\mu}$, the BW has the same form of the scattering amplitude

$$f = \frac{1}{\cot \delta(k) - ik} = \frac{1}{-\kappa_0 + \frac{1}{2}r_0k^2 - ik + \dots}$$
 (B)

and from the parameters of the line-shape (A) we can determine κ_0 and r_0 (B)

- neglecting experimental errors on the parameters, for the X(3872) and the LHCb data, we find:
- $\kappa_0 \simeq 6.92$ MeV; $r_0 = -5.3$ fm, well into the compact tetraquark region.
- using a more recent error analysis, the effective radius is found to be in the range

 $-1.6 \text{ fm} > r_0 > -5.3 \text{ fm}$

A. Esposito *et al.* Phys. Rev. **D 105** (2022), L031503 [arXiv:2108.11413v2 [hep-ph]].

V. Baru et al., arXiv:2110.07484

Details

• Flattee' function to fit the X(3972) lineshape to determine the parameters m_X^0 , g_{LHCb}

$$f(X \to J/\psi \pi^{+} \pi^{-}) = -\frac{N}{E - m_{X}^{0} + \frac{i}{2}g_{\text{LHCb}}\left(\sqrt{2\mu E} + \sqrt{2\mu_{+}(E - \delta)}\right) + \frac{i}{2}\left(\Gamma_{\rho}^{0}(E) + \Gamma_{\omega}^{0}(E) + \Gamma_{0}^{0}\right)}$$

$$\mu = \frac{D^{*0}\bar{D}^0}{D^{*0} + \bar{D}^0} = 967 \text{ MeV} \qquad \mu^+ = \frac{D^{*+}D^-}{D^{*+} + D^-} = 969 \text{ MeV} \qquad \delta = D^{*+} + D^- - D^{*0} - \bar{D}^0 = 8.3 \text{ MeV} > > E$$

Parametrization of the denominator ${\bullet}$

$$Den = E - m_X^0 + \frac{i}{2} g_{\text{LHCb}} \left(\sqrt{2\mu E} + \sqrt{2\mu_+ (E - \delta)} \right) \sim \frac{2}{g_{\text{LHCb}}} (T - m_X^0) - \sqrt{2m_+ \delta} + T \sqrt{\frac{m_+}{2\delta}} + ik \quad T = \frac{k^2}{2\mu}$$

$$\kappa_0 = -\frac{2m_X^0}{g_{\text{LHCb}}} - \sqrt{2\mu_+ \delta} \simeq 6.92 \text{ MeV}$$

$$best \text{ fit:}$$

$$g_{LHCb} = 0.108$$

$$m_X^0 = -7.18 \text{ MeV}$$

Taking into account the error on g_{LHCb} :

best fit:

$$g_{LHCb} = 0.108$$

 $m_X^0 = -7.18 \text{ MeV}$
 $\frac{2m_X^0}{g_{LHCb}} = 133 \text{ MeV} \quad \sqrt{2\mu_+\delta} = 127 \text{ MeV}$

$$-1.7 \text{ fm} > r_0 > -5.3 \text{ fm}$$

- Log Likelihood is very insensitive to the value of g_{LHCb}
- $10 > g_{LHCb} > 0.108$
- leads to the range of r_0

4. The doubly charmed Tetraquark, T_{cc}^+

- The existence of doubly charmed tetraquarks, $[QQ\bar{q}\bar{q}]$, was considered in 2013 by Esposito et al. Esposito *et al*, PRD **88**(2013) 054029)
- Starting from the mass of the doubly charmed baryon, Karliner and Rosner estimated of the mass of the lowest lying, I=0 state at $M(T_{cc}^+) = 3882 \pm 12$ MeV, 7 MeV above the D^0D^{*+} threshold. M. Karliner and J. L. Rosner, PRL **119**(2017) 202001.
- A similar value was obtained by Eichten and Quigg

E. J. Eichten and C. Quigg, PRL **119** (2017) 202002

- A value close to the $D^0 D^* \gamma$ threshold is obtained in the Born -Oppenheimer Approximation, using constituent quark masses derived from the meson spectrum (recently re-evaluated !!)
- The value $M(T_{cc}^+) M(D^0D^+) = -23 \pm 11$ MeV is obtained in lattice QCD calculation P. Junnarkar *et al*, PRD **99**(2019) 034507
- The closeness to the D^0D^{*+} threshold has nonetheless invited speculations about a molecular, D^0D^{*+} , nature of T_{cc}^+ .

Latest: double charm tetraquark

LHCb arXiv:2109.01056v2

L. Maiani. Exotic Hadrons. 8

$$\mu = \frac{D^{*+}D^0}{D^{*+} + \bar{D}^0} = 967.5 \text{ MeV } \mu^+ = \frac{D^{*0}D^+}{D^{*0} + D^+} = 968.0 \text{ MeV } \delta = D^{*0} + D^+ - D^{*+} - \bar{D}^0 = 1.7 \text{ MeV}$$

$$(r_0)_{u.l.} = \sqrt{\frac{\mu_+}{2\mu^2\delta}} = -3.4 \text{ fm}$$

lower limit $(r_0)_{l.l.} = -11.9$ fm

agrees with Mikhasenko's result: $r_0 = -3.7$ fm ArXiv:2203.04622v1

LHCb, arXiv:2109.01056

from Mikhasenko's paper (Arxiv:2203.04622v1)

$$X = 1 - Z = \frac{1}{\sqrt{1 - 2r_0\kappa_0}}$$

 $-1.8 > r_0 > -11$ fm

my estimate from Mikasenko's figures !!!

GGI Firenze. Feb. 21-25, 2022

5. The value of Z

• From previous Weinberg formulae, we derive

$$Z = \frac{-r_0\kappa}{1 - r_0\kappa}$$

and with $\kappa \simeq \kappa_0$, we find, for X(3872):

0.14 > Z > 0.052 > 0

- Z is often identified with the admixture of X with the compact (tetraquark) state. In this case one would say that X is "essentially" a molecule
- However, the interpretation of Z as mixing coefficient, *holds true in the free theory only*. With interaction, the state vector corresponding to the compact state may be renormalized and the strenght of Z losses its meaning.
- We think that what counts is that Z is non vanishing, indicating that *there are*, in the Hilbert space, discrete states different from the D D* continuum to which X has a non-vanishing projection. This is stated clearly in Weinberg's paper:
 - the true token that the deuteron is composite is an effective range r_0 small and positive rather than large and negative
 - *an elementary deuteron would have* 0<Z<1.
- 0 < Z < 1 does not say anything about the existence of bound states in the inter-hadron $D^*\overline{D}$ potential, i.e. molecules: the interaction could be driven by the compact state only and be consistent with no bound molecule at all.

My Summary about r_0

No consensus yet, but it seems we are on a very promising road. Stay tuned!!