Discovery and study of T_{cc}^+ [LHCb, arXiv:2109.01056]

Vanya Belyaev, Mikhail Mikhasenko, Ivan Polykov (LHCb collaboration)

dedicated to the memory of Simon Eidelman

Velasco / Quanta Magazines

Image credit. Samuel

[display]

Introduction

Selection of T_{cc}^+ in prompt decays to $D^0 D^0 \pi^+$

- Select $D^0 D^0 \pi^+$ candidates from primary vertex with detached $D^0 \rightarrow K^- \pi^+$
- Require detached $K^-\pi^+$ with high p_T
- Require good quality of tracks, vertexes, and particle ids.
- Ensure no K/π candidates belong to one track (clones)
- Ensure no reflections via mis-ID
- Subtract fake-D background using 2d fit to $(m_{K\pi} \times m_{K\pi})$

The first hint of the signal: $D^0 D^0 \pi^+$ and $D^0 \bar{D}^0 \pi^+$

Model assumptions:

- $J^P = 1^+$: S-wave decay to D^*D
- T_{cc}^+ is an isoscalar: $|T_{cc}^+\rangle_{I=0} = \left\{ \left| D^{*0}D^+ \right\rangle \left| D^{*+}D^0 \right\rangle \right\} / \sqrt{2}$
- No isospin violation in couplings to $D^{*+}D^0$ and $D^{*0}D^+$

Introduction

T_{cc}^+ self-energy and hadronic reaction amplitude

Three-body unitarity [MM et al. (JPAC), JHEP 08 (2019) 080] Dynamic amplitude of $D^*D \rightarrow D^*D$ scattering:

$$T_{2 \times 2}(s) = rac{K}{1 - \Sigma K} = rac{K(m^2 - s)}{m^2 - s - i g^2 (
ho_{
m tot} + i\xi)}$$

where K is the isoscalar potential:

$$K = \frac{1}{m^2 - s} \begin{pmatrix} g \cdot g & -g \cdot g \\ -g \cdot g & g \cdot g \end{pmatrix},$$

and $\boldsymbol{\Sigma}$ is the loop function:

$$\operatorname{Im}\left[\begin{pmatrix}g\\-g\end{pmatrix}^{\dagger}\Sigma(s)\begin{pmatrix}g\\-g\end{pmatrix}\right]=\rho(s)$$

 D^* decays are accounted for.

Unitarity and Analyticity guided construction.

Model parameters: $|g|^2$ and m^2 – bare mass and coupling

Vanya, Misha, Ivan (LHCb)

Discovery and study of T

Fit to the spectrum

Unitarized model

- The signal shape does not depend on |g| for $|g| \rightarrow \infty$.
- The lower limit: $|g| > 7.7(6.2) \,\text{GeV}$ at 90(95)% CL
- δm_U is the only parameter

ParameterValueN 186 ± 24 $\delta m_{\rm U}$ $-359 \pm 40 \ {\rm keV}/c^2$ |g| $3 \times 10^4 \ {\rm GeV}$ (fixed)

No direct sensitivity to the width, the value is driven by the model

Vanya, Misha, Ivan (LHCb)

Discovery and study of T_c

March 16th, 2022

6/14

Predicted mass spectrum

- A bound state below $D^{*+}D^0$ threshold with a narrow width due to D^*
- $\bullet\,$ Still, the NLL scan suggest the low limit to the width, $\Gamma>10\,keV$ at 95 CL.

Width saturation

Complex plane

- The D^* width gives the limit (the red dashed line) to T_{cc}^+ width, $< \Gamma_{T^+}^{(max)}(m)$
- Parameter |g| sets the value in the range $[0, \Gamma_{T^+_{\tau}}^{(max)}]$
- The fit prefers the limit value

Fundamental resonance parameters

[interactive]

Mass and width - position of the complex pole of the reaction amplitude

- Analytic continuation is non-trivial due to three-body decays [MM et al. (JPAC), PRD 98 (2018) 096021]
- The pole parameters:
 $$\begin{split} \delta m_{\rm pole} &= -360 \pm 40^{+4}_{-0} \, {\rm keV} \,, \\ \Gamma_{\rm pole} &= 48 \pm 2^{+0}_{-14} \, {\rm keV} \,. \end{split}$$

Effective range and Weinberg compositeness

$$\mathcal{A}_{\rm NR}^{-1} = \frac{1}{a} + r \frac{k^2}{2} - ik + \mathcal{O}(k^4),$$
$$\frac{2}{|g|^2} \mathcal{A}_{\rm U}^{-1} = -\left[\xi(s) - \xi(m_{\rm U}^2)\right] + 2\frac{m_{\rm U}^2 - s}{|g|^2} - i\varrho_{\rm tot}$$

Matching:

- $r = 16w/|g|^2$, where w is a normalization factor between ρ and k
- *w* excludes the contribution of the second threshold
- \bullet does not have the $1/\sqrt{\delta}$ term
- T_{cc}^+ : $a = (-7.16 \pm 0.51) + i(1.85 \pm 0.28)$ fm
- T_{cc}^+ : r is negative in the model: 0 < -r < 11.9(16.9) fm at 90(95) % CL
- T_{cc}^+ : 1 Z > 0.48(0.42). T_{cc}^+ is consistent with the molecule

Effective range and Weinberg compositeness

$$\mathcal{A}_{\rm NR}^{-1} = \frac{1}{a} + r \frac{k^2}{2} - ik + \mathcal{O}(k^4),$$
$$\frac{2}{|g|^2} \mathcal{A}_{\rm U}^{-1} = -\left[\xi(s) - \xi(m_{\rm U}^2)\right] + 2\frac{m_{\rm U}^2 - s}{|g|^2} - i\varrho_{\rm tot}$$

Matching:

- $r = 16w/|g|^2$, where w is a normalization factor between ρ and k
- *w* excludes the contribution of the second threshold
- \bullet does not have the $1/\sqrt{\delta}$ term
- T_{cc}^+ : $a = (-7.16 \pm 0.51) + i(1.85 \pm 0.28)$ fm
- T_{cc}^+ : r is negative in the model: 0 < -r < 11.9(16.9) fm at 90(95) % CL
- T_{cc}^+ : 1 Z > 0.48(0.42). T_{cc}^+ is consistent with the molecule

!! The procedure and the values are revisited in $[{\rm MM, \ hep-ph}/2203.04622]$

Two extreme spatial configurations

"Molecule" configuration:

- two mesons are well separated,
- bound by forces similarly to el.mag. van der Waals,
- entirely coupled to $D^{*+}D^0$,
- $\sim T_{cc}^+$ lives until D^{*0} decays,
 - ? spatially-extended object.

"Atomic" (© ancient Greek) configuration:

- genuine QCD state,
- bound by direct color forces
- $\sim T_{cc}^+$ cannot live shorter than D^{*0} , $au_{T_{cc}^+}$ can be arbitrary large (uncoupled from continuum)
- ? typical hadronic size of 1 fm.

Partially-reconstructed decays

Independent selection of the prompt D^0D^0 and D^+D^0 events.

• Lineshape of D^0D^0 and D^+D^0 spectra are predicted well by the model

• Relative yeilds of D^0D^0 and D^0D^+ is in good agreement with the model predictions

lsospin partners?

What if the T_{cc}^+ is a part of the isospin-1 triplet

T_{cc}^{0} :	ссūū	
T_{cc}^{+} :	$ccar{u}ar{d}$	
T_{cc}^{++} :	ccā	$ ightarrow D^+ D^{*+}$

The partners should be roughly of the same mass, more precise

 $m_{T_{cc}^{++}} - (m_{D^+} + m_{D^{*+}}) = 2.7 \pm 1.3 \, \text{MeV}(\text{using mass of } \Sigma_c^0, \Sigma_c^+, \Sigma_c^{++})$

Vanya, Misha, Ivan (LHCb)

Do other hadrons of the (QQ'qq') family exist?

- Exists? Now, we are sure they do, all of them.
- Can be observed? Certainly some. Some might be too broad.

[Karliner, Rosner (2017)]

Exotic hadrons in the future plans of LHCb

Major LHCb upgrade during LS2 is nearly finished

2015		2019	2022	2025	2027	2031 2032	
	Run 2	LS2	Run 3	LS3	Run 4	LS4 Run	5 and beyond
$\mathcal{L} = 4$	$\times 10^{32} \mathrm{cm}^2 \mathrm{s}^{-1}$ 9 fb ⁻¹	•			$\mathcal{L} = 2 \times 10^{33} \mathrm{cm}$ 50	$f^{2} s^{-1} f b^{-1}$	$\mathscr{L} = 1.5 \times 10^{34} \mathrm{cm}^2 \mathrm{s}^{-1}$ 300 fb ⁻¹
						P_c^+	T_{cc}^+
	Run 1	(2011-20	15) :	$+3\mathrm{fb}$	0 ⁻¹ @7 TeV	~ 100	~ 60
	+Run 2	(2015-20	19) :	$+6\mathrm{fb}^-$	⁻¹ @13 TeV	$\sim 1.5 k$	~ 200
	+Run 3	(2022-20	25) :				
	+Run 4	(2027-20	30) :	$+40\mathrm{fb}^-$	⁻¹ @14 TeV	> 8 <i>k</i>	> 1k

Exotic hadrons in the future plans of LHCb

Major LHCb upgrade during LS2 is nearly finished

Run 3 is about to start (2022):

- Same energy, but \times 4 intensity: 1.5 \rightarrow 5.5 PV per \times -ing
- Uncertainty due to new tracking system, new software trigger

Optimistically, we will be doing 4 years in 1!

