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• Exotic states  i.e. states different for qqbar or qqq have been predicted before and after the 
inception of QCD:  in the last decades they (X Y Z) have been observed in the sector 

with two heavy quarks QQbar, at or above the quarkonium strong decay threshold 

•X Y Z    offer  the unique possibility to investigate the dynamical properties  of 
strongly correlated systems in QCD—> however it is very difficult  

to describe them in QFT

• We  have now the tools to describe quarkonium in Quantum Field Theorys —
Nonrelativistic Effective Quantum Field Theories (NREFT) plus Lattice ; —we can 

extend these tools to X Y Z

•I will show how we can address X Y Z states  on the basis of an EFT called 
BOEFT and some lattice input i.e. directly in QCD
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on factorization  which makes apparent symmetries hidden in QCD and increase 

model independent predictivity 

• BOEFT for Hybrids:   theory, spectra, spin structure, decays

• BOEFT for tetraquarks, pentaquarks, doubly heavy baryons

•X Y Z:   BOEFT this theory should encompass  the different  models depending on the dynamics; 
need lattice input  but only on  some glue correlators, not on each state  

Plan of the talk

• pNRQCD addresses bound state formation—>gives the potentials and the non 
potential corrections, the  nonperturbative physics is 

contained  in gluonic gauge invariant objects

• The same framework can be used to describe X Y Z evolution  in medium -in 
heavy ions ion the basis of BOEFT and open quantum system
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Systems with two heavy quarks: physical scales and physical significance

consider QQbar (quarkonium) but things are similar for QQ, QQQ etc 
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Being a multiscale system quarkonium 

is a golden probe of  

confinement and deconfinement physics 
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by using Nonrelativistic Effective Field Theories  
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pNRQCD: EFT for QQ̄

pNRQCD is the EFT for nonrelativistic quark-antiquark pairs (QQ̄) near threshold.

• QFT = QCD

• It is obtained by integrating out hard and soft gluons with p or E scaling like m, mv.

• The d.o.f. are QQ̄ pairs (sometimes cast in color singlet S and color octet O)

and ultrasoft modes (e.g. light quarks, low-energy gluons):

φ = S

• The Lagrangian is organized as an expansion in 1/m and r.

• The form of ∆L and of the ultrasoft modes depends on the low energy dynamics.

• The power counting is

→ p ∼ 1/r ∼ mv (soft scale),

→ E ∼ p2/2m ∼ V (0) ∼ Pcm ∼ 1/Rcm ∼ mv2 (ultrasoft scale),

→ operators in ∆L scale like (mv2)dimension.

◦ Brambilla Pineda Soto Vairo RMP 77 (2005) 1423
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In QCD another  
scale is relevant

• The leading picture is Schoedinger eq.,the  
potentials appear once all scales above the energy have been 
been integrated out  

•Any prediction of pNRQCD is a prediction of 
QCD at the given order of expansion

•Effects at the nonperturbative scale are carried 
by gauge invariant purely glue dependent 
correlators to be calculated on 
the lattice or in QCD vacuum models 

• non potential effects appear  
 as correction to the leading picture and are nonperturbative



Weakly coupled pNRQCDWeak coupling pNRQCD
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}

+ · · ·

−
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Fa
µνF
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nf
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q̄i iD/ qi

The (weak coupling) matching coefficients are the Coulomb potential:

V (r) = −CF
αs

r
+ . . . , Vo(r) =

1

2N

αs

r
+ . . . , N = 3, CF =

4

3

and VA = 1 +O(α2
s ), VB = 1 +O(α2

s ).

◦ Pineda Soto NP PS 64 (1998) 428

Brambilla Pineda Soto Vairo NPB 566 (2000) 275

LO  in r

NLO  in r
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pNRQCD Lagrangian for QQ̄

• If mv ! ΛQCD, the matching is perturbative

• Degrees of freedom: quarks and gluons

Q-Q̄ states, with energy ∼ ΛQCD, mv2 and momentum <
∼ mv

⇒ (i) singlet S (ii) octet O

Gluons with energy and momentum ∼ ΛQCD, mv2

• Definite power counting: r ∼
1

mv
and t, R ∼

1

mv2
, 1

ΛQCD

The gauge fields are multipole expanded:
A(R, r, t) = A(R, t) + r · ∇A(R, t) + . . .

Non-analytic behaviour in r → matching coefficients V
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LO  in r

NLO  in r

<latexit sha1_base64="V2Rf8woRlDZ7QswRoNYTmF37tdo="></latexit>

LpNRQCD =

Z
d
3
rTr {S†(i@0 �

p2

m
� VS + · · · )S +O

†(iD0 �
p2

m
� VO + · · · )O+

<latexit sha1_base64="wYQxvLsMAyif6Tcxjewi0EY2G10="></latexit>

+VA(S
†r · gEO +O

†r · gES) +
VB

2
(O†r · gEO +O

†
Or · gE)}+ . . .

pNRQCD Lagrangian for QQ̄

• If mv ! ΛQCD, the matching is perturbative

• Degrees of freedom: quarks and gluons

Q-Q̄ states, with energy ∼ ΛQCD, mv2 and momentum <
∼ mv

⇒ (i) singlet S (ii) octet O

Gluons with energy and momentum ∼ ΛQCD, mv2

• Definite power counting: r ∼
1

mv
and t, R ∼

1

mv2
, 1

ΛQCD

The gauge fields are multipole expanded:
A(R, r, t) = A(R, t) + r · ∇A(R, t) + . . .

Non-analytic behaviour in r → matching coefficients V

pNRQCD Lagrangian for QQ̄

• If mv ! ΛQCD, the matching is perturbative

• Degrees of freedom: quarks and gluons

Q-Q̄ states, with energy ∼ ΛQCD, mv2 and momentum <
∼ mv

⇒ (i) singlet S (ii) octet O

Gluons with energy and momentum ∼ ΛQCD, mv2

• Definite power counting: r ∼
1

mv
and t, R ∼

1

mv2
, 1

ΛQCD

The gauge fields are multipole expanded:
A(R, r, t) = A(R, t) + r · ∇A(R, t) + . . .

Non-analytic behaviour in r → matching coefficients V

pNRQCD Lagrangian for QQ̄

• If mv ! ΛQCD, the matching is perturbative

• Degrees of freedom: quarks and gluons

Q-Q̄ states, with energy ∼ ΛQCD, mv2 and momentum <
∼ mv

⇒ (i) singlet S (ii) octet O

Gluons with energy and momentum ∼ ΛQCD, mv2

• Definite power counting: r ∼
1

mv
and t, R ∼

1

mv2
, 1

ΛQCD

The gauge fields are multipole expanded:
A(R, r, t) = A(R, t) + r · ∇A(R, t) + . . .

Non-analytic behaviour in r → matching coefficients V

Weak coupling pNRQCD

∆L =

∫

d3r Tr

{

O†

(

iD0 −
p2

m
+ · · ·− Vo

)

O

VAO†r · gES +H.c.+
VB

2
O†r · gEO + c.c.

}

+ · · ·

−
1

4
Fa
µνF

µν a +

nf
∑

i=1

q̄i iD/ qi

The (weak coupling) matching coefficients are the Coulomb potential:

V (r) = −CF
αs

r
+ . . . , Vo(r) =

1

2N

αs

r
+ . . . , N = 3, CF =

4

3

and VA = 1 +O(α2
s ), VB = 1 +O(α2

s ).

◦ Pineda Soto NP PS 64 (1998) 428

Brambilla Pineda Soto Vairo NPB 566 (2000) 275

The  matching coefficients are the Coulomb potential 

Weak coupling pNRQCD

∆L =

∫

d3r Tr

{

O†

(

iD0 −
p2

m
+ · · ·− Vo

)

O

VAO†r · gES +H.c.+
VB

2
O†r · gEO + c.c.

}

+ · · ·

−
1

4
Fa
µνF

µν a +

nf
∑

i=1

q̄i iD/ qi

The (weak coupling) matching coefficients are the Coulomb potential:

V (r) = −CF
αs

r
+ . . . , Vo(r) =

1

2N

αs

r
+ . . . , N = 3, CF =

4

3

and VA = 1 +O(α2
s ), VB = 1 +O(α2

s ).

◦ Pineda Soto NP PS 64 (1998) 428

Brambilla Pineda Soto Vairo NPB 566 (2000) 275

Weak coupling pNRQCD

∆L =

∫

d3r Tr

{

O†

(

iD0 −
p2

m
+ · · ·− Vo

)

O

VAO†r · gES +H.c.+
VB

2
O†r · gEO + c.c.

}

+ · · ·

−
1

4
Fa
µνF

µν a +

nf
∑

i=1

q̄i iD/ qi

The (weak coupling) matching coefficients are the Coulomb potential:

V (r) = −CF
αs

r
+ . . . , Vo(r) =

1

2N

αs

r
+ . . . , N = 3, CF =

4

3

and VA = 1 +O(α2
s ), VB = 1 +O(α2

s ).

◦ Pineda Soto NP PS 64 (1998) 428

Brambilla Pineda Soto Vairo NPB 566 (2000) 275

Weak coupling pNRQCD

∆L =

∫

d3r Tr

{

O†

(

iD0 −
p2

m
+ · · ·− Vo

)

O

VAO†r · gES +H.c.+
VB

2
O†r · gEO + c.c.

}

+ · · ·

−
1

4
Fa
µνF

µν a +

nf
∑

i=1

q̄i iD/ qi

The (weak coupling) matching coefficients are the Coulomb potential:

V (r) = −CF
αs

r
+ . . . , Vo(r) =

1

2N

αs

r
+ . . . , N = 3, CF =

4

3

and VA = 1 +O(α2
s ), VB = 1 +O(α2

s ).

◦ Pineda Soto NP PS 64 (1998) 428

Brambilla Pineda Soto Vairo NPB 566 (2000) 275

Feynman rules

= θ(t) e−it(p2/m+V )
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(
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= O†r · gE S = O†{r · gE, O}

◦ Brambilla Pineda Soto Vairo NPB 566 (2000) 275, RMP 77 (2005) 1423
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Energies at order m alpha^5 (NNNLO)
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+ . . . Voloshin–Leutwyler terms

local condensates as  predicted in a 
paper by Misha Voloshin in 1979

—>used to extract  precise  (NNNLO)  
determination of m_c and m_b

Applications of weakly coupled pNRQCD include: 
ttbar production, quarkonia spectra, decays, E1 and M1 transitions, QQq and QQQ energies, thermal 

masses and potentials 



ΛQCDHitting the scale    r ⇠ ⇤�1
QCD

(QQ̄)1 + Glueball

(QQ̄)1
(QQ̄)8G

hybrid

Strongly coupled pNRQCD: 

The degrees of freedoms now are  

with gluons at the  scale ΛQCD  —>nonperturbative problem, use lattice 



ΛQCDHitting the scale    r ⇠ ⇤�1
QCD

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14

atEK

R/as

Gluon excitations

as/at = z*5
z=0.976(21)

`=2.5
as~0.2 fm

Wu
Y-

u

Y+
g’

6g
Wg
Y-

g
Wg’

W’uY
+
u

6u

Y+
g

short distance
degeneracies

crossover

string ordering

N=4

N=3

N=2

N=1

N=0

Juge Kuti Mornigstar 98-06 

Spectrum of NRQCD 
static energies E^0_n from 

Lattice

NRQCD states

Strongly coupled pNRQCD: 
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r = |x1 � x2|
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The Quantum-Mechanical
Matching

The matching condition is:

〈H|H |H〉 = 〈nljs|
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m
+

∑

n

V (n)
s

mn
|nljs〉

In a QM language:

H(0)|n;x1,x2〉
(0) = E(0)

n (x1,x2)|n;x1,x2〉
(0)

|n;x1,x2〉
(0) = ψ†(x1)χ(x2)|n;x1,x2〉

(0)

xj are the quark positions n : CP, ...

|0〉(0) = |(QQ̄)1〉 → Quarkonium Singlet
|n > 0〉(0) = |(QQ̄)g(n)〉 → Higher Gluonic Excitations
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Symmetries

◦ Foster Michael PRD 59 (1999) 094509
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|n > 0;x1x2i� >

K is the angular momentum of the light degrees of 
freedom;same symmetry as the diatomic molecule 
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Quarkonium hybrids: BOEFT

� Static Energies ሺȭǡ ȫǡ ȟሻ: Eigenvalue of  NRQCD 
Hamiltonian in the static limit.

� Static limit �Pĺ ����4XDQWXP��·V�IRU�K\EULG

� For Uĺ �: static energies are degenerate. 
Characterized by 2 � ë& symmetry group. 

Labelled by: ሺ���ǡ ȦɄɐሻ

Berwein, Brambilla, Castellà , Vairo Phys. Rev. D. 92, (2015)

Gluonic operators characterizing 
Hybrids in Wilson loop

Focus on these two for low lying hybrids 8
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• A  pure potential description emerges from the EFT however this is not the constituent 
quark model, alphas and masses  are the QCD fundamental parameters

• The potentials V = ReV + ImV

         
  from QCD in the matching: get spectra and decays 

• We obtain  the form of the nonperturbative potentials V in terms of generalized Wilson loops (stat 
that are low energy pure gluonic correlators: all the flavour dependence is pulled out 
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spin dependent 1/m^2 potentialThe singlet  potential has the general structure

High-lying quarkonia away from threshold: 1/m potentials

• Singlet states described by the long tails of the potentials in pNRQCD:
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1

m
V1 +

1

m2
(VSD + VV D)

•Lattice calculations of the pNRQCD  potentials

•Exact relations among the potentials from the EFT

•QCD vacuum calculation of the potential (need only one assumption on the Wilson loop 

static spin dependent velocity dependent
the fact that spin dependent corrections appear   

at order 1/m^2 is called Heavy Quark Spin Symmetry
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gauge invariant wilson  
loops can be calculated also in 

 QCD vacuum model and large N 
(-> see Giancarlo talks)
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pNRQCD  can describe also quarkonium production and, together  
with open quantum systems, the nonequilibrium evolution of quarkonium in medium  

(in heavy ions) 

—> which has implications on the fact that BOEFT could do the same  

N. B., Hee Sok Chung, A. Vairo 2106.09417, 2007.10078

N. B., M. Escobedo, M. Strickland, A. Vairo, P. Vandergriend,J. weber 2012.01240
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I Exotic Quarkonia are candidates for non traditional hadronic states, including
four constituent quark or an excited gluon constituent.

I Many pictures and corresponding models have been proposed...

I However a compelling, unified, understanding of these new states has not yet
emerged.

I The objective is to connect the di�erent pictures to QCD through EFT and/or
lattice.
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m is the bigger scale —> NRQCD is still validStill:

another separation of scales allows to construct an EFT —> BOEFT



BOEFT: EFT for nonrelativistic pairs and light d.o.f.

Consider bound states of two nonrelativistic particles and some light d.o.f., e.g.,

molecules/quarkonium hybrids (QQ̄g states)or tetraquarks (QQ̄qq̄ states):

• electron/gluon fields change adiabatically in the presence of heavy quarks/nuclei.

The heavy quarks/nuclei interaction may be described at leading order in the

non-relativistic expansion by an effective potential Vκ between static sources,

where κ labels different excitations of the light d.o.f.

• a plethora of states can be built on each of the potentials Vκ by solving the

corresponding Schrödinger equation.

This picture goes also under the name of Born-Oppenheimer approximation. Starting

from pNRQED/pNRQCD the Born-Oppenheimer approximation can be made rigorous

and cast into a suitable nonrelativistic EFT called Born–Oppenheimer EFT (BOEFT).

◦ Brambilla Krein Tarrus Vairo PRD 97 (2018) 016016
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H+
2 -like molecule spectrum

In H+
2 -like molecules excitations of the electronic cloud are separated from each other

by a gap of order mα2, while vibrational modes of the nucleus have an energy of order

mα2
√

m/M , which is much smaller than mα2; m = mass of e, M = mass of nucleus.

EFT for quarkonium hybrids Hybrid spectrum Spin-dependent potential EFT for tetraquarks Summary and outlook
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Lattice evaluation of the QCD static energies: 
Michael et al. 1983,  

 Juge, Kuti, Mornigstar   1997, 1998, 
Bali Pineda 2004,  Capitani, Philipsen, Reisinger, 

Riehl, Wagner 2018

State multiplets

We consider hybrids that are excitations of the lowest lying static energies Πu and Σ−
u .

In the r → 0 limit Πu and Σ−
u are degenerate and correspond to a gluonic operator with

quantum numbers 1+−.

States are organized in spin multiplets.

Multiplet T JPC(S = 0) JPC(S = 1) EΓ

H1 1 1−− (0, 1, 2)−+ E
Σ−

u

, EΠu

H2 1 1++ (0, 1, 2)+− EΠu

H3 0 0++ 1+− E
Σ−

u

H4 2 2++ (1, 2, 3)+− E
Σ−

u

, EΠu

T is the sum of the orbital angular momentum of the quark-antiquark pair and the

gluonic angular momentum; T = 0 state turns out not to be the lowest mass state.

◦ Braaten PRL 111 (2013) 162003

Braaten Langmack Smith PRD 90 (2014) 014044
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E

Bali Pineda PRD69 (2004) 094001

and x2 of the quark and antiquark, respectively, are good quantum numbers for the static

solution |n;x1,x2〉(0), while n generically denotes the remaining quantum numbers.

In static NRQCD, the gluonic excitations between static quarks have the same symmetries

as the diatomic molecule [24]. In the center-of-mass system, these correspond to the symme-

try group D∞h (substituting the parity operation by CP). According to that symmetry, the

mass eigenstates are classified in terms of the angular momentum along the quark-antiquark

axis (Λ = 0, 1, 2, . . . , to which one gives the traditional names Σ,Π,∆, . . . ), CP (g for even

or u for odd), and the reflection properties with respect to a plane that passes through the

quark-antiquark axis (+ for even or − for odd). Only the Σ states are not degenerate with

respect to the reflection symmetry. See Appendix A for more details.

Translational invariance implies that E(0)
n (x1,x2) = E(0)

n (r), where r = x1 − x2. This

means that the gluonic static energies are functions of r and of the only other scale of

the system in the static limit, ΛQCD. The ground-state energy E(0)

Σ+
g
(r) is associated to the

static quark-antiquark energy, while the other gluonic static energies E(0)
n (r), n #= 0, are

associated to gluonic excitations between static quarks. Following the analogy with the

diatomic molecule, the E(0)
n (r) play the same role as the electronic static energies. However,

in the present case they are nonperturbative quantities and can be obtained in lattice QCD

from generalized static Wilson loops in the limit of large interaction times T [21, 22, 27–32]

Since the static energies are eigenvalues of the static Hamiltonian, one can exploit the

following relation:

(0) 〈n; x1, x2, T/2| n; x1, x2, −T/2〉(0) = N exp
[

−iE(0)
n (r) T

]

, (10)

where N =
[

δ(3)(0)
]2

is a normalization constant following from (9). Since the static states

|n; x1, x2〉(0) form a complete basis, any state |Xn〉 can be written as an expansion in them:

|Xn〉 = cn |n; x1, x2〉(0) + cn′ |n′; x1, x2〉(0) + . . . . (11)

From Eq. (10), it then follows

〈Xn, T/2|Xn, −T/2〉 = N|cn|2 exp
[

−iE(0)
n (r) T

]

+N|cn′|2 exp
[

−iE(0)
n′ (r) T

]

+ . . . . (12)

For large T the exponentials will be highly oscillatory, or in the Euclidean time of lattice

QCD highly suppressed, so such a correlator will be dominated by the lowest static energy.

This allows us to obtain the lowest static energies without knowing the static states explicitly

E(0)
n (r) = lim

T→∞

i

T
log〈Xn, T/2|Xn, −T/2〉 . (13)

8
Phi wilson lines and H gluonic operator with  

the correct quantum numbers

wilson loop
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We need the  static  
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The BOEFT  gives the set of coupled Schroedinger equation  and the recipe to construct multiplets   

State multiplets

We consider hybrids that are excitations of the lowest lying static energies Πu and Σ−
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 �(r,R, t)  as degree of freedom in BOEFT   

We do not consider the quark spin  
here so S=0 and  1 are degenerated
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Schrödinger equation for EΠu and EΣ−
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called the nonadiabatic coupling.
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offdiagonal terms change the radial Σ wave function to Π and vice versa, however, they can

not change the parity of the states. This means that ψ(N)
Σ mixes only with ψ(N)

−Π , and ψ(N)
+Π

decouples. We then have the following coupled radial Schrödinger equation for one parity

state,


− 1

mr2
∂rr

2∂r +
1

mr2





l(l + 1) + 2 2
√
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2
√
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Σ 0

0 E(0)
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 = EN
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 ,

(51)

and for the other we get the conventional radial Schrödinger equation

[

− 1

mr2
∂r r

2 ∂r +
l(l + 1)

mr2
+ E(0)

Π

]

ψ(N)
+Π = EN ψ(N)

+Π . (52)

There is a special case for l = 0 in that the offdiagonal terms in the coupled equation

vanish, so the radial Schrödinger equations for ψ(N)
Σ and ψ(N)

−Π also decouple. In fact, ψ(N)
−Π

is irrelevant, since there are no orbital wave functions with |λ| = 1 for l = 0. The same

applies to ψ(N)
+Π . So for l = 0 there exists only one parity state, and its radial wave function is

given by an almost ordinary Schrödinger equation with the E(0)
Σ potential, the only unusual

element is that the angular part is 2/mr2 even though l = 0.

In Appendix C we describe the derivation of the radial Schrödinger equations in more

detail. For the uncoupled radial Schrödinger equations there exist well established numerical

methods to find the wave functions and eigenvalues. These can also be extended to the

coupled case, more details on the specific approach that we chose to get the numerical

results are given in Appendix D and [51].

C. Comparison with other descriptions of hybrids

We now compare the pattern of hybrid spin-symmetry multiplets that we have obtained in

our approach with the one obtained in different pictures. The BO approximation for hybrids,

as it has been employed in Refs. [19, 21, 22, 34], produces spin-symmetry multiplets with

the same JPC constituents as our Hi multiplets in Table II, however, in all the existing BO

papers the masses of opposite parity states are degenerate.

In Ref. [34] the underlying assumptions of the BO approximation are given in more

detail. Two main points are identified, an adiabatic approximation and a single-channel

approximation. The adiabatic approximation states that the time scales for heavy and
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Coupled radial Schrödinger equations

Projection vectors in matrix elements allow for two di↵erent solutions
(coupled or uncoupled) for the ⌃�

u
and ⇧u radial wave functions:

1st solution
"
�

1

2µr2
@rr

2@r +
1

2µr2

 
l(l + 1) + 2 2

p
l(l + 1)

2
p

l(l + 1) l(l + 1)

!
+

 
E

(0)
⌃ 0

0 E
(0)
⇧

!# 
 ⌃

 ⇧

!
= E

 
 ⌃
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!

2nd solution

�

1

2µr2
@r r

2 @r +
l(l + 1)

2µr2
+ E(0)

⇧

�
 ⇧ = E  ⇧

energy eigenvalue E gives hybrid mass: mH = mQ +mQ̄ + E

l(l + 1) is the eigenvalue of angular momentum L
2 =

�
LQQ̄ +Lg

�2

the two solutions correspond to opposite parity states: (�1)l and (�1)l+1

corresponding eigenvalues under charge conjugation: (�1)l+s and (�1)l+s+1

Schrödinger equations can be solved numerically
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Mixing remove the degeneration 
among opposite parity states: 

->Lambda doubling  
existing also in molecular physics



Spectrum: general consideration

• The Schrödinger equation mixes states with the same parity.

A consequence is Λ-doubling, i.e., the lifting of degeneracy between states with

opposite parity. This happens also in molecular physics, however, there Λ-doubling

is a subleading effect, while it is a LO effect in the quarkonium hybrid spectrum.

• The eigenstates are organized in the multiplets H1, H2, ... . Neglecting

off-diagonal terms, the multiplets H1 and H2 would be degenerate.

• We compute the spectrum using quark masses in the renormalon subtraction (RS)

scheme: mc RS = 1.477(40) GeV and mb RS = 4.863(55) GeV.

The gluelump masses, which enter in the normalization of the hybrid potentials,

have been computed in the same scheme and assigned an uncertainty of

±0.15 GeV, which is the largest source of uncertainty in the hybrid masses.
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Spectrum: with mixing and Λ-doubling
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in BO papers  
without the BOEFT  

masses of opposite parity  
states are degenerate



Charmonium hybrid states vs direct lattice data
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Lattice (crosses)  confirms Lambda doubling (H_1  not degenerate with H_2)

Bands  BOEFT predict -uncertainty comes from the uncertainty on the mass of the gluelump
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Comparison of  hybrids multiplets  with neutral isoscalar states observed in the 
charmonium sector (updated  spectrum in paper in  prep on decays N.B., A. Mohapatra. Was Kin Lai, A. Vairo 2022)



band in our H multiplet masses comes form the error on the 
lattice calculation of the gluelump mass +-150 MeV: we need more precise lattice  

calculation of the gluelump masses !

Comparison of  hybrids multiplets  with neutral isoscalar states observed in the 
charmonium sector (updated  spectrum in paper in  prep on decays N.B., A. Mohapatra. Was Kin Lai, A. Vairo 2022)



Comparison of  hybrids multiplets  with neutral isoscalar states observed in the 
bottomonium sector (updated spectrum in paper in  prep on decays N.B., A. Mohapatra. Was Kin Lai, A. Vairo 2022)



to identify states besides the spectrum we need: 

• relativistic corrections, especially spin dependent potentials 

• mixing with quarkonium, decays and transitions:  what is the width of these 
states? —> calculation of hybrids to quarkonium decays

• production 

• nonequilibrium  evolution of X Y Z in medium 



to identify states besides the spectrum we need: 

• relativistic corrections, especially spin dependent potentials 

• mixing with quarkonium, decays and transitions:  what is the width of these 
states? —> calculation of hybrids to quarkonium decays

• production 

BOEFT gives or has the potential to give all of that  to us! 

• nonequilibrium  evolution of X Y Z in medium 



The BOEFT gives a prescription to calculate  the hybrids spin dependent potentials at 
order 1/m and 1/m^2 

Hybrid spin-dependent potentials at order 1/mh and 1/m2
h
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Kij
)k

= iεikj is the angular momentum of the spin one gluons

and L is the orbital angular momentum of the heavy-quark-antiquark pair.

Differently from the quarkonium case, the hybrid potential gets a first contribution already

at order Λ2
QCD/mh. The corresponding operator does not contribute at LO to matrix
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elements of quarkonium states as its projection on quark-antiquark color singlet states
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• The nonperturbative part in V_i (r) depend on nonperturbative 
 gluonic correlators non local in time not yet calculated on the lattice: six unknowns, 

the octet perturbative part can be calculated in perturbation theory
• The only flavor dependence is carried by the perturbative NRQCD matching coefficients
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SPIN MULTIPLETS,  learn also about the DYNAMICS
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with a pion of about 240 MeV

height of the boxes is an estimate of the 
uncertainty:  

estimated by the parametric size of higher 
order corrections, m alpha_s^5 for the 

perturbative part, powers of Lambda_qcd/m for 
the nonperturbative part, plus the statistical 

error on the fit

the  perturbative part  produces a pattern opposite 
to the lattice  and to ordinary quarkonia —> 

 discrepancy can be reconciled thanks  to the 
nonperturbative parts, especially the one at order 1/

m which goes like Lambda^2/m and is 
parametrically larger than the perturbative 

contribution at order m v^4
which is interesting as 

some models  
are taking  

the spin interaction 
 from perturbation theory 
with a constituent gluon 
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Determination of hybrid charmonium meson masses Gaurav Ray

Figure 3: Summary plot for the 1�+ mass as a function
of the square of the lattice spacing, including some of
the previous determinations of the mass by other groups
[12, 33]

Figure 4: Comparison of our determina-
tion of the 1�� hybrid mass at 0.09 fm from
a 4-by-4 fit to the results of three other
groups, and three resonances the PDG lists
as ‘estabished’[12, 34, 35].

state fit range j2 per dof Q mass [GeV] amplitude 5 [MeV] �44 [keV] comment
�/k 3.097(17) 0.16441(26) 417.5(2.3) 5.836(36) concurrent 2x2 fit
k(2() 6-24 0.88 0.72 3.781(28) 0.1860(78) 428(18) 5.01(42) with only
⌘2 (1%) 3.512(29) 0.0578(75) – – vector ops
Hybrid 1-6 0.9 0.58 4.33(16) 0.086(15) – – 2x2 fit w/only hybrid ops
�/k 2-6 0.81 0.82 3.110(18) 0.1701(27) 431.1(7.2) 6.20(20) concurrent 4x4 fit

Hybrid 4.38(12) 0.065(18) 9(167) 0.002(67) with hybrid and vector ops

Table 3: Fit results for the conventional charmonia and the hybrid state on the fine ensemble. The
⌘2 (1%) meson is the parity partner state. The masses and decay constants from the 2-by-2 fits agree
well with experiment. The 4-by-4 and 2-by-2 masses are consistent, though there is a slight tension
between the the �/k amplitudes (and therefore the decay constants too). The leptonic decay widths
are also shown in the penultimate column. The hybrid leptonic width is small, consistent with zero,
and has a large uncertainty, stemming from the sizeable uncertainty in the amplitude.

where V̂ is the vector current operator. The local vector operator was used so we use the /+
renormalization factor from [36]. As a check we computed the decay constant of the �/k meson
(see [28] for a systematic study of the leptonic decay constants of the �/k meson).

From this we can compute the leptonic width of our hybrid vector charmonium state using

�(+22̄ õ! 4+4�) = 16c
27

U2
QED

5 2
�

"�
, (6)

where UQED is the electromagnetic coupling at the charm quark mass. Our amplitude for the vector
operator into the 1�� hybrid state is very small. From this amplitude we obtain an upper bound of
70 eV. A previous calculation of this leptonic width bounded it from above at 40 eV [35].
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G. Ray, C. McNeile, 2110.14101

HISQ lattice action with  2+1+1 sea quarks



Charmonium Hybrids  Multiplets H_1 and H_2

H_1 and H_2 corresponds to l=1 and are negative and positive 
parity resp. The mass splitting  between H_1 and H_2 is a result of lambda-doubling

H_3 and H_4 are also calculated 
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here you find predictions for all H multiplets
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thanks to the BOEFT factorizatio we can  fix the nonperturbative unknowns 
from  a charmonium hybrid calculationthe nonperturbative low energy 

unknownsdo not depend on the flavor: we can predict the bottomonium 
hybrids splin splittings
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The 1/m operator giving origin to the 1/m spin potential in heavy hybrids 
 is also responsible for a mixing between spin 0 (1) hybrids and spin 1 (0) quarkonia

Mixing 

nLT ! n0L0 �E (MeV) � (MeV)
cc̄ sector

1P0 ! 2S 808 7.5(7.4)
2(S/D)1 ! 1P 861 22(19)
4(S/D)1 ! 1P 1224 23(15)

bb̄ sector
1P0 ! 1S 1569 44(23)
1P0 ! 2S 1002 15(9)
2P0 ! 2S 1290 2.9(1.3)
2P0 ! 3S 943 15(12)
4P0 ! 1S 2337 53(25)
4P0 ! 2S 1770 18(7)
4P0 ! 3S 1423 7.4(4.1)

2(S/D)1 ! 1P 977 17(8)
3(S/D)1 ! 1P 1176 29(14)
3(S/D)1 ! 2P 818 5(3)
4(S/D)1 ! 2P 891 33(25)
5(S/D)1 ! 1P 1376 18(7)
5(S/D)1 ! 2P 1018 14(8)

Table 13: Decay widths for charmonium (above) and bottomonium (below) hybrids to lower-lying charmonia and bottomonia, respectively. n and
n0 are principal quantum numbers, L(L + 1) and L0(L0 + 1) are eigenvalues of L2, where L is the orbital angular momentum of the heavy quarks,
and T (T + 1) are eigenvalues of (L+ K)2, where K is the angular momentum of the gluons. �E is the energy di↵erence between the hybrid and the
quarkonium state. Mixing with quarkonia has been neglected. The hybrid states P0 belong to the H3 multiplet of Table 12 and the states (S/D)1 to
the H1 multiplet. Table taken from Ref. [193].
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in Ref. [193] it was emphasized that the same NRQCD operator responsible for the appearance of the 1/mh spin-
dependent potential (75) is also responsible for the appearance of a mixing potential between hybrids and ordinary
quarkonia at order 1/mh. The mixing potential mixes spin 0 (1) hybrids with spin 1 (0) quarkonia and may explain,
in dependence of the strength of the mixing, which is of order ⇤2

QCD/mh and non-perturbative, why some hybrid
candidates appear to decay both into ⇡+⇡�J/ and ⇡+⇡�hc. This could be the case of the Y(4230), which, according
to Ref. [193], has a potentially large mixing with the ordinary charmonium 2D, 1��, state. Finally, selection rules for
hadronic transitions of X, Y and Z mesons have been derived in Ref. [468]
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decay

ds decay

m

⇣
L
QQ̄

⌘

L

! nL
0
QQ̄

�E (GeV) ↵s (�E) �
Model

(MeV) � (MeV)

charmonium hybrid decay

1p0 ! 1s 1.522 0.298 117
+49
�25

+64
�47 259

+109
�56

+114
�87

1p1 ! 1s 1.218 0.329 146
+71
�35

+84
�61 308

+150
�73

+139
�106

1(s/d)1 ! 1p 0.661 0.463 2
+1
�0.38

+1
�0.76 75

+64
�24

+62
�40

2(s/d)1 ! 1p 1.013 0.361 7
+4
�2

+5
�4 213

+119
�55

+134
�94

bottomonium hybrid decay

1p0 ! 1s 1.622 0.290 102
+41
�22

+37
�30 96

+39
�20

+36
�28

1p1 ! 1s 1.404 0.309 80
+35
�18

+31
�25 72

+32
�16

+29
�22

1(s/d)1 ! 1p 0.878 0.389 137
+86
�38

+78
�56 279

+176
�77

+163
�117

2(s/d)1 ! 1p 1.068 0.351 163
+87
�41

+87
�64 145

+78
�37

+83
�60

Table VII: Comparison of the spin-preserving decay rates obtained using Eq. (43) for two

di↵erent singlet potentials: model singlet potential in Eq. (C14) and RS-scheme singlet

potential in Eq. (C6).
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the linear term to be equal to the one for heavy quarkonium (V⌃+g (r)) as dictated by the QCD e↵ec-
tive string theory (EST) [12], and the Coulomb term to be related to the one of V⌃+g (r) as dictated by
perturbation theory. Hence, only an additive constant is left as a free parameter, which can in turn be
related to the corresponding constant for V⌃+g (r) through the lattice data. The last constant is fixed by
fitting the heavy quarkonium spectrum. For V⇧u (r) a Cornell-like form does not fit lattice data well at
intermediate distances. Hence, we take a slightly more complicated function for it, we substitute the
Coulomb term by a rational function with five free parameters. At short and long distances we impose
V⇧u (r) � V⌃�u (r) to be compatible with the weak coupling pNRQCD results at NLO [3] and with the
EST results at NLO [12] respectively. The remaining two free parameters are fitted to lattice data.

Using the potentials above as an input we solve numerically (4) and obtain the results displayed
in tables 1 and 2. We also display the results for heavy quarkonium, obtained with a Cornell potential
that fits well the lattice data for ⌃+g of [4].

In table 3 we show possible identifications with XYZ states. According to this table only spin
zero hybrids would have been observed. It is interesting to notice that Y(4008), Y(4360) and Y(4660)
would correspond to the ground state and the lower excitations of the (s/d)1 state. However, the three
states have been observed to decay to vector quarkonium, which violates spin symmetry [13]. This is
also so for Yb(10890). In fact, from the 1�� candidates only for X(4630) no spin symmetry violating
decay has been observed. This motivates the study of mixing with heavy quarkonium in section 4. We
report in the next section on our results for the decay widths to lower lying heavy quarkonium states.

3 Decay

Since we are interested in the lowest lying heavy hybrid states, it is enough for us to consider an
e↵ective theory for energy fluctuations E ⌧ ⇤QCD around those states. The energy gap to the lower
lying heavy quarkonium states is greater than ⇤QCD. Hence the lower lying heavy quarkonium states
can be integrated out, which will give rise to an imaginary potential �V for the heavy hybrid states,
which in turn will produce a decay width for them, �H!S = �2 hH|Im�V |Hi. This is much in the
same way as integrating out hard gluons produces operators with imaginary matching coe�cients in
NRQCD [14]. Furthermore, if we assume that the energy gap �E fulfills �E � ⇤QCD, and that the
process is dominated by short distances, the integration can be done using the weak coupling regime
of pNRQCD [3, 15]

We obtain,

Im�V = �2
3
↵sTF

Nc

X

n

ri|S nihS n|ri (i@t � En)3 , (5)

TF = 1/2, Nc = 3, and ↵s is the QCD strong coupling constant. En is the energy of the n-th heavy
quarkonium state, S n. The calculation is reliable only for those states that fulfill �En � ⇤QCD, for
which we identify,

�(Hm!S n)=
4
3
↵sTF

Nc
hHm|ri|S nihS n|ri|Hmi(�Emn)3 , (6)

where m stands for NLJ , the quantum numbers of the heavy hybrid (Hm), n for N0L0, the quantum
numbers of the heavy quarkonium (S n), and �Emn is the energy di↵erence between them. For consis-
tency,

D
S n|ri|Hm

E
�Emn should also be small, otherwise the multipole expansion built in weak coupling

pNRQCD would not be justified. The structure of the decay width above implies that no heavy hybrid
with L = J decays to heavy quarkonium at this order. This selects X(4160) as the preferred candidate
for the 1p1 state in table 3 since no decay to charmonium has been observed, as opposite to X(4140).
The numerical values of the decay widths are given in table 4. The scale of ↵s is taken at µ = �Emn.
At this order, the decays respect heavy quark spin symmetry, and hence the spin of the heavy quarks
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steps go as before: 

identify the symmetries, identify the interpolating operators O_n and define the static energies

Eb and the light-quark and gluon dynamical energy scale ⇤QCD � Eb. This scale
separation has lead to the observation that exotic quarkonia can be studied in a Born-
Oppenheimer picture. The static energies, as well as the other matching coefficients
of the low-energy EFT describing the heavy-quark bound states, can be written in
terms of static Wilson loops which can be computed on the lattice. In the short-
distance regime r . ⇤QCD the relative momentum of the heavy quarks can also be
integrated out perturbatively leading to a short-distance description of the matching
coefficients. In the long-distance regime r � 1/⇤QCD Effective String Theories can
be used to model the long-distance part of the potentials [2, 10–13].

In these proceedings we briefly outline the construction of EFTs for quarkonium
hybrids and tetraquarks and sumarize some of the most recent results.

2 The effective field theory
Exotic quarkonia are characterized by being formed by two distinct components: on
one hand we have the heavy-quark-antiquark pair and on the other gluonic or light-
quark degrees of freedom. The heavy-quark-antiquark pair forms a nonrelativistic
bound state with three characteristic scales, m the heavy quark mass, mv the relative
momentum, with v ⌧ 1 the relative velocity, and mv2 the heavy quark binding energy.
These scales fulfill the hierarchy m � mv � mv2. The light degrees of freedom are
characterized by a typical energy and momentum of order ⇤QCD. This implies that
the typical size of exotic quarkonia is of order 1/⇤QCD. The scaling of the typical
distance of the heavy quark-antiquark pair r ⇠ 1/(mv) depends on the details of
the full inter-quark potential, which has a long-range nonperturbative part and a
short-range Coulomb interaction. In the most general assumption is r . 1/⇤QCD (or
mv & ⇤QCD). We can use the separation of the scales on the system to build EFTs
to describe Exotic quarkonia [1, 2, 14].

NRQCD [15, 16] is obtained by integrating it out the heavy quark mass, m. We
can study the spectrum of states with a heavy-quark and antiquark at leading order
in NRQCD (the static limit). In the static limit the eigenstates are characterized
by quark-antiquark separation, the flavor content of the light degrees of freedom (for
simplicity we will just consider isospin) and the quantum numbers corresponding
to representations of D1h. According to this symmetry, the mass eigenstates are
classified in terms of the angular momentum along the quark-antiquark axis (⇤ =
0, 1, 2 . . . , to which one gives the traditional names ⌃, ⇧, �), CP (g for even or u
for odd), and the reflection properties with respect to a plane that passes through the
quark-antiquark axis (+ for even or - for odd). Only the ⌃ states are not degenerate
with respect to the reflection symmetry.

The specific form of these static eigenstates depends on nonperturbative physics
and are unknown, nevertheless the corresponding energy eigenvalues, the static ener-
gies, can be obtained from large time logarithms of appropriate correlators
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where n stands for the set of quantum numbers that identify the static eigenstate, R
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is an interpolating operator.
For hybrid and tetraquark states an appropriate interpolating operator reads
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where n stands for the set of quantum numbers that identify the static eigenstate, R
and r are the center of mass and relative coordinates of the heavy-quark pair and On
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For hybrid and tetraquark states an appropriate interpolating operator reads

On(t, r, R) = �(t, R� r/2)�(t, R� r/2,R)Hn(t, R)�(t, R,R+ r/2) †(t, R+ r/2) ,
(2)

Table 1. Examples of gluonic operators and light-quark operators for quarkonium hybrids
and tetraquarks respectively, q = (u, d) and ⌧a are isospin Pauli matrices.

⇤�
⌘  H H = HaT a(I = 0, I = 1)

⌃+
g 0++ q̄T a( , ⌧ )q

⌃�
u 1+� r̂ ·B q̄ [(r̂ ⇥ �)·, �]T a( , ⌧ )q

⇧u 1+� r̂⇥B q̄ [r̂ · �, �]T a( , ⌧ )q
⌃+ 0

g 1�� r̂ ·E q̄ (r̂ · �)T a( , ⌧ )q
⇧g 1�� r̂⇥E q̄ (r̂ ⇥ �)T a( , ⌧ )q

with Hn(R) a gluonic operator or light-quark operator from table 1,  the Pauli
spinor field that annihilates a quark, � the one that creates an antiquark and � is a
Wilson line.

The correlator in Eq. (1) with the interpolating operator of Eq. (2) corresponds
to a static Wilson loops with the insertion in the spatial sides of the Hn light degree
of freedom operator. It also involves nonperturvative dynamics but it is convenient
quantity to compute on the lattice. The most recent lattice results for hybrid quarko-
nium static energies have been computed in Refs [3–6]. In figure 1 we show the
spectrum corresponding to the operators of table 1. Analogous studies on the lattice
of tetraquark static energies have not been yet performed. One important property

Figure 1. The lowest hybrid static energies [4] and gluelump masses [17] in units of r0 ⇡
0.5 fm. The absolute values have been fixed such that the ground state ⌃+

g static energy
(not displayed) is zero at r0.

of the static energies shown in figure 1, is that they form quasi-degenerate multiplets
in the short-distance region [14, 18]. This can be easily understood as an enlargement
of the symmetry from a cylindrical group, D1h, to an spherical one, O(3)⇥C, in the
r ! 0 limit. The degenerate multiplets of gluonic static energies can also be read from
table 1 corresponding to the static energies interpolated by the same gluonic operator
with different projections on the heay-quark-antiquark axis. The short distance limit
O(3)⇥C representation of the static energies can be read from the second column of
table 1.

N.B. G. Krein, J. Tarrus, A. Vairo 1707.09647. J. Tarrus 1901. 09761, J. Soto, J. Tarrus 20005.00552 
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where ⌧a are the isospin Pauli matrices. The I = 1 sector Lagrangian is

L(I=1)
BO =

Z
d3Rd3r

h
hZ†
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✓
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r

m
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X

��0

hZ†
�
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iDt � V��0(r) + r̂i†�

r2
r

m
r̂i�0

�
Z�0i , (5)

which generates a spectra of tetraquark states. The fields Z field is understood as
depending on t, r and R. We use the notation hi to denote the trace over isospin
indices. The covariant derivative for the I = 1 fields read DµZ = @µ + [�µ, Z] with
�µ =

�
u†@µu+ u@µu†� /2 and u = exp(i⇡ · ⌧/(2F )). The pion fields depend on t and

R.

2.1 Matching and short distance regime

It is interesting to study the short-distance regime in which the inter-quark distance
can be considered r ⌧ 1/⇤QCD. In this case the scale associated to the relative
heavy-quark momentum mv ⇠ 1/r � ⇤QCD can be integrated out perturbatively
leading to an EFT formally identical to weakly-coupled pNRQCD [23, 24]. One can
then in turn integrate out the ⇤QCD modes and match weakly-coupled pNRQCD to
the EFT for hybrids and tetraquarks [1, 14]. This procedure yields a short distance
description of the EFT potentials.

The matching conditions from NRQCD to weaky-coupled pNRQCD to the hybrid
and tetraquark EFT are

On(t, r, R) ⇠= ZHn(r)O
a(t, r, R)Ha

n(t, R) + . . . ⇠= ZXn(r, ⇤QCD)Xn(t, r, R) + . . .
(6)

where Xn stands for  n or Zn, Oa is the color-octet heavy quark-antiquark field. ZHn

and ZXn are normalization factors.
Generically, in the short distance the potentials may be organized as a sum of a

perturbative part, which is typically nonanalytic in r corresponding to the weakly-
coupled pNRQCD potentials, and a nonperturbative part, which is a series in powers
of r. The coefficients of the latter only depend on ⇤QCD and can be expressed in terms
of gluonic and light-quark correlators. The static potential, V (0)

� , can be matched to
the lattice NRQCD static energies and a short distance weak-coupling pNRQCD
description:

E(0)
|�|�CP

(r) = Vo(r) + ⇤ + b�r
2 + · · · = V (0)

� (r) , (7)

where Vo(r) is the octet potential, ⇤ is the gluelump mass [17], and b� is a nonper-
turbative constant.

2.2 Spin-dependent terms for quarkonium hybrids

The potential V��0 can be organized into an expansion in 1/m and a sum of spin-
dependent (SD) and spin-independent parts [22, 25]:
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needs lattice calculations of tetraquarks static energiesTetraquark static potentials

• The direct use of the I = 1 BO effective Lagrangian is limited by the fact that the

potentials have not, even in their static limit, been measured on the lattice.

Hence, the situation is different from the hybrid case, where static hybrid energies

are known since long time.

• Several lattice studies, however, exist, for static potentials relevant for Q̄Q̄qq

tetraquarks. They typically predict a JP = 1+ bound state in I = 0 qqQ̄Q̄ with no

evidence of JP = 0+, 1+ or 2+ for I = 1 qqQ̄Q̄.
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The BOEFT  contains  all configurations: 
what dominates and where depends on 

the QCD dynamics  

The static energies are defined in BOEFT that  
gives the appropriate set of operators to be used   

and could describe the short distance limit.  
Being nonperturbative objects E(r) should be calculated  

on the lattice (or in QCD vacuum models)

We expect too get  static energy  in presence of qqbar of this type

avoided crossing of the energy levels, mixing  
with open flavour meson-meson configurations

Bruschini, Gonzalez 2021



Lattice computation of the tetraquark static energies
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Static potential V(r) for interaction between B and B*
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We assume that B B* eigenstate is decoupled 
from ϒπ and ϒb1 channels (overlaps support that).

Born-Oppenheimer approach: B and B* move in 
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Binding configuration found on the lattice
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1. FACTORIZATION OF THE INCLUSIVE QUARKONIUM

PRODUCTION CROSS SECTION

In heavy-quarkonium production in hard-scattering processes, two large momentum
scales appear: the heavy-quark mass m and the typical momentum transfer in the
hard scattering, which I will denote generically by pT . One would like to separate the
perturbative physics at these large momentum scales from the physics at smaller mo-
mentum scales that is associated with nonperturbative heavy-quarkonium bound-
state dynamics. It has been conjectured2 that, for the inclusive quarkonium pro-
duction cross section at pT ! m, one can achieve such a separation and that one
can write the cross section in the following factorized form:

σ(H) =
∑

n

Fn〈0|O
H
n |0〉. (1)

The Fn are “short-distance coefficients.” They are essentially the process-dependent
partonic hard-scattering cross sections convolved with the parton distributions. The
partonic hard-scattering cross sections depend only on the large scales m and pT ,
and they have an expansion in powers of αs. The quantities 〈0|OH

n (Λ)|0〉 are long-
distance matrix elements (LDMEs) that are formulated in terms of the effective field
theory nonrelativistic QCD (NRQCD). They give the probability for a heavy QQ̄
pair with a certain set of quantum numbers to evolve into a heavy quarkonium H .

1

NRQCD  factorization formula for quarkonium production 
valid for large p_T

 cross section
Bodwin Braaten Lepage 1995

 short distance coefficients 
partonic hard scattering cross section  

convoluted with parton distribution

 long distance matrix elements 
(LDME) 

give the probability of a qqbar 
pair with certain quantum 

number to evolve into a final 
quarkonium H

they are vacuum expectation 
values of four fermion operators with 

color singlet and color octet 
contributions and a projection 
over quarkonium plus X in the 

middle

Applications of strongly coupled pNRQCD include:   Quarkonium Production at LHC 

Intense work  in  the theory community, within QCD, NRQCD and SCET,   
Qiu, Nayak, Sterman, Butenschon Kniehl , Bodwin , Hee Soh, Chung, J. Lee,  Kuang Ta Chao, Y. Q. Ma,  Gong Wang,
Fleming, Mehen, Yu Jia, Braaten, Lansberg, Leibovich, Rothstein…
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One problem is the proliferation of LDMEs:  
nonperturbative objects  

that cannot  be evaluated on the lattice   
and should be extracted from the data,  

they depend on the considered quarkonium state

Applications of strongly coupled pNRQCD include:   Quarkonium Production at LHC 

Intense work  in  the theory community, within QCD, NRQCD and SCET,   
Qiu, Nayak, Sterman, Butenschon Kniehl , Bodwin , Hee Soh, Chung, J. Lee,  Kuang Ta Chao, Y. Q. Ma,  Gong Wang,
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Factorization of LDMEs in pNRQCD : the NRQCD   LDMEs are factorized in terms of wave 
functions and universal nonperturbative correlators depending only on the glue

 N.B. Chung Vairo 2007.07613, 2106.09417 

•The number of nonperturbative unknowns is reduced by half
•The nonperturbative unknowns are correlators of gluonic fields 

 that can be calculated on the lattice

https://arxiv.org/abs/2106.09417
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We compute the color singlet and color octet NRQCD long-distance matrix elements for inclusive
production of P -wave quarkonia based on the pNRQCD e↵ective field theory. This allows a determi-
nation of the color octet NRQCD matrix element that does not rely on measured cross section data,
which has not been possible so far. We make first pNRQCD predictions for inclusive hadroproduc-
tion of �bJ and �cJ at the LHC, which are in fair agreement with data. The formalism developed in
this work can also be applied to inclusive production processes of other species of heavy quarkonia.

Understanding the inclusive production mechanism of10

heavy quarkonia is one of the most challenging problems11

in heavy quarkonium physics [1, 2]. While the nonrela-12

tivistic QCD (NRQCD) e↵ective field theory [3, 4] had13

enormous success in heavy quarkonium phenomenology,14

a satisfactory description of inclusive production pro-15

cesses from first principles is still beyond reach. Much16

of the di�culty stems from our limited knowledge in the17

NRQCD long-distance matrix elements (LDMEs), which18

describe the nonperturbative evolution of the heavy19

quark Q and antiquark Q̄ into a quarkonium. First-20

principles determinations have not been possible for a21

class of important LDMEs that are associated with the22

QQ̄ in a color octet state. On the other hand, phe-23

nomenological determinations of the unknown LDMEs24

based on di↵erent choices of observables have lead to in-25

consistent sets of LDMEs, which have resulted in con-26

tradicting predictions [5]. It is therefore highly desirable27

to be able to compute the unknown LDMEs from first28

principles.29

The potential NRQCD (pNRQCD) approach [6–8] has30

been successfully applied to annihilation and exclusive31

electromagnetic production processes of heavy quarko-32

nia [9–11]. It has been anticipated that pNRQCD could33

also be used to describe inclusive production processes.34

In this Letter, we compute, based on pNRQCD, the35

NRQCD LDMEs that appear in the inclusive production36

cross section of P -wave quarkonia. Specifically, we con-37

sider production cross sections of �QJ (Q = c or b, J = 0,38

1, and 2) at leading order in the heavy-quark velocity v.39

The cross section is given in the NRQCD factorization40

formalism at leading order in v by [4]41

��QJ+X = (2J + 1)�
QQ̄(3P [1]

J )
hO

�Q0(3P [1]
0 )i42

+ (2J + 1)�
QQ̄(3S[8]

1 )
hO

�Q0(3S[8]
1 )i. (1)43

44

Here, we use spectroscopic notation for the angular mo-45

mentum state of the QQ̄, while the superscripts 1 and 846

denote the color state of the QQ̄. We have used heavy-47

quark spin symmetry to reduce the �QJ LDMEs into48

LDMEs for the �Q0 state. The �
QQ̄(3P [1]

J )
and �

QQ̄(3S[8]
1 )

49

are the perturbatively calculable short-distance coef-50

ficients (SDCs), and the LDMEs hO�b0(3P [1]
0 )i and51

hO
�b0(3S[8]

1 )i are defined by52

hO
�Q0(3P [1]

0 )i =
1

3
h⌦|�†(� i

2

 !
D · �) P�Q053

⇥  
†(� i

2

 !
D · �)�|⌦i, (2a)54

hO
�Q0(3S[8]

1 )i = h⌦|�†
�
i
T

a
 �ab

` P�Q055

⇥ �bc
`  

†
�
i
T

c
�|⌦i, (2b)56

57

where |⌦i is the QCD vacuum, and  and � are Pauli58

spinor fields that annihilate and create a heavy quark59

and antiquark, respectively. The covariant derivative60
 !
D is defined by �

† !D = �
†D � (D�)† . The op-61

erator P�Q0 = a
†
�Q0

a�Q0 is a projection onto a state62

consisting of a �Q0 at rest, where a
†
�Q0

is the creation63

operator for the �Q0 state. The path-ordered Wilson64

line along the spacetime direction ` defined by �` =65

P exp[�ig
R1
0 dx `·A

adj(`x)], where Aadj is the gluon field66

in the adjoint representation, ensures the gauge invari-67

ance of the color-octet LDME [12–14]. The direction `68

can be chosen arbitrarily.69

We work in the strong coupling regime, where mv &70

⇤QCD � mv
2. This condition is fulfilled by non-71

Coulombic, strongly coupled quarkonia, such as the �QJ .72

In order to compute the LDMEs in strongly coupled pN-73

RQCD, we make use of the quantum-mechanical pertur-74

bation theory (QMPT) where we formally expand the75

NRQCD Hamiltonian in inverse powers of the heavy76

quark mass m [10, 15]:77

HNRQCD = H
(0)
NRQCD +

1

m
H

(1)
NRQCD + . . . , (3)78

The eigenstates in the heavy quark-antiquark sector are79

https://arxiv.org/abs/2106.09417
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HEAVY QUARKONIUM PRODUCTION IN PNRQCD

P-WAVE PRODUCTION MATRIX ELEMENTS
▸ The dimensionless correlator     is defined in terms of 

chromoelectric fields gE with Wilson lines ! extending to 
infinity in the ! direction. 

▸     has a one-loop scale dependence that is consistent 
with the evolution equation for NRQCD matrix elements 

▸ In principle,     can be determined from lattice QCD.  
Since a lattice calculation is unavailable, we determine      
from measured "cJ cross section ratios to obtain 

17

r2, r0
1, and r0

2 act on the wavefunctions in eq. (2.18). The gluonic matrix elements can406

be computed as407

X

p 6=n

h0|T a
1�

†ab
` (0,x)|pi(0)

(0)
hp|gE1|ni(0)

(E(0)
n � E(0)

p )2
= �

X

p 6=n

Z
1

0
dt t(0)h0|T a

1�
†ab
` |pi(0)(0)hp|gE1(t)|ni

(0)
408

= �
1

2Nc

Z
1

0
dt t(0)h0|�†ab

` gEa
1 (t)|ni

(0), (3.14)409
410

where in the last line, we computed the color matrices tr(T a
1 T

c
1 ) = �ac/(2Nc)tr( c) by using411

the fact that both the states |0i and |ni have color indices that are proportional to c.412

Since the matrix element (0)
h0|�†ab

` gEa
1 (t)|ni

(0) does not contain any color matrices, the413

last line of eq. (3.14) vanishes unless n 2 S. This gives414

� V
O(1S

[8]
0 )

���
P -wave

= �Ncri
r�

(3)(r)rj
r0

E
ij

N2
cm

2
, (3.15)415

416

where the tensor E
ij is defined by417

E
ij =

X

n

Z
1

0
t dt

Z
1

0
t0 dt0(0)h0|�†ab

` gEa,i
1 (t)|ni(0)(0)hn|gEc,j

1 (t0)�†bc
` |0i(0)418

=

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,j(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.16)419

420

In the last line, we used tr( c)/Nc = 1, and we introduced the Schwinger lines �0(t, t0) =421

P exp[�ig
R t0

t d⌧Aadj
0 (⌧,0)] to restore the gauge invariance. The configurations of the adjoint422

Wilson lines in eq. (3.16) are given in the following way. The chromoelectric field at time t0423

is connected to the origin 0 via the Schwinger line �ec
0 (t0, 0), which then continues to infinity424

in the ` direction. Analogously, the chromoelectric field at time t is connected to the origin425

0 via the Schwinger line �†da
0 (0, t), which then continues to infinity in the ` direction. The426

orderings of gEe,j(t0)�ec
0 (t0, 0)�bc

` and �†ab
` �†da

0 (0, t)gEd,i(t) are opposite; for a suitable427

choice of the sign of `0, gEe,j(t0)�ec
0 (t0, 0)�bc

` is time ordered, and �†ab
` �†da

0 (0, t)gEd,i(t) is428

anti time ordered. Hence, eq. (3.16) can be interpreted as a cut diagram, which can be429

useful for perturbative QCD. We show this configuration of the Wilson lines graphically in430

figure 1.431

Now we can compute the color-octet matrix element h⌦|OhQ(1S[8]
0 )|⌦i. Since the prod-432

uct �(0)
1P1

(r)�(0)
1P1

⇤(r) is isotropic after summing over the polarizations of the 1P1 state, the433

differential operators ri
rr

j
r0 in eq. (3.15) can be replaced by 1

3�
ijrr ·rr0 . Then, we obtain434

h⌦|OhQ(1S[8]
0 )|⌦i = 3⇥

3Nc

2⇡
|R(0)0(0)|2

1

9Ncm2
E , (3.17)435

where E is a dimensionless gluonic correlator defined by436

E =
3

Nc

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,i(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.18)437

The correlator E corresponds to the isotropic part of E ij , which is given by Nc
9 �ijE . The438

factor 3/Nc in the definition of E has been chosen so that eq. (3.17) resembles the pNRQCD439
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where ⇤ is the scale at which E is renormalized. This, in turn, implies the following evolution533

equation for the NRQCD matrix elements534

d

d log⇤
hO

�QJ (3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�QJ (3P [1]
J )i. (3.33)535

The same evolution equation holds for hO
hQ(1S[8]

0 )i and hO
hQ(1P [1]

1 )i. Equation (3.33)536

agrees with the evolution equation derived from a perturbative calculation in NRQCD [6],537

and therefore the UV divergence in the one-loop correction to the color-octet matrix ele-538

ment is consistent with the pNRQCD expressions at one-loop level. Since loop corrections539

to NRQCD matrix elements are scaleless, UV poles cancel IR poles in the form of eq. (3.31),540

and hence, the one-loop infrared divergence in the color-octet matrix element is also con-541

sistent with our pNRQCD results.542

At two loops, explicit checks of the consistency of our pNRQCD results with NRQCD543

factorization can be inferred from the two-loop calculations in Refs. [16] and [17]. In544

Ref. [16], two-loop corrections to the infrared factor I2(p, q) that are associated with the545

gauge-completion Wilson lines were computed, which contribute to the infrard divergence of546

the matrix element hOQ(1S[8]
0 )i at order ↵2

s. This result was reproduced in Ref. [17] through547

explicit calculations of the matrix element hOQ(1S[8]
0 )i. Since the calculation of the infrared548

factor in Ref. [16] is equivalent to the calculation of infrared divergences in the contact terms549

V
O(1S

[8]
0 )

and V
O(3S

[8]
1 )

, our pNRQCD expressions for the color-octet matrix elements also550

have the same infrared divergences that are associated with the gauge-completion Wilson551

lines that are found in the calculations of Ref. [17].552

It is interesting to see that eq. (3.31) is the same as the order-↵s calculation of the553

correlator E3 defined in eq. (3.20), which appears in decay matrix elements. Indeed, the554

one-loop evolution equation in eq. (3.33) is the same as the one-loop evolution equation for555

the decay matrix elements that appear in inclusive decays of P -wave quarkonia [6]. This556

equality ceases to hold at two loops, because at this order, E receives contributions from557

the gauge-completion Wilson lines, which are absent in E3.558

An important issue in NRQCD factorization is whether the color-octet NRQCD matrix559

elements are independent on the direction of the gauge-completion Wilson lines, which is560

necessary in establishing the universality of the NRQCD matrix elements. While a general561

argument for the universality has been given in Ref. [21], an explicit verification has only562

been done at two-loop accuracy [16, 17]. In our results for the color-octet matrix elements,563

the dependence on the direction of the gauge-completion Wilson lines can come from the564

tensor E
ij in the contact terms. For the case of polarization-summed cross sections, where565

the polarization of the quarkonium in the final state is summed over, only the isotropic566

part of E ij , given by Nc
9 �ijE , contributes to the color-octet matrix elements, and therefore,567

the dependence on the direction of the gauge-completion Wilson lines disappear due to568

rotational symmetry. Hence, the pNRQCD expressions of the color-octet matrix elements569

support the universality of the NRQCD matrix elements for polarization-summed cross570

sections of P -wave quarkonia. On the other hand, for the case of polarized cross sections,571

the non-isotropic part of E ij can in principle contribute to the color-octet matrix element,572

and if such contributions are nonvanishing, the matrix elements can acquire dependence573
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where the sum over N contains all possible intermediate states, T and T̄ represent time493

ordering and anti time ordering, respectively, p is half the center-of-mass momentum of the494

QQ̄, and495

�p(�) = P exp


�ig

Z �

0
d�0 p ·Aadj(�0p)

�
, (3.29)496

497

is an adjoint Wilson line along p. In eq. (3.28) we make explicit the time ordering and498

anti time ordering, which was implicit in Ref. [16]. In eq. (3.28), a factor of q comes from499

each side of the cut in the squared amplitude, so that the infrared factor applies to the500

production of a color-singlet P -wave state. This result is obtained from standard methods501

in perturbative factorization, where eikonal approximations are employed that simplify the502

loop corrections gluons while preserving the infrared divergences. This factor includes the503

infrared divergences that come from the soft gluons of scale mv, but does not include the504

contributions from the scale mv2. Since this process corresponds to the production of a QQ̄505

in the color-octet 3S1 state, this divergence must match the infrared divergence in the color-506

octet matrix element h⌦|OQ(3S[8]
1 )|⌦i, when Q is replaced by a color-singlet QQ̄ state. This507

agreement has been confirmed explicitly through one-loop and partial two-loop calculations508

of the color-octet NRQCD matrix element in Ref. [17]; the two-loop calculations have only509

been done for the diagrams that involve the gauge-completion Wilson lines. Since the510

matrix element h⌦|OQ(3S[8]
1 )|⌦i appears in the NRQCD factorization formula at leading511

order in v, the same infrared divergence occurs in the operator h⌦|OQ(1S[8]
0 )|⌦i through512

heavy quark spin symmetry.513

It can be seen that at the rest frame of the QQ̄, where p = 0 and q0 = 0, �p(�p) is just514

the Schwinger line �0(0, t) = P exp[�ig
R t
0 d⌧A

adj
0 (⌧,0)] where t =

p
p2�, and pµq⌫Ga

⌫µ(�p)515

is given by the chromoelectric field as
p
p2qiEa i(t). Therefore, the infrared factor I2(p, q)516

in eq. (3.28) is given by517

E
ijqiqj , (3.30)518

519

multiplied by color and kinematical factors that are infrared finite. Here, the tensor E
ij is520

defined in eq. (3.16). We note that eq. (3.30) is equivalent to the contact terms V
O(1S

[8]
0 )

and521

V
O(3S

[8]
1 )

in Eqs. (3.15) and (3.21), respectively, when applied to a color-singlet QQ̄ state522

with relative momentum q. Hence, we expect our pNRQCD expressions for the color-octet523

matrix elements in Eqs. (3.17) and (3.25b) to have the same infrared divergences that are524

expected in NRQCD factorization. This is straightforward to check explicitly at one-loop525

accuracy. By computing the correlator E at order-↵s accuracy in dimensional regularization526

at d = 4� 2✏ spacetime dimensions, we obtain527

E = 6CF
↵s

⇡

✓
1

✏UV
�

1

✏IR

◆
+O(↵2

s), (3.31)528

529

where the subscripts UV and IR indicate the origin of the 1/✏ poles. The UV divergence is530

removed through renormalization, which gives the following evolution equation531

d

d log⇤
E(⇤) = 12CF

↵s

⇡
+O(↵2

s), (3.32)532

– 15 –

using the two-loop formula with nf = 5 light quark flavors and ⇤(5)
QCD = 226 MeV. The606

calculation in Ref. [29] also includes resummed logarithms in pT /mc at leading logarithmic607

accuracy. The short-distance coefficients �
QQ̄(3P

[1]
J )

depend on the scheme and scale ⇤ at608

which the color-octet matrix element h⌦|O�cJ (3S[8]
1 )|⌦i is renormalized, which we identify as609

the renormalization scale for E . We choose this scale to be ⇤ = mc in the MS scheme, where610

mc = 1.5 GeV is the charm quark mass. We estimate the uncertainty in the short-distance611

coefficients to be 30% of the central values, which account for corrections of relative order612

v2 that we neglect. The variations of the scales µF for the parton distribution functions613

and the renormalization scale µR for ↵s, which affect the short-distance coefficients by614

less than 25% of the central values. We use the pNRQCD expressions for the matrix615

elements in Eqs. (3.25). We neglect the uncertainty of order 1/N2
c compared to other616

uncertainties. Note that the wavefunction at the origin cancels in the ratio r21. In order to617

compare with measurements, we compute the values of r21 multiplied by B�c2/B�c1 , where618

B�cJ = Br(�cJ ! J/ �) ⇥ Br(J/ ! µ+µ�). We compute B�cJ from measurements in619

Ref. [30]. Since the measurements of r21 are given as functions of the transverse momentum620

pJ/ T of the J/ , we compute pJ/ T from the transverse momentum pT of the �cJ from621

pJ/ T =
mJ/ 

m�cJ

pT , (3.38)622

which is valid when mJ/ ⇡ m�cJ . By performing a least-squares fit to the measured values623

of r21 ⇥B�c2/B�c1 by CMS [27] and ATLAS [28], we obtain624

E(⇤ = 1.5 GeV) = 1.97± 0.06, (3.39)625

with �2/d.o.f. = 1.6/10. This value is compatible within uncertainties with a previous626

determination in Ref. [19], which was obtained by comparing to �c1 and �c2 cross section627

measurements from ATLAS. Compared to the determination in Ref. [19], our determination628

does not depend on the value of the wavefunction at the origin |R(0)0(0)|2. We show our629

result for r21 compared to ATLAS and CMS data in figure . In the following sections, we630

use this value of E in eq. (3.39) to compute cross sections of �cJ and �bJ at the LHC.631

3.4 Production and polarization of �cJ632

We now compute the inclusive production cross sections of �cJ from proton-proton collisions633

at the LHC based on our results for the matrix elements in eqs. (3.25) and the determination634

of E in eq. (3.39). We use the same short-distance coefficients as we used in section 3.3,635

and we take the value of E at the scale ⇤ = 1.5 GeV in eq. (3.39). We determine the value636

of the P -wave charmonium wavefunction at the origin from two-photon decay rates of �c0637

and �c2. For consistency with our calculation of the cross sections, we use the NRQCD638

factorization formulas for the decay rates at leading orders in v, while we include order-↵s639

corrections to the short-distance coefficients. The pNRQCD expressions for the two-photon640

widths at leading order in v read [6, 13, 14]641

�(�c0 ! ��) =
6⇡e4c↵

2

m4
c


1 +

(3⇡2 � 28)

24
CF

↵s

⇡

�2
3Nc

2⇡
|R(0)0(0)|2, (3.40)642
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P-WAVE PRODUCTION MATRIX ELEMENTS
▸ The dimensionless correlator     is defined in terms of 

chromoelectric fields gE with Wilson lines ! extending to 
infinity in the ! direction. 

▸     has a one-loop scale dependence that is consistent 
with the evolution equation for NRQCD matrix elements 

▸ In principle,     can be determined from lattice QCD.  
Since a lattice calculation is unavailable, we determine      
from measured "cJ cross section ratios to obtain 

17

r2, r0
1, and r0

2 act on the wavefunctions in eq. (2.18). The gluonic matrix elements can406

be computed as407

X

p 6=n

h0|T a
1�

†ab
` (0,x)|pi(0)

(0)
hp|gE1|ni(0)

(E(0)
n � E(0)

p )2
= �

X

p 6=n

Z
1

0
dt t(0)h0|T a

1�
†ab
` |pi(0)(0)hp|gE1(t)|ni

(0)
408

= �
1

2Nc

Z
1

0
dt t(0)h0|�†ab

` gEa
1 (t)|ni

(0), (3.14)409
410

where in the last line, we computed the color matrices tr(T a
1 T

c
1 ) = �ac/(2Nc)tr( c) by using411

the fact that both the states |0i and |ni have color indices that are proportional to c.412

Since the matrix element (0)
h0|�†ab

` gEa
1 (t)|ni

(0) does not contain any color matrices, the413

last line of eq. (3.14) vanishes unless n 2 S. This gives414

� V
O(1S

[8]
0 )

���
P -wave

= �Ncri
r�

(3)(r)rj
r0

E
ij

N2
cm

2
, (3.15)415

416

where the tensor E
ij is defined by417

E
ij =

X

n

Z
1

0
t dt

Z
1

0
t0 dt0(0)h0|�†ab

` gEa,i
1 (t)|ni(0)(0)hn|gEc,j

1 (t0)�†bc
` |0i(0)418

=

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,j(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.16)419

420

In the last line, we used tr( c)/Nc = 1, and we introduced the Schwinger lines �0(t, t0) =421

P exp[�ig
R t0

t d⌧Aadj
0 (⌧,0)] to restore the gauge invariance. The configurations of the adjoint422

Wilson lines in eq. (3.16) are given in the following way. The chromoelectric field at time t0423

is connected to the origin 0 via the Schwinger line �ec
0 (t0, 0), which then continues to infinity424

in the ` direction. Analogously, the chromoelectric field at time t is connected to the origin425

0 via the Schwinger line �†da
0 (0, t), which then continues to infinity in the ` direction. The426

orderings of gEe,j(t0)�ec
0 (t0, 0)�bc

` and �†ab
` �†da

0 (0, t)gEd,i(t) are opposite; for a suitable427

choice of the sign of `0, gEe,j(t0)�ec
0 (t0, 0)�bc

` is time ordered, and �†ab
` �†da

0 (0, t)gEd,i(t) is428

anti time ordered. Hence, eq. (3.16) can be interpreted as a cut diagram, which can be429

useful for perturbative QCD. We show this configuration of the Wilson lines graphically in430

figure 1.431

Now we can compute the color-octet matrix element h⌦|OhQ(1S[8]
0 )|⌦i. Since the prod-432

uct �(0)
1P1

(r)�(0)
1P1

⇤(r) is isotropic after summing over the polarizations of the 1P1 state, the433

differential operators ri
rr

j
r0 in eq. (3.15) can be replaced by 1

3�
ijrr ·rr0 . Then, we obtain434

h⌦|OhQ(1S[8]
0 )|⌦i = 3⇥

3Nc

2⇡
|R(0)0(0)|2

1

9Ncm2
E , (3.17)435

where E is a dimensionless gluonic correlator defined by436

E =
3

Nc

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,i(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.18)437

The correlator E corresponds to the isotropic part of E ij , which is given by Nc
9 �ijE . The438

factor 3/Nc in the definition of E has been chosen so that eq. (3.17) resembles the pNRQCD439

– 12 –

where ⇤ is the scale at which E is renormalized. This, in turn, implies the following evolution533

equation for the NRQCD matrix elements534

d

d log⇤
hO

�QJ (3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�QJ (3P [1]
J )i. (3.33)535

The same evolution equation holds for hO
hQ(1S[8]

0 )i and hO
hQ(1P [1]

1 )i. Equation (3.33)536

agrees with the evolution equation derived from a perturbative calculation in NRQCD [6],537

and therefore the UV divergence in the one-loop correction to the color-octet matrix ele-538

ment is consistent with the pNRQCD expressions at one-loop level. Since loop corrections539

to NRQCD matrix elements are scaleless, UV poles cancel IR poles in the form of eq. (3.31),540

and hence, the one-loop infrared divergence in the color-octet matrix element is also con-541

sistent with our pNRQCD results.542

At two loops, explicit checks of the consistency of our pNRQCD results with NRQCD543

factorization can be inferred from the two-loop calculations in Refs. [16] and [17]. In544

Ref. [16], two-loop corrections to the infrared factor I2(p, q) that are associated with the545

gauge-completion Wilson lines were computed, which contribute to the infrard divergence of546

the matrix element hOQ(1S[8]
0 )i at order ↵2

s. This result was reproduced in Ref. [17] through547

explicit calculations of the matrix element hOQ(1S[8]
0 )i. Since the calculation of the infrared548

factor in Ref. [16] is equivalent to the calculation of infrared divergences in the contact terms549

V
O(1S

[8]
0 )

and V
O(3S

[8]
1 )

, our pNRQCD expressions for the color-octet matrix elements also550

have the same infrared divergences that are associated with the gauge-completion Wilson551

lines that are found in the calculations of Ref. [17].552

It is interesting to see that eq. (3.31) is the same as the order-↵s calculation of the553

correlator E3 defined in eq. (3.20), which appears in decay matrix elements. Indeed, the554

one-loop evolution equation in eq. (3.33) is the same as the one-loop evolution equation for555

the decay matrix elements that appear in inclusive decays of P -wave quarkonia [6]. This556

equality ceases to hold at two loops, because at this order, E receives contributions from557

the gauge-completion Wilson lines, which are absent in E3.558

An important issue in NRQCD factorization is whether the color-octet NRQCD matrix559

elements are independent on the direction of the gauge-completion Wilson lines, which is560

necessary in establishing the universality of the NRQCD matrix elements. While a general561

argument for the universality has been given in Ref. [21], an explicit verification has only562

been done at two-loop accuracy [16, 17]. In our results for the color-octet matrix elements,563

the dependence on the direction of the gauge-completion Wilson lines can come from the564

tensor E
ij in the contact terms. For the case of polarization-summed cross sections, where565

the polarization of the quarkonium in the final state is summed over, only the isotropic566

part of E ij , given by Nc
9 �ijE , contributes to the color-octet matrix elements, and therefore,567

the dependence on the direction of the gauge-completion Wilson lines disappear due to568

rotational symmetry. Hence, the pNRQCD expressions of the color-octet matrix elements569

support the universality of the NRQCD matrix elements for polarization-summed cross570

sections of P -wave quarkonia. On the other hand, for the case of polarized cross sections,571

the non-isotropic part of E ij can in principle contribute to the color-octet matrix element,572

and if such contributions are nonvanishing, the matrix elements can acquire dependence573
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where the sum over N contains all possible intermediate states, T and T̄ represent time493

ordering and anti time ordering, respectively, p is half the center-of-mass momentum of the494

QQ̄, and495

�p(�) = P exp


�ig

Z �

0
d�0 p ·Aadj(�0p)

�
, (3.29)496

497

is an adjoint Wilson line along p. In eq. (3.28) we make explicit the time ordering and498

anti time ordering, which was implicit in Ref. [16]. In eq. (3.28), a factor of q comes from499

each side of the cut in the squared amplitude, so that the infrared factor applies to the500

production of a color-singlet P -wave state. This result is obtained from standard methods501

in perturbative factorization, where eikonal approximations are employed that simplify the502

loop corrections gluons while preserving the infrared divergences. This factor includes the503

infrared divergences that come from the soft gluons of scale mv, but does not include the504

contributions from the scale mv2. Since this process corresponds to the production of a QQ̄505

in the color-octet 3S1 state, this divergence must match the infrared divergence in the color-506

octet matrix element h⌦|OQ(3S[8]
1 )|⌦i, when Q is replaced by a color-singlet QQ̄ state. This507

agreement has been confirmed explicitly through one-loop and partial two-loop calculations508

of the color-octet NRQCD matrix element in Ref. [17]; the two-loop calculations have only509

been done for the diagrams that involve the gauge-completion Wilson lines. Since the510

matrix element h⌦|OQ(3S[8]
1 )|⌦i appears in the NRQCD factorization formula at leading511

order in v, the same infrared divergence occurs in the operator h⌦|OQ(1S[8]
0 )|⌦i through512

heavy quark spin symmetry.513

It can be seen that at the rest frame of the QQ̄, where p = 0 and q0 = 0, �p(�p) is just514

the Schwinger line �0(0, t) = P exp[�ig
R t
0 d⌧A

adj
0 (⌧,0)] where t =

p
p2�, and pµq⌫Ga

⌫µ(�p)515

is given by the chromoelectric field as
p
p2qiEa i(t). Therefore, the infrared factor I2(p, q)516

in eq. (3.28) is given by517

E
ijqiqj , (3.30)518

519

multiplied by color and kinematical factors that are infrared finite. Here, the tensor E
ij is520

defined in eq. (3.16). We note that eq. (3.30) is equivalent to the contact terms V
O(1S

[8]
0 )

and521

V
O(3S

[8]
1 )

in Eqs. (3.15) and (3.21), respectively, when applied to a color-singlet QQ̄ state522

with relative momentum q. Hence, we expect our pNRQCD expressions for the color-octet523

matrix elements in Eqs. (3.17) and (3.25b) to have the same infrared divergences that are524

expected in NRQCD factorization. This is straightforward to check explicitly at one-loop525

accuracy. By computing the correlator E at order-↵s accuracy in dimensional regularization526

at d = 4� 2✏ spacetime dimensions, we obtain527

E = 6CF
↵s

⇡

✓
1

✏UV
�

1

✏IR

◆
+O(↵2

s), (3.31)528

529

where the subscripts UV and IR indicate the origin of the 1/✏ poles. The UV divergence is530

removed through renormalization, which gives the following evolution equation531

d

d log⇤
E(⇤) = 12CF

↵s

⇡
+O(↵2

s), (3.32)532
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using the two-loop formula with nf = 5 light quark flavors and ⇤(5)
QCD = 226 MeV. The606

calculation in Ref. [29] also includes resummed logarithms in pT /mc at leading logarithmic607

accuracy. The short-distance coefficients �
QQ̄(3P

[1]
J )

depend on the scheme and scale ⇤ at608

which the color-octet matrix element h⌦|O�cJ (3S[8]
1 )|⌦i is renormalized, which we identify as609

the renormalization scale for E . We choose this scale to be ⇤ = mc in the MS scheme, where610

mc = 1.5 GeV is the charm quark mass. We estimate the uncertainty in the short-distance611

coefficients to be 30% of the central values, which account for corrections of relative order612

v2 that we neglect. The variations of the scales µF for the parton distribution functions613

and the renormalization scale µR for ↵s, which affect the short-distance coefficients by614

less than 25% of the central values. We use the pNRQCD expressions for the matrix615

elements in Eqs. (3.25). We neglect the uncertainty of order 1/N2
c compared to other616

uncertainties. Note that the wavefunction at the origin cancels in the ratio r21. In order to617

compare with measurements, we compute the values of r21 multiplied by B�c2/B�c1 , where618

B�cJ = Br(�cJ ! J/ �) ⇥ Br(J/ ! µ+µ�). We compute B�cJ from measurements in619

Ref. [30]. Since the measurements of r21 are given as functions of the transverse momentum620

pJ/ T of the J/ , we compute pJ/ T from the transverse momentum pT of the �cJ from621

pJ/ T =
mJ/ 

m�cJ

pT , (3.38)622

which is valid when mJ/ ⇡ m�cJ . By performing a least-squares fit to the measured values623

of r21 ⇥B�c2/B�c1 by CMS [27] and ATLAS [28], we obtain624

E(⇤ = 1.5 GeV) = 1.97± 0.06, (3.39)625

with �2/d.o.f. = 1.6/10. This value is compatible within uncertainties with a previous626

determination in Ref. [19], which was obtained by comparing to �c1 and �c2 cross section627

measurements from ATLAS. Compared to the determination in Ref. [19], our determination628

does not depend on the value of the wavefunction at the origin |R(0)0(0)|2. We show our629

result for r21 compared to ATLAS and CMS data in figure . In the following sections, we630

use this value of E in eq. (3.39) to compute cross sections of �cJ and �bJ at the LHC.631

3.4 Production and polarization of �cJ632

We now compute the inclusive production cross sections of �cJ from proton-proton collisions633

at the LHC based on our results for the matrix elements in eqs. (3.25) and the determination634

of E in eq. (3.39). We use the same short-distance coefficients as we used in section 3.3,635

and we take the value of E at the scale ⇤ = 1.5 GeV in eq. (3.39). We determine the value636

of the P -wave charmonium wavefunction at the origin from two-photon decay rates of �c0637

and �c2. For consistency with our calculation of the cross sections, we use the NRQCD638

factorization formulas for the decay rates at leading orders in v, while we include order-↵s639

corrections to the short-distance coefficients. The pNRQCD expressions for the two-photon640

widths at leading order in v read [6, 13, 14]641
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3

make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order

in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�b0(3S[8]
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2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)
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0 (0, t)gEd,i(t)gEe,i(t0)�ec
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` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation
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1 )i is
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where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages
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quarkonia in pNRQCD in Refs. [17–19] and consists of
the following steps: (i) replace in the LDMEs the projec-
tor PQ(P=0) with the expressions (6) and (5); (ii) using
QMPT, and in particular Eqs. (3) and (4), express the

LDMEs in terms of |n;x1,x2i
(0) and E(0)

n (x1,x2); (iii)
make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT
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3Nc
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�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order
in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�Q0(3S[8]

1 )i =
3Nc
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E
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where

E =
3
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` �†da

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
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make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order

in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�b0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3
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Z 1
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` �ad

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is
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d log⇤
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4CF↵s
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0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages
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quarkonia in pNRQCD in Refs. [17–19] and consists of
the following steps: (i) replace in the LDMEs the projec-
tor PQ(P=0) with the expressions (6) and (5); (ii) using
QMPT, and in particular Eqs. (3) and (4), express the

LDMEs in terms of |n;x1,x2i
(0) and E(0)

n (x1,x2); (iii)
make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2
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n in the large Nc limit, then in that limit the wavefunc-
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Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
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1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.
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order in QMPT
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(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order
in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:
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Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
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The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
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0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation
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where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
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Factorization of LDMEs in pNRQCD : the NRQCD   LDMEs are factorized in terms of wave 
functions and universal nonperturbative correlators depending only on the glue
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•The number of nonperturbative unknowns is reduced by half
•The nonperturbative unknowns are correlators of gluonic fields 

 that can be calculated on the lattice
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We compute the color singlet and color octet NRQCD long-distance matrix elements for inclusive
production of P -wave quarkonia based on the pNRQCD e↵ective field theory. This allows a determi-
nation of the color octet NRQCD matrix element that does not rely on measured cross section data,
which has not been possible so far. We make first pNRQCD predictions for inclusive hadroproduc-
tion of �bJ and �cJ at the LHC, which are in fair agreement with data. The formalism developed in
this work can also be applied to inclusive production processes of other species of heavy quarkonia.

Understanding the inclusive production mechanism of10

heavy quarkonia is one of the most challenging problems11

in heavy quarkonium physics [1, 2]. While the nonrela-12

tivistic QCD (NRQCD) e↵ective field theory [3, 4] had13

enormous success in heavy quarkonium phenomenology,14

a satisfactory description of inclusive production pro-15

cesses from first principles is still beyond reach. Much16

of the di�culty stems from our limited knowledge in the17

NRQCD long-distance matrix elements (LDMEs), which18

describe the nonperturbative evolution of the heavy19

quark Q and antiquark Q̄ into a quarkonium. First-20

principles determinations have not been possible for a21

class of important LDMEs that are associated with the22

QQ̄ in a color octet state. On the other hand, phe-23

nomenological determinations of the unknown LDMEs24

based on di↵erent choices of observables have lead to in-25

consistent sets of LDMEs, which have resulted in con-26

tradicting predictions [5]. It is therefore highly desirable27

to be able to compute the unknown LDMEs from first28

principles.29

The potential NRQCD (pNRQCD) approach [6–8] has30

been successfully applied to annihilation and exclusive31

electromagnetic production processes of heavy quarko-32

nia [9–11]. It has been anticipated that pNRQCD could33

also be used to describe inclusive production processes.34

In this Letter, we compute, based on pNRQCD, the35

NRQCD LDMEs that appear in the inclusive production36

cross section of P -wave quarkonia. Specifically, we con-37

sider production cross sections of �QJ (Q = c or b, J = 0,38

1, and 2) at leading order in the heavy-quark velocity v.39

The cross section is given in the NRQCD factorization40

formalism at leading order in v by [4]41

��QJ+X = (2J + 1)�
QQ̄(3P [1]

J )
hO

�Q0(3P [1]
0 )i42

+ (2J + 1)�
QQ̄(3S[8]

1 )
hO

�Q0(3S[8]
1 )i. (1)43

44

Here, we use spectroscopic notation for the angular mo-45

mentum state of the QQ̄, while the superscripts 1 and 846

denote the color state of the QQ̄. We have used heavy-47

quark spin symmetry to reduce the �QJ LDMEs into48

LDMEs for the �Q0 state. The �
QQ̄(3P [1]

J )
and �

QQ̄(3S[8]
1 )

49

are the perturbatively calculable short-distance coef-50

ficients (SDCs), and the LDMEs hO�b0(3P [1]
0 )i and51

hO
�b0(3S[8]

1 )i are defined by52

hO
�Q0(3P [1]

0 )i =
1

3
h⌦|�†(� i

2

 !
D · �) P�Q053

⇥  
†(� i

2

 !
D · �)�|⌦i, (2a)54

hO
�Q0(3S[8]

1 )i = h⌦|�†
�
i
T

a
 �ab

` P�Q055

⇥ �bc
`  

†
�
i
T

c
�|⌦i, (2b)56

57

where |⌦i is the QCD vacuum, and  and � are Pauli58

spinor fields that annihilate and create a heavy quark59

and antiquark, respectively. The covariant derivative60
 !
D is defined by �

† !D = �
†D � (D�)† . The op-61

erator P�Q0 = a
†
�Q0

a�Q0 is a projection onto a state62

consisting of a �Q0 at rest, where a
†
�Q0

is the creation63

operator for the �Q0 state. The path-ordered Wilson64

line along the spacetime direction ` defined by �` =65

P exp[�ig
R1
0 dx `·A

adj(`x)], where Aadj is the gluon field66

in the adjoint representation, ensures the gauge invari-67

ance of the color-octet LDME [12–14]. The direction `68

can be chosen arbitrarily.69

We work in the strong coupling regime, where mv &70

⇤QCD � mv
2. This condition is fulfilled by non-71

Coulombic, strongly coupled quarkonia, such as the �QJ .72

In order to compute the LDMEs in strongly coupled pN-73

RQCD, we make use of the quantum-mechanical pertur-74

bation theory (QMPT) where we formally expand the75

NRQCD Hamiltonian in inverse powers of the heavy76

quark mass m [10, 15]:77

HNRQCD = H
(0)
NRQCD +

1

m
H

(1)
NRQCD + . . . , (3)78

The eigenstates in the heavy quark-antiquark sector are79

HEAVY QUARKONIUM PRODUCTION IN PNRQCD

P-WAVE PRODUCTION MATRIX ELEMENTS
▸ Color-singlet matrix element: we reproduce the known 

result in the vacuum-saturation approximation. 

▸ Color-octet matrix element: result is given in terms of the 
wavefunction and a universal gluonic correlator.  

▸     is a universal quantity that does not depend on quark 
flavor or radial excitation. Determination of     directly 
leads to determination of all !cJ and !bJ(nP) cross 
sections, as well as hc and hb production rates.
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3

make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order

in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�b0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �ad

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages

3

quarkonia in pNRQCD in Refs. [17–19] and consists of
the following steps: (i) replace in the LDMEs the projec-
tor PQ(P=0) with the expressions (6) and (5); (ii) using
QMPT, and in particular Eqs. (3) and (4), express the

LDMEs in terms of |n;x1,x2i
(0) and E(0)

n (x1,x2); (iii)
make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order
in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�Q0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �†da

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
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->good description of data at ATLAS  
and CMS

HEAVY QUARKONIUM PRODUCTION IN PNRQCD

P-WAVE PRODUCTION MATRIX ELEMENTS
▸ The dimensionless correlator     is defined in terms of 

chromoelectric fields gE with Wilson lines ! extending to 
infinity in the ! direction. 

▸     has a one-loop scale dependence that is consistent 
with the evolution equation for NRQCD matrix elements 

▸ In principle,     can be determined from lattice QCD.  
Since a lattice calculation is unavailable, we determine      
from measured "cJ cross section ratios to obtain 
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r2, r0
1, and r0

2 act on the wavefunctions in eq. (2.18). The gluonic matrix elements can406

be computed as407

X

p 6=n

h0|T a
1�

†ab
` (0,x)|pi(0)

(0)
hp|gE1|ni(0)

(E(0)
n � E(0)

p )2
= �

X

p 6=n

Z
1

0
dt t(0)h0|T a

1�
†ab
` |pi(0)(0)hp|gE1(t)|ni

(0)
408

= �
1

2Nc

Z
1

0
dt t(0)h0|�†ab

` gEa
1 (t)|ni

(0), (3.14)409
410

where in the last line, we computed the color matrices tr(T a
1 T

c
1 ) = �ac/(2Nc)tr( c) by using411

the fact that both the states |0i and |ni have color indices that are proportional to c.412

Since the matrix element (0)
h0|�†ab

` gEa
1 (t)|ni

(0) does not contain any color matrices, the413

last line of eq. (3.14) vanishes unless n 2 S. This gives414

� V
O(1S

[8]
0 )

���
P -wave

= �Ncri
r�

(3)(r)rj
r0

E
ij

N2
cm

2
, (3.15)415

416

where the tensor E
ij is defined by417

E
ij =

X

n

Z
1

0
t dt

Z
1

0
t0 dt0(0)h0|�†ab

` gEa,i
1 (t)|ni(0)(0)hn|gEc,j

1 (t0)�†bc
` |0i(0)418

=

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,j(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.16)419

420

In the last line, we used tr( c)/Nc = 1, and we introduced the Schwinger lines �0(t, t0) =421

P exp[�ig
R t0

t d⌧Aadj
0 (⌧,0)] to restore the gauge invariance. The configurations of the adjoint422

Wilson lines in eq. (3.16) are given in the following way. The chromoelectric field at time t0423

is connected to the origin 0 via the Schwinger line �ec
0 (t0, 0), which then continues to infinity424

in the ` direction. Analogously, the chromoelectric field at time t is connected to the origin425

0 via the Schwinger line �†da
0 (0, t), which then continues to infinity in the ` direction. The426

orderings of gEe,j(t0)�ec
0 (t0, 0)�bc

` and �†ab
` �†da

0 (0, t)gEd,i(t) are opposite; for a suitable427

choice of the sign of `0, gEe,j(t0)�ec
0 (t0, 0)�bc

` is time ordered, and �†ab
` �†da

0 (0, t)gEd,i(t) is428

anti time ordered. Hence, eq. (3.16) can be interpreted as a cut diagram, which can be429

useful for perturbative QCD. We show this configuration of the Wilson lines graphically in430

figure 1.431

Now we can compute the color-octet matrix element h⌦|OhQ(1S[8]
0 )|⌦i. Since the prod-432

uct �(0)
1P1

(r)�(0)
1P1

⇤(r) is isotropic after summing over the polarizations of the 1P1 state, the433

differential operators ri
rr

j
r0 in eq. (3.15) can be replaced by 1

3�
ijrr ·rr0 . Then, we obtain434

h⌦|OhQ(1S[8]
0 )|⌦i = 3⇥

3Nc

2⇡
|R(0)0(0)|2

1

9Ncm2
E , (3.17)435

where E is a dimensionless gluonic correlator defined by436

E =
3

Nc

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,i(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.18)437

The correlator E corresponds to the isotropic part of E ij , which is given by Nc
9 �ijE . The438

factor 3/Nc in the definition of E has been chosen so that eq. (3.17) resembles the pNRQCD439

– 12 –

where ⇤ is the scale at which E is renormalized. This, in turn, implies the following evolution533

equation for the NRQCD matrix elements534

d

d log⇤
hO

�QJ (3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�QJ (3P [1]
J )i. (3.33)535

The same evolution equation holds for hO
hQ(1S[8]

0 )i and hO
hQ(1P [1]

1 )i. Equation (3.33)536

agrees with the evolution equation derived from a perturbative calculation in NRQCD [6],537

and therefore the UV divergence in the one-loop correction to the color-octet matrix ele-538

ment is consistent with the pNRQCD expressions at one-loop level. Since loop corrections539

to NRQCD matrix elements are scaleless, UV poles cancel IR poles in the form of eq. (3.31),540

and hence, the one-loop infrared divergence in the color-octet matrix element is also con-541

sistent with our pNRQCD results.542

At two loops, explicit checks of the consistency of our pNRQCD results with NRQCD543

factorization can be inferred from the two-loop calculations in Refs. [16] and [17]. In544

Ref. [16], two-loop corrections to the infrared factor I2(p, q) that are associated with the545

gauge-completion Wilson lines were computed, which contribute to the infrard divergence of546

the matrix element hOQ(1S[8]
0 )i at order ↵2

s. This result was reproduced in Ref. [17] through547

explicit calculations of the matrix element hOQ(1S[8]
0 )i. Since the calculation of the infrared548

factor in Ref. [16] is equivalent to the calculation of infrared divergences in the contact terms549

V
O(1S

[8]
0 )

and V
O(3S

[8]
1 )

, our pNRQCD expressions for the color-octet matrix elements also550

have the same infrared divergences that are associated with the gauge-completion Wilson551

lines that are found in the calculations of Ref. [17].552

It is interesting to see that eq. (3.31) is the same as the order-↵s calculation of the553

correlator E3 defined in eq. (3.20), which appears in decay matrix elements. Indeed, the554

one-loop evolution equation in eq. (3.33) is the same as the one-loop evolution equation for555

the decay matrix elements that appear in inclusive decays of P -wave quarkonia [6]. This556

equality ceases to hold at two loops, because at this order, E receives contributions from557

the gauge-completion Wilson lines, which are absent in E3.558

An important issue in NRQCD factorization is whether the color-octet NRQCD matrix559

elements are independent on the direction of the gauge-completion Wilson lines, which is560

necessary in establishing the universality of the NRQCD matrix elements. While a general561

argument for the universality has been given in Ref. [21], an explicit verification has only562

been done at two-loop accuracy [16, 17]. In our results for the color-octet matrix elements,563

the dependence on the direction of the gauge-completion Wilson lines can come from the564

tensor E
ij in the contact terms. For the case of polarization-summed cross sections, where565

the polarization of the quarkonium in the final state is summed over, only the isotropic566

part of E ij , given by Nc
9 �ijE , contributes to the color-octet matrix elements, and therefore,567

the dependence on the direction of the gauge-completion Wilson lines disappear due to568

rotational symmetry. Hence, the pNRQCD expressions of the color-octet matrix elements569

support the universality of the NRQCD matrix elements for polarization-summed cross570

sections of P -wave quarkonia. On the other hand, for the case of polarized cross sections,571

the non-isotropic part of E ij can in principle contribute to the color-octet matrix element,572

and if such contributions are nonvanishing, the matrix elements can acquire dependence573
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where the sum over N contains all possible intermediate states, T and T̄ represent time493

ordering and anti time ordering, respectively, p is half the center-of-mass momentum of the494

QQ̄, and495

�p(�) = P exp


�ig

Z �

0
d�0 p ·Aadj(�0p)

�
, (3.29)496

497

is an adjoint Wilson line along p. In eq. (3.28) we make explicit the time ordering and498

anti time ordering, which was implicit in Ref. [16]. In eq. (3.28), a factor of q comes from499

each side of the cut in the squared amplitude, so that the infrared factor applies to the500

production of a color-singlet P -wave state. This result is obtained from standard methods501

in perturbative factorization, where eikonal approximations are employed that simplify the502

loop corrections gluons while preserving the infrared divergences. This factor includes the503

infrared divergences that come from the soft gluons of scale mv, but does not include the504

contributions from the scale mv2. Since this process corresponds to the production of a QQ̄505

in the color-octet 3S1 state, this divergence must match the infrared divergence in the color-506

octet matrix element h⌦|OQ(3S[8]
1 )|⌦i, when Q is replaced by a color-singlet QQ̄ state. This507

agreement has been confirmed explicitly through one-loop and partial two-loop calculations508

of the color-octet NRQCD matrix element in Ref. [17]; the two-loop calculations have only509

been done for the diagrams that involve the gauge-completion Wilson lines. Since the510

matrix element h⌦|OQ(3S[8]
1 )|⌦i appears in the NRQCD factorization formula at leading511

order in v, the same infrared divergence occurs in the operator h⌦|OQ(1S[8]
0 )|⌦i through512

heavy quark spin symmetry.513

It can be seen that at the rest frame of the QQ̄, where p = 0 and q0 = 0, �p(�p) is just514

the Schwinger line �0(0, t) = P exp[�ig
R t
0 d⌧A

adj
0 (⌧,0)] where t =

p
p2�, and pµq⌫Ga

⌫µ(�p)515

is given by the chromoelectric field as
p
p2qiEa i(t). Therefore, the infrared factor I2(p, q)516

in eq. (3.28) is given by517

E
ijqiqj , (3.30)518

519

multiplied by color and kinematical factors that are infrared finite. Here, the tensor E
ij is520

defined in eq. (3.16). We note that eq. (3.30) is equivalent to the contact terms V
O(1S

[8]
0 )

and521

V
O(3S

[8]
1 )

in Eqs. (3.15) and (3.21), respectively, when applied to a color-singlet QQ̄ state522

with relative momentum q. Hence, we expect our pNRQCD expressions for the color-octet523

matrix elements in Eqs. (3.17) and (3.25b) to have the same infrared divergences that are524

expected in NRQCD factorization. This is straightforward to check explicitly at one-loop525

accuracy. By computing the correlator E at order-↵s accuracy in dimensional regularization526

at d = 4� 2✏ spacetime dimensions, we obtain527

E = 6CF
↵s

⇡

✓
1

✏UV
�

1

✏IR

◆
+O(↵2

s), (3.31)528

529

where the subscripts UV and IR indicate the origin of the 1/✏ poles. The UV divergence is530

removed through renormalization, which gives the following evolution equation531

d

d log⇤
E(⇤) = 12CF

↵s

⇡
+O(↵2

s), (3.32)532

– 15 –

using the two-loop formula with nf = 5 light quark flavors and ⇤(5)
QCD = 226 MeV. The606

calculation in Ref. [29] also includes resummed logarithms in pT /mc at leading logarithmic607

accuracy. The short-distance coefficients �
QQ̄(3P

[1]
J )

depend on the scheme and scale ⇤ at608

which the color-octet matrix element h⌦|O�cJ (3S[8]
1 )|⌦i is renormalized, which we identify as609

the renormalization scale for E . We choose this scale to be ⇤ = mc in the MS scheme, where610

mc = 1.5 GeV is the charm quark mass. We estimate the uncertainty in the short-distance611

coefficients to be 30% of the central values, which account for corrections of relative order612

v2 that we neglect. The variations of the scales µF for the parton distribution functions613

and the renormalization scale µR for ↵s, which affect the short-distance coefficients by614

less than 25% of the central values. We use the pNRQCD expressions for the matrix615

elements in Eqs. (3.25). We neglect the uncertainty of order 1/N2
c compared to other616

uncertainties. Note that the wavefunction at the origin cancels in the ratio r21. In order to617

compare with measurements, we compute the values of r21 multiplied by B�c2/B�c1 , where618

B�cJ = Br(�cJ ! J/ �) ⇥ Br(J/ ! µ+µ�). We compute B�cJ from measurements in619

Ref. [30]. Since the measurements of r21 are given as functions of the transverse momentum620

pJ/ T of the J/ , we compute pJ/ T from the transverse momentum pT of the �cJ from621

pJ/ T =
mJ/ 

m�cJ

pT , (3.38)622

which is valid when mJ/ ⇡ m�cJ . By performing a least-squares fit to the measured values623

of r21 ⇥B�c2/B�c1 by CMS [27] and ATLAS [28], we obtain624

E(⇤ = 1.5 GeV) = 1.97± 0.06, (3.39)625

with �2/d.o.f. = 1.6/10. This value is compatible within uncertainties with a previous626

determination in Ref. [19], which was obtained by comparing to �c1 and �c2 cross section627

measurements from ATLAS. Compared to the determination in Ref. [19], our determination628

does not depend on the value of the wavefunction at the origin |R(0)0(0)|2. We show our629

result for r21 compared to ATLAS and CMS data in figure . In the following sections, we630

use this value of E in eq. (3.39) to compute cross sections of �cJ and �bJ at the LHC.631

3.4 Production and polarization of �cJ632

We now compute the inclusive production cross sections of �cJ from proton-proton collisions633

at the LHC based on our results for the matrix elements in eqs. (3.25) and the determination634

of E in eq. (3.39). We use the same short-distance coefficients as we used in section 3.3,635

and we take the value of E at the scale ⇤ = 1.5 GeV in eq. (3.39). We determine the value636

of the P -wave charmonium wavefunction at the origin from two-photon decay rates of �c0637

and �c2. For consistency with our calculation of the cross sections, we use the NRQCD638

factorization formulas for the decay rates at leading orders in v, while we include order-↵s639

corrections to the short-distance coefficients. The pNRQCD expressions for the two-photon640

widths at leading order in v read [6, 13, 14]641

�(�c0 ! ��) =
6⇡e4c↵

2

m4
c


1 +

(3⇡2 � 28)

24
CF

↵s

⇡

�2
3Nc

2⇡
|R(0)0(0)|2, (3.40)642
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P-WAVE PRODUCTION MATRIX ELEMENTS
▸ The dimensionless correlator     is defined in terms of 

chromoelectric fields gE with Wilson lines ! extending to 
infinity in the ! direction. 

▸     has a one-loop scale dependence that is consistent 
with the evolution equation for NRQCD matrix elements 

▸ In principle,     can be determined from lattice QCD.  
Since a lattice calculation is unavailable, we determine      
from measured "cJ cross section ratios to obtain 

17

r2, r0
1, and r0

2 act on the wavefunctions in eq. (2.18). The gluonic matrix elements can406

be computed as407

X

p 6=n

h0|T a
1�

†ab
` (0,x)|pi(0)

(0)
hp|gE1|ni(0)

(E(0)
n � E(0)

p )2
= �

X

p 6=n

Z
1

0
dt t(0)h0|T a

1�
†ab
` |pi(0)(0)hp|gE1(t)|ni

(0)
408

= �
1

2Nc

Z
1

0
dt t(0)h0|�†ab

` gEa
1 (t)|ni

(0), (3.14)409
410

where in the last line, we computed the color matrices tr(T a
1 T

c
1 ) = �ac/(2Nc)tr( c) by using411

the fact that both the states |0i and |ni have color indices that are proportional to c.412

Since the matrix element (0)
h0|�†ab

` gEa
1 (t)|ni

(0) does not contain any color matrices, the413

last line of eq. (3.14) vanishes unless n 2 S. This gives414

� V
O(1S

[8]
0 )

���
P -wave

= �Ncri
r�

(3)(r)rj
r0

E
ij

N2
cm

2
, (3.15)415

416

where the tensor E
ij is defined by417

E
ij =

X

n

Z
1

0
t dt

Z
1

0
t0 dt0(0)h0|�†ab

` gEa,i
1 (t)|ni(0)(0)hn|gEc,j

1 (t0)�†bc
` |0i(0)418

=

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,j(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.16)419

420

In the last line, we used tr( c)/Nc = 1, and we introduced the Schwinger lines �0(t, t0) =421

P exp[�ig
R t0

t d⌧Aadj
0 (⌧,0)] to restore the gauge invariance. The configurations of the adjoint422

Wilson lines in eq. (3.16) are given in the following way. The chromoelectric field at time t0423

is connected to the origin 0 via the Schwinger line �ec
0 (t0, 0), which then continues to infinity424

in the ` direction. Analogously, the chromoelectric field at time t is connected to the origin425

0 via the Schwinger line �†da
0 (0, t), which then continues to infinity in the ` direction. The426

orderings of gEe,j(t0)�ec
0 (t0, 0)�bc

` and �†ab
` �†da

0 (0, t)gEd,i(t) are opposite; for a suitable427

choice of the sign of `0, gEe,j(t0)�ec
0 (t0, 0)�bc

` is time ordered, and �†ab
` �†da

0 (0, t)gEd,i(t) is428

anti time ordered. Hence, eq. (3.16) can be interpreted as a cut diagram, which can be429

useful for perturbative QCD. We show this configuration of the Wilson lines graphically in430

figure 1.431

Now we can compute the color-octet matrix element h⌦|OhQ(1S[8]
0 )|⌦i. Since the prod-432

uct �(0)
1P1

(r)�(0)
1P1

⇤(r) is isotropic after summing over the polarizations of the 1P1 state, the433

differential operators ri
rr

j
r0 in eq. (3.15) can be replaced by 1

3�
ijrr ·rr0 . Then, we obtain434

h⌦|OhQ(1S[8]
0 )|⌦i = 3⇥

3Nc

2⇡
|R(0)0(0)|2

1

9Ncm2
E , (3.17)435

where E is a dimensionless gluonic correlator defined by436

E =
3

Nc

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,i(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.18)437

The correlator E corresponds to the isotropic part of E ij , which is given by Nc
9 �ijE . The438

factor 3/Nc in the definition of E has been chosen so that eq. (3.17) resembles the pNRQCD439
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where ⇤ is the scale at which E is renormalized. This, in turn, implies the following evolution533

equation for the NRQCD matrix elements534

d

d log⇤
hO

�QJ (3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�QJ (3P [1]
J )i. (3.33)535

The same evolution equation holds for hO
hQ(1S[8]

0 )i and hO
hQ(1P [1]

1 )i. Equation (3.33)536

agrees with the evolution equation derived from a perturbative calculation in NRQCD [6],537

and therefore the UV divergence in the one-loop correction to the color-octet matrix ele-538

ment is consistent with the pNRQCD expressions at one-loop level. Since loop corrections539

to NRQCD matrix elements are scaleless, UV poles cancel IR poles in the form of eq. (3.31),540

and hence, the one-loop infrared divergence in the color-octet matrix element is also con-541

sistent with our pNRQCD results.542

At two loops, explicit checks of the consistency of our pNRQCD results with NRQCD543

factorization can be inferred from the two-loop calculations in Refs. [16] and [17]. In544

Ref. [16], two-loop corrections to the infrared factor I2(p, q) that are associated with the545

gauge-completion Wilson lines were computed, which contribute to the infrard divergence of546

the matrix element hOQ(1S[8]
0 )i at order ↵2

s. This result was reproduced in Ref. [17] through547

explicit calculations of the matrix element hOQ(1S[8]
0 )i. Since the calculation of the infrared548

factor in Ref. [16] is equivalent to the calculation of infrared divergences in the contact terms549

V
O(1S

[8]
0 )

and V
O(3S

[8]
1 )

, our pNRQCD expressions for the color-octet matrix elements also550

have the same infrared divergences that are associated with the gauge-completion Wilson551

lines that are found in the calculations of Ref. [17].552

It is interesting to see that eq. (3.31) is the same as the order-↵s calculation of the553

correlator E3 defined in eq. (3.20), which appears in decay matrix elements. Indeed, the554

one-loop evolution equation in eq. (3.33) is the same as the one-loop evolution equation for555

the decay matrix elements that appear in inclusive decays of P -wave quarkonia [6]. This556

equality ceases to hold at two loops, because at this order, E receives contributions from557

the gauge-completion Wilson lines, which are absent in E3.558

An important issue in NRQCD factorization is whether the color-octet NRQCD matrix559

elements are independent on the direction of the gauge-completion Wilson lines, which is560

necessary in establishing the universality of the NRQCD matrix elements. While a general561

argument for the universality has been given in Ref. [21], an explicit verification has only562

been done at two-loop accuracy [16, 17]. In our results for the color-octet matrix elements,563

the dependence on the direction of the gauge-completion Wilson lines can come from the564

tensor E
ij in the contact terms. For the case of polarization-summed cross sections, where565

the polarization of the quarkonium in the final state is summed over, only the isotropic566

part of E ij , given by Nc
9 �ijE , contributes to the color-octet matrix elements, and therefore,567

the dependence on the direction of the gauge-completion Wilson lines disappear due to568

rotational symmetry. Hence, the pNRQCD expressions of the color-octet matrix elements569

support the universality of the NRQCD matrix elements for polarization-summed cross570

sections of P -wave quarkonia. On the other hand, for the case of polarized cross sections,571

the non-isotropic part of E ij can in principle contribute to the color-octet matrix element,572

and if such contributions are nonvanishing, the matrix elements can acquire dependence573
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where the sum over N contains all possible intermediate states, T and T̄ represent time493

ordering and anti time ordering, respectively, p is half the center-of-mass momentum of the494

QQ̄, and495

�p(�) = P exp


�ig

Z �

0
d�0 p ·Aadj(�0p)

�
, (3.29)496

497

is an adjoint Wilson line along p. In eq. (3.28) we make explicit the time ordering and498

anti time ordering, which was implicit in Ref. [16]. In eq. (3.28), a factor of q comes from499

each side of the cut in the squared amplitude, so that the infrared factor applies to the500

production of a color-singlet P -wave state. This result is obtained from standard methods501

in perturbative factorization, where eikonal approximations are employed that simplify the502

loop corrections gluons while preserving the infrared divergences. This factor includes the503

infrared divergences that come from the soft gluons of scale mv, but does not include the504

contributions from the scale mv2. Since this process corresponds to the production of a QQ̄505

in the color-octet 3S1 state, this divergence must match the infrared divergence in the color-506

octet matrix element h⌦|OQ(3S[8]
1 )|⌦i, when Q is replaced by a color-singlet QQ̄ state. This507

agreement has been confirmed explicitly through one-loop and partial two-loop calculations508

of the color-octet NRQCD matrix element in Ref. [17]; the two-loop calculations have only509

been done for the diagrams that involve the gauge-completion Wilson lines. Since the510

matrix element h⌦|OQ(3S[8]
1 )|⌦i appears in the NRQCD factorization formula at leading511

order in v, the same infrared divergence occurs in the operator h⌦|OQ(1S[8]
0 )|⌦i through512

heavy quark spin symmetry.513

It can be seen that at the rest frame of the QQ̄, where p = 0 and q0 = 0, �p(�p) is just514

the Schwinger line �0(0, t) = P exp[�ig
R t
0 d⌧A

adj
0 (⌧,0)] where t =

p
p2�, and pµq⌫Ga

⌫µ(�p)515

is given by the chromoelectric field as
p
p2qiEa i(t). Therefore, the infrared factor I2(p, q)516

in eq. (3.28) is given by517

E
ijqiqj , (3.30)518

519

multiplied by color and kinematical factors that are infrared finite. Here, the tensor E
ij is520

defined in eq. (3.16). We note that eq. (3.30) is equivalent to the contact terms V
O(1S

[8]
0 )

and521

V
O(3S

[8]
1 )

in Eqs. (3.15) and (3.21), respectively, when applied to a color-singlet QQ̄ state522

with relative momentum q. Hence, we expect our pNRQCD expressions for the color-octet523

matrix elements in Eqs. (3.17) and (3.25b) to have the same infrared divergences that are524

expected in NRQCD factorization. This is straightforward to check explicitly at one-loop525

accuracy. By computing the correlator E at order-↵s accuracy in dimensional regularization526

at d = 4� 2✏ spacetime dimensions, we obtain527

E = 6CF
↵s

⇡

✓
1

✏UV
�

1

✏IR

◆
+O(↵2

s), (3.31)528

529

where the subscripts UV and IR indicate the origin of the 1/✏ poles. The UV divergence is530

removed through renormalization, which gives the following evolution equation531

d

d log⇤
E(⇤) = 12CF

↵s

⇡
+O(↵2

s), (3.32)532
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using the two-loop formula with nf = 5 light quark flavors and ⇤(5)
QCD = 226 MeV. The606

calculation in Ref. [29] also includes resummed logarithms in pT /mc at leading logarithmic607

accuracy. The short-distance coefficients �
QQ̄(3P

[1]
J )

depend on the scheme and scale ⇤ at608

which the color-octet matrix element h⌦|O�cJ (3S[8]
1 )|⌦i is renormalized, which we identify as609

the renormalization scale for E . We choose this scale to be ⇤ = mc in the MS scheme, where610

mc = 1.5 GeV is the charm quark mass. We estimate the uncertainty in the short-distance611

coefficients to be 30% of the central values, which account for corrections of relative order612

v2 that we neglect. The variations of the scales µF for the parton distribution functions613

and the renormalization scale µR for ↵s, which affect the short-distance coefficients by614

less than 25% of the central values. We use the pNRQCD expressions for the matrix615

elements in Eqs. (3.25). We neglect the uncertainty of order 1/N2
c compared to other616

uncertainties. Note that the wavefunction at the origin cancels in the ratio r21. In order to617

compare with measurements, we compute the values of r21 multiplied by B�c2/B�c1 , where618

B�cJ = Br(�cJ ! J/ �) ⇥ Br(J/ ! µ+µ�). We compute B�cJ from measurements in619

Ref. [30]. Since the measurements of r21 are given as functions of the transverse momentum620

pJ/ T of the J/ , we compute pJ/ T from the transverse momentum pT of the �cJ from621

pJ/ T =
mJ/ 

m�cJ

pT , (3.38)622

which is valid when mJ/ ⇡ m�cJ . By performing a least-squares fit to the measured values623

of r21 ⇥B�c2/B�c1 by CMS [27] and ATLAS [28], we obtain624

E(⇤ = 1.5 GeV) = 1.97± 0.06, (3.39)625

with �2/d.o.f. = 1.6/10. This value is compatible within uncertainties with a previous626

determination in Ref. [19], which was obtained by comparing to �c1 and �c2 cross section627

measurements from ATLAS. Compared to the determination in Ref. [19], our determination628

does not depend on the value of the wavefunction at the origin |R(0)0(0)|2. We show our629

result for r21 compared to ATLAS and CMS data in figure . In the following sections, we630

use this value of E in eq. (3.39) to compute cross sections of �cJ and �bJ at the LHC.631

3.4 Production and polarization of �cJ632

We now compute the inclusive production cross sections of �cJ from proton-proton collisions633

at the LHC based on our results for the matrix elements in eqs. (3.25) and the determination634

of E in eq. (3.39). We use the same short-distance coefficients as we used in section 3.3,635

and we take the value of E at the scale ⇤ = 1.5 GeV in eq. (3.39). We determine the value636

of the P -wave charmonium wavefunction at the origin from two-photon decay rates of �c0637

and �c2. For consistency with our calculation of the cross sections, we use the NRQCD638

factorization formulas for the decay rates at leading orders in v, while we include order-↵s639

corrections to the short-distance coefficients. The pNRQCD expressions for the two-photon640

widths at leading order in v read [6, 13, 14]641

�(�c0 ! ��) =
6⇡e4c↵

2

m4
c


1 +

(3⇡2 � 28)

24
CF

↵s

⇡

�2
3Nc

2⇡
|R(0)0(0)|2, (3.40)642

– 18 –

Hot problems of Strong Interactions                                   November 13, 2020                                                       Hee Sok Chung        
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P-WAVE PRODUCTION MATRIX ELEMENTS
▸ Color-singlet matrix element: we reproduce the known 

result in the vacuum-saturation approximation. 

▸ Color-octet matrix element: result is given in terms of the 
wavefunction and a universal gluonic correlator.  

▸     is a universal quantity that does not depend on quark 
flavor or radial excitation. Determination of     directly 
leads to determination of all !cJ and !bJ(nP) cross 
sections, as well as hc and hb production rates.

16

3

make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT
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�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order

in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:
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Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
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The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
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c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages
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potential in hn can be extracted from the VEV of a static
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nected gluon fields. To our knowledge, there are no lat-
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ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
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its derivative). This reproduces the result obtained in
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Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1
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Z 1
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dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation
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where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
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the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
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�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
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in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:
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Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator
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1
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0 (t, 0)gEb,i(0)|⌦i.
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The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation
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where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0
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c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0
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0.057 GeV5, which we obtain by comparing the mea-
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Could be evaluated on the  
lattice, similar to TMDs

https://arxiv.org/abs/2106.09417


Nuclear modification factor

We compute the nuclear modification factor RAA:

RAA(nS) =
〈n,q|ρs(tF ; tF )|n,q〉
〈n,q|ρs(0; 0)|n,q〉

Nuclear modification factor

We compute the nuclear modification factor RAA:

RAA(nS) =
〈n,q|ρs(tF ; tF )|n,q〉
〈n,q|ρs(0; 0)|n,q〉

nonequilibrium  evolution of quarkonium in medium:  nuclear modification factor R_AA 
calculation with no 

 free parameters, results depends  
on kappa function 

 of T (calculated on the lattice) 
 and gamma (extracted from the lattice)

N.B. Escobedo , Strickland, Vairo, Vander Griend, Weber, 2012.01240

R_AA of singlet  Bottomonium in comparison to ALICE, ATLAS and CMS data, left plot bands from variation in kappa,  
right plot variation in gamma —> we can use R_AA to learn about  the QGP!
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