
Exploring QCD, Cambridge, August 20-24, 2007 Page 9

c

c

c̄

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u
Singapore

Secondary Logo:

Color Palette

The logo and word mark can be printed or published in one-color red, one-color black and one-color white. When used on
a white background, the one-color red version is preferred. An all-black or all-white version is available for use when the
preferred two-color version is not possible or appropriate. Do not create versions of the logo in other colors or
proportions.

The red used in the logo has the following color mix:

Pantone 201
CMYK: 0/100/65/34
RGB: 164/0/29
Web: #8c1515

Caution: DO NOT convert between these four color spaces or the red will change tone. Use Pantone (spot color only) or
CMYK for externally printed pieces, RGB for documents printed in the o!ice, and HEX for web and digital colors. When you
embed an .eps version of a logo, make sure it’s the correct HEX color value BEFORE saving for web or digital.

Incorrect Logo Usage

Stan Brodsky 


March 14, 2022

with Guy de Tèramond, Hans Günter Dosch, Marina Nielsen, Ivan Schmidt,  F. Navarra, Jennifer 
Rittenhouse West, G. Miller, Keh-Fei Liu, Tianbo LIu, Liping Zou, S. Groote, S. Koshkarev, Xing-Gang 
Wu, Sheng-Quan Wang, Cedric Lorcè, R. S. Sufian, A. Deur, R. Vogt, G. Lykasov, S. Gardner, S. Liuti

|p>=|u[ud]> quark-diquark cluster

Light-Front Holography — 

A Novel Approach to QCD Color Confinement and Hadron Spectroscopy

MITP Virtual Workshop 

“Hadron Spectroscopy: The Next Big Steps"



Page 2 of 15 Eur. Phys. J. A (2012) 48: 127

contributions in different angular-momentum configura-
tions from the broad and overlapping resonances. Thus,
there is now the chance to clarify the “missing” resonance
problem. The attempt to assign (nearly) all baryon reso-
nances to SU(3) multiplets should be helpful to identify
problems and to serve as guidance for further discussions.
This assignment requires to identify the leading orbital
angular momenta L and the spin S within the three-
quark system. Measured quantities are only the total an-
gular momentum, the spin J of the baryon, and its mass.
Here, theoretical input is required. We use a holographic
mass formula derived in [11] which reproduces the known
spectrum of nucleon and ∆ resonances with remarkable
precision.

In this paper, we shall use the word missing resonance
in a restricted sense. E.g., we may interpret the three
resonances N3/2+(1900), N5/2+(2000), N7/2+(1990) [12]
as members of a spin quartet, with orbital angular mo-
menta L = 2 and quark spin S = 3/2 coupling to the ob-
served particle spin J . In this interpretation, N1/2+(1880)
—observed in recent coupled-channel analyses [13]— was
missing to complete a quark spin quartet [14]. But the
existence of a N1/2+ resonance would be required in any
kind of quark model. More subtle is the question if two ad-
ditional doublets (N3/2+ , N5/2+) and (∆3/2+ , ∆5/2+) as
requested by symmetry arguments (see eq. (9) below) are
realized in nature. None of these states has been observed.
The latter type of resonances, i.e. the non-observation of a
complete L, S multiplet, we shall call missing resonances
in the context of this paper.

We refrain here from a discussion of the possibility that
baryon resonances are formed as parity doublets. If this
conjecture holds true, it gives an exciting new approach to
the internal dynamics of excited hadronic states; we give
here a few references for further reading [15–18]. However,
the predictive power of the conjecture is limited: it pre-
dicts that resonances should occur as parity doublets but
there is no prediction at which mass. In this article we
hence restrict ourselves to a discussion of the data within
the quark model and its symmetries.

The outline of the paper is as follows: In sects. 2 and 3
we summarise the empirical data on light-flavoured delta
and nucleon resonances, respectively. In particular we re-
call that these can be suitable organised according to lead-
ing and daughter Regge trajectories where the resonance
positions follow from a simple mass formula. In sect. 4
we summarise the relevant symmetries for light-flavoured
baryons and the classification of states in multiplets within
the framework of the (harmonic oscillator) constituent
quark model. In sect. 5 we discuss the structure of the
nucleon and ∆ resonances within the framework of this
classification, before concluding in sect. 6.

2 The mass spectrum of ∆ resonances

2.1 Regge trajectories

It is well known that meson and baryon resonances lie on
Regge trajectories, i.e. that their squared masses depend
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Fig. 1. The leading Regge trajectory: ∆ resonances with maxi-
mal J in a given mass range. Also shown is the Regge trajectory
for mesons with J = L + S.

linearly on the total angular momentum J . Figure 1 shows
such a plot; ∆ resonances are plotted having the largest
total angular momentum J in a given mass range. This
trajectory is called the leading Regge trajectory. The reso-
nances are consistent with having even orbital angular mo-
mentum L = 0, 2, 4, 6 and quark spin S = 3/2 maximally
aligned to form total angular momentum J = L+3/2. The
errors in the fit are given by the PDG errors and a second
systematic error of 30MeV added quadratically. This sys-
tematic error is introduced to avoid hard constraints from
well measured meson or baryon masses like the ∆(1232)
mass; the error can be interpreted as uncertainty due to
variations of the self-energy of different hadrons due to,
e.g., the proximity of (strong) decay thresholds.

Figure 1 also shows the leading Regge trajectory of
natural-parity mesons, again as a function of the total an-
gular momentum. Light mesons with approximate isospin
degeneracy and with J = L+1 are presented. Although it
is customary to plot the meson trajectories for L even and
L odd (for positive- and negative-parity mesons, respec-
tively) separately, there is no problem fitting both trajec-
tories simultaneously: This property is called MacDowell
symmetry [19].

The dotted line represents such a common fit to the
meson masses taken from the PDG [12]; the error in the fit
is given by the PDG errors and a second systematic error
of 30MeV added quadratically. The slope is determined
as 1.142GeV2. The ∆ trajectory is given by the ∆(1232)
mass and the slope as determined from the meson tra-
jectory. Obviously, mesons and ∆’s have the same Regge
slope. This observation is the basis for diquark models;
indeed, the QCD forces between quark and antiquark are
the same as those between quark and diquark.

The leading Regge trajectory:  Δ resonances with maximal J in a given mass range. 

Also shown is the Regge trajectory for mesons with J = L+S.

M2[GeV2]
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Mesons and Baryons: Same Regge Slope M2 / J !
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Superconformal Algebra
2X2 Hadronic Multiplets
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Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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Challenge: Compute Hadron Structure, 
Spectroscopy, and Dynamics from QCD!

• Color Confinement


• Origin of the QCD Mass Scale


• Meson and Baryon Spectroscopy


• Exotic States: Tetraquarks, Pentaquarks, Gluonium,


• Universal Regge Slopes: n, L, Mesons and Baryons


• Almost Massless Pion: GMOR Chiral Symmetry Breaking




• QCD Coupling at all Scales  


• Eliminate Scale Uncertainties and Scheme Dependence
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Chiral symmetry breaking.–The chiral limit follows di-
rectly from (12) since all the coe�cients C vanish for
 6= 0 in this limit. From (12) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (14)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation [43]

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (15)

where the vacuum condensate h  i ⌘ 1
2 hūu + d̄di plays

the role of a chiral order parameter. The same linear de-
pendence in (14) arises for the (3 + 1) e↵ective LF Hamil-
tonian, since the constraints from the superconformal al-
gebra require that the contribution to the pion mass from
the transverse LF dynamics is identically zero [8].

The lowest mode eigenfunction in (11) has identi-
cal form as the approximate analytic solution obtained
in [21, 22], �(x) ⇠ x�1(1 � x)�2 , where the exponents
�i are determined by quark masses and the longitudinal
coupling g, which in QCD(1+1) has units of mass. In the
’t Hooft model [21] the longitudinal equation (4) becomes
the non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0)

(x� x0)2

= M2
k �(x), (16)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (16) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (17)

from integrating (16) [21, 23]. Comparison with (14)
leads to � = g

p
⇡NC/3 = const, since g scales as

g ⇠ 1
p
NC and chiral logarithms are suppressed at

NC ! 1. We notice that both (14) and (17) receive
identical contributions from the potential and kinetic en-
ergy terms in agreement with the virial theorem.

Numerical results.–In practice, we need to know the
value of the scale � and the quark masses to compute
M2

k . In the heavy quark limit Eq. (10) coincides with the

heavy-quark e↵ective theory (HQET) result [44], which
requires that the confining scale is proportional to the
mass of the heavy meson:

p
�Q = C

p
MQ [13, 28]. The

value is C = 0.49± 0.02 GeV1/2 for MQ � 1.8 GeV [15],
namely � ' C2 = 0.24 GeV. We assume that this value
of the longitudinal confinement scale to remain constant,
a result supported by the large NC QCD(1 + 1) ’t Hooft
model discussed above. Thus, fixing C ' 0.5 GeV1/2

at all scales, we can determine the e↵ective light quark
masses mu and md from the measured pion mass and the
strange quark mass, ms, from the kaon mass using (12):
The value of the �(1020) mass is then a prediction. No-
tice that the �(1020) vector meson also has the transverse
mass component M? =

p
2� from the spin-spin interac-

tion in supersymmetric LF holographic QCD [9, 35] withp
� = 0.523 GeV.

TABLE I. Lowest expansion coe�cients C in (13).

 = 0  = 1  = 2  = 3  = 4  = 5  = 6
C(ud̄) 0.998 0 0.055 0 0.010 0 -0.003
C(us̄) 0.967 -0.231 0.100 -0.006 -0.009 0.013 -0.016
C(ss̄) 0.998 0 0.038 0 -0.045 0 -0.024
C(uc̄) 0.958 -0.267 0.097 -0.012 -0.003 0 -0.007
C(cc̄) 0.999 0 0.016 0 -0.020 0 -0.003

We show in Table I the values of the lowest expansion
coe�cients. The results for the light meson masses in
Fig. 1 correspond to the values mu = md = 28 MeV and
ms = 326 MeV. Meson masses are determined from the
stability plateau in Fig. 1. For light quark masses con-
tributions above max ' 20 introduce large uncertainties
from highly oscillatory integrands. In Fig. 2 we show the
e↵ect of the strong oscillations from the large  behavior
of the Jacobi Polynomials [46] by examining the variation
of the results for quark masses in the interval mq = 28
MeV to mq = 28⇥ 10�8 MeV.

FIG. 1. Numerical evaluation of ground state meson masses
from the stability plateau in the figure using (12). The hori-
zontal grey lines in the figure are the observed masses [45].

The distribution amplitude (DA) [47], X(x) ⌘p
x(1� x�(x), for the pion, kaon and J/ mesons are

shown in Fig. (3). Due to the rapid convergence of the
exponential wave function in the basis expansion (13),
very few modes are required to reproduce the invari-
ant mass ansatz. The DAs predicted by holographic LF
QCD at the initial nonperturbative scale should then

αs(Q2)

Valence and Higher Fock StatesℒQCD → ψH
n (xi, ⃗k ⊥i, λi)



Need a First Approximation to QCD


 Comparable in simplicity to 

Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining


Origin of hadronic mass scale

AdS/QCD

Light-Front Holography 

Superconformal Algebra

     No parameters except for quark masses! 
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Dirac’s Front Form: Fixed τ= t+ z/c

Bound States in Relativistic Quantum Field Theory:�

Light-Front Wavefunctions

Remarkable new insights from AdS/CFT, the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ
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General remarks about orbital angular mo-
mentum
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory
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Dirac: Front Form
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Advantages of the Dirac’s Front Form for Hadron Physics

• Measurements are made at fixed τ


• Causality is automatic


• Structure Functions are squares of LFWFs


• Form Factors are overlap of LFWFs


• LFWFs are frame-independent: no boosts, no pancakes!


• Same structure function measured at an e p collider and the 
proton rest frame


• No dependence of hadron structure on observer’s frame


• LF Holography: Dual to AdS space


• LF Vacuum trivial up to zero modes 


• Implications for Cosmological Constant

Physics Independent of Observer’s Motion

Poincare’ Invariant

Roberts, Shrock, Tandy, sjb

Penrose, Terrell, Weisskopf



Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions

HQCD
LF |�h >= M2

h|�h >

HQCD
LF =

�

i

[
m2 + k2

�
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states
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!n
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!
$!"

b!
$"
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&
, #

&
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LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

H
int
LF

LFWFs: Off-shell in P- and invariant mass

|p, Jz >=
X

n=3

 n(xi,~k?i,�i)|n;xi,~k?i,�i >



In terms of the hadron four-momentum P =
(P+, P�, ⌦P⇤) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P�P+� ⌦P2

⇤, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |�h⇧ =M2

h |�h⇧

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD DLCQ: Solve QCD(1+1) for 
any  quark mass and flavors

Minkowski space; frame-independent; no fermion doubling; no ghosts
trivial vacuum

Hornbostel, Pauli, sjb



• “History” : Compute any subgraph only once since the LFPth 
numerator does not depend on the process — only the 
denominator changes!  Cluster Decomposition


• Wick Theorem applies, but few amplitudes since all k+ > 0.


• Jz Conservation at every vertex


• Unitarity is explicit


• Loop Integrals are 3-dimensional


• hadronization: coalesce comoving quarks and gluons to 
hadrons using light-front wavefunctions

Light-Front Perturbation Theory for pQCD

Z 1

0
dx

Z
d2k?

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

at order gn|
X

initial

Sz �
X

final

Sz |  n

K. Chiu, Lorcé, sjb

T = HI + HI
1

M2
initial �M2

intermediate + i✏
HI + · · ·



HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential! 


HLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

Semiclassical first approximation to QCD 


U(⇣) = 4⇣2 + 22(L + S � 1)

Light-Front QCD

AdS/QCD:

�2 = x(1� x)b2
�

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Sums an infinite # diagrams

LQCD

Eliminate higher Fock states             

and retarded interactions

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

mq = 0
Single variable Equation!-



Light-Front Holography 


AdS/QCD

Soft-Wall  Model


Conformal Symmetry

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation Unique 

Confinement Potential!

de Tèramond, Dosch, sjb

 ' 0.5 GeV

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 

without affecting conformal invariance of action!• Fubini, Rabinovici: 

e'(z) = e+2z2

Single variable  ζ

⇥
� d2

d⇣2 � 1�4L2

4⇣2 + U(⇣)
⇤
 (⇣) = M2 (⇣)

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

GeV units external to QCD: Only Ratios of Masses Determined



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT

AdS5
Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Maldacena



Applications of AdS/CFT  to QCD 


in collaboration with Guy de Teramond and H. Guenter Dosch

Changes in 

physical

length scale 

mapped to 


evolution in the 

5th dimension z 



7th International Conference on High Energy Physics in the LHC Era7th International Conference on High Energy Physics in the LHC Era

 Stan Brodsky Supersymmetric Features of Hadron Physics 

from Superconformal Algebra 

and Light-Front Holography 19 April 2021
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•Soft-wall dilaton profile breaks 
conformal invariance


•Color Confinement in z


•Introduces confinement scale κ

•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
e⇤(z)

�
�µ⇥dxµdx⇥ � dz2

⇥

where ⇤(z) ⇧ 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2�g00 = mc2R
e⇤(z)/2

z

• Consider warp factor exp(±⇥2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances ⌃z⌥ ⌅ 1/⇥

KITPC, Beijing, October 19, 2010 Page 9

Klebanov and Maldacena 

Introduce  “Dilaton" to simulate confinement analytically

Positive-sign dilaton • de Teramond, sjbe'(z) = e+2z2



AdS Soft-Wall Schrödinger Equation for 

bound state  of  two scalar constituents:

U(z) = �4z2 + 2�2(L + S � 1)

• de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

e'(z) = e+2z2

Derived from variation of Action for Dilaton-Modified AdS5


Identical to Single-Variable Light-Front Bound State Equation in ζ! 

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

Light-Front Holography



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary



Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2⇥

⇧ 1

0
dx

(1� x)
x

⇧
�d�J0

⇥
�q

⌥
1� x

x

⇤
⇤̃(x, �),

with ⌃⇤(x, �) QCD effective transverse charge density.

• Transversality variable

� =
⌥

x

1� x

���
n�1⌅

j=1

xjb⇥j

���.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

⇧ 1

0
dxJ0

⇥
�Q

⌥
1� x

x

⇤
= �QK1(�Q),

the solution for J(Q, �) = �QK1(�Q) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

Drell-Yan-West: Form Factors are 
Convolution of LFWFs

Identical to Polchinski-Strassler Convolution of AdS Amplitudes

de Teramond, sjb



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potentialm⇡ = 0 if mq = 0

Massless pion! 

~⇣2 = ~b2?x(1� x)
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S = 0 S = 0

Soft Wall 
Model

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!

Same slope in n and L!
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Figure 1: Comparison of the light-front holographic prediction [1] M
2(n, L, S) =

4�(n+ L+ S/2) for the orbital L and radial n excitations of the meson spectrum with
experiment. See Ref. [2]

1 Introduction

A remarkable empirical feature of the hadronic spectrum is the near equality of the

slopes of meson and baryon Regge trajectories. The square of the masses of hadrons

composed of light quarks is linearly proportional not only to L, the orbital angular

momentum, but also to the principal quantum number n, the number of radial nodes in

the hadronic wavefunction as seen in Fig. 1. The Regge slopes in n and L are equal, as in

the meson formula M
2
M
(n, L, S) = 4�(n+L+S/2 from light front holographic QCD [1],

but even more surprising, they are observed to be equal for both the meson and baryon

trajectories, as shown in Fig. 2. The mean value for all of the slopes is  =
p
� = 0.523

GeV. See Fig. 3.

4

M2(n,L, S) = 42(n + L + S/2) Equal Slope in n and L
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Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2 = h |
X

a

m2
a/xa| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�m2
q

x +
m2

q
1�x

�
e�

1
2� ⇣2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S = M2

K± + 4�
✓

n +
J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

mu = md = 46 MeV, ms = 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb

from LF Higgs mechanism
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• Relativistic Quantum-Mechanical Wavefunction of the 
pion eigenstate

• Independent of the observer’s or pion’s motion

• No Lorentz contraction; causal

• Confined quark-antiquark bound state

The Pion’s  Valence Light-Front Wavefunction

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

x, ⃗k ⊥

1 − x, − ⃗k ⊥

Ψπ(x, ⃗k ⊥) = < q(x, ⃗k ⊥)q̄(1 − x, − ⃗k ⊥) | π >

π

HQCD
LF |π > = m2

π |π >

Ψπ(x, ⃗k ⊥)
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Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
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⇤M(x, k2
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µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling 


k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z

C. D. Roberts et al.



General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
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�n
i xi = 1

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

�(x, k�)(GeV

�(x, k�)

• Light Front Wavefunctions:                                   

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

“Hadronization at the Amplitude Level”

o↵-shell in P� and invariant massM2
qq̄

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Boost-invariant LFWF connects confined quarks and gluons to hadrons

x,~k?

1� x,�~k?

Proceeds in LF time  within casual horizon
Instant time violates causality

τ
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Pion EM Form Factor

Pion form factor compared with data

 6

G.F. de Téramond and S.J. Brodsky,  Proc. Sci. LC2010 (2010) 029. 
S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015). [Sec. 6.1.5]

F⇡(t) =
X

⌧

P⌧F⌧ (t)
X

⌧

P⌧ = 1

Truncated at twist-τ = 4 

F⇡(t) = c2F⌧=2(t) + (1� c2)F⌧=4(t)
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γu ≡
2χpγp þ χnγn
2χp þ χn

; γd ≡
2χnγn þ χpγp
2χn þ χp

; ð19Þ

where the higher Fock probabilities γp;n represent the large
distance pion contribution and have the values γp ¼ 0.27
and γn ¼ 0.38 [56]. Our results for Eq

vðx; tÞ are displayed
in Fig. 3.
Pion GPD.—The expression for the pion GPD

Hu;d̄
v ðx; tÞ ¼ qu;d̄v ðxÞ exp ½tfðxÞ& follows from the pion FF

in [81], where the contribution from higher Fock compo-
nents was determined from the analysis of the timelike
region [81]. Up to twist 4,

qu;d̄v ðxÞ ¼ ð1 − γÞqτ¼2ðxÞ þ γqτ¼4ðxÞ; ð20Þ

where the PDFs are normalized to the valence quark
content of the pion

R
1
0 dxq

u;d̄
v ðxÞ ¼ 1, and γ ¼ 0.125

represents the meson cloud contribution determined in [28].
The pion PDFs are evolved to μ2 ¼ 27 GeV2 at next-to-

leadingorder (NLO) to comparewith theNLOglobal analysis
in [82,83] of the data [84]. The initial scale is set at μ0 ¼
1.1'0.2 GeV from the matching procedure in Ref. [75] at
NLO. The result is shown in Fig. 4, and the t dependence of
Hq

vðx; tÞ is illustrated in Fig. 5. We have also included the
NNLO results in Fig. 4, to comparewith future data analysis.
Our results are in good agreement with the data analysis

in Ref. [82] and consistent with the nucleon global fit
results through the GPD universality described here. There
is, however, a tension with the data analysis in [83] for
x ≥ 0.6 and with the Dyson-Schwinger results in [85],
which incorporate the ð1 − xÞ2 pQCD falloff at large x from
hard gluon transfer to the spectator quarks. In contrast, our
nonperturbative results falloff as 1 − x from the leading

twist-2 term in (20). A softer falloff ∼ð1 − xÞ1.5 in Fig. 4
follows from DGLAP evolution. Our analysis incorporates
the nonperturbative behavior of effective LFWFs in the
limit of zero quark masses. However, if we include a
nonzero quark mass in the LFWFs [28,86,87], the PDFs
will be further suppressed at x → 1.
Effective LFWFs.—Form factors in light-front quantiza-

tion can be written in terms of an effective single-particle
density [88]

FðQ2Þ ¼
Z

1

0
dxρðx;QÞ; ð21Þ

where ρðx;QÞ ¼ 2π
R∞
0 dbbJ0½bQð1 − xÞ&jψ effðx; bÞj2

with transverse separation b ¼ jb⊥j. From (8), we find
the effective LFWF

ψτ
effðx;b⊥Þ ¼

1

2
ffiffiffi
π

p

ffiffiffiffiffiffiffiffiffiffiffi
qτðxÞ
fðxÞ

s

ð1 − xÞ exp
"
−
ð1 − xÞ2

8fðxÞ
b2⊥

#
;

ð22Þ

FIG. 3. Nucleon GPDs for different values of −t ¼ Q2 at
the scale μ0 ¼ 1.06'0.15 GeV. (Top) Spin nonflip Hq

vðx; tÞ.
(Bottom) Spin-flip Eq

vðx; tÞ.

FIG. 4. Comparison for xqðxÞ in the pion from LFHQCD (red
band) with the NLO fits [82,83] (gray band and green curve) and
the LO extraction [84]. NNLO results are also included (light blue
band). LFHQCD results are evolved from the initial scale μ0 ¼
1.1'0.2 GeV at NLO and the initial scale μ0 ¼ 1.06'0.15 GeV
at NNLO.

FIG. 5. Pion GPD for different values of −t ¼ Q2 at the scale
μ0 ¼ 1.1'0.2 GeV.
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to constrain the non-minimal sea quark.
The value of the isovector axial charge gA = 1.2732(23)

is precisely determined by the neutron weak decay [58].
As shown in Table I, its values evaluated with a minimal
sea component, gA,min, are smaller than the experimental
value. To in the value of gA with the minimal shift u⌧ !

u⌧ + �⌧,u, ū⌧ ! ū⌧ + �⌧,u and similarly for the d-quark,
implies a positive shift �⌧=5,u and/or �⌧=6,d. Therefore,
we satisfy the sum rule by the shift �⌧=5,u and �⌧=6,d, and
take the variation between them as part of the theoretical
uncertainty.
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FIG. 1. Polarized distributions of the isovector combina-
tion x[�u+(x)��d+(x)] in comparison with NNPDF global
fit [15] and experimental data [6–10, 12]. Three sets of param-
eters, see Table I, are determined from the Dirac form factor
and unpolarized valence distributions. The bands represent
the variation with di↵erent approaches to saturate the axial
sum rule. The blue dashed curve shows the result with only
valence state contribution.

For the universal reparametrization function w(x), we
take the same form as in [50],

w(x) = x
1�x exp[�a(1 � x)2], (31)

with the parameter “a” fixed with the first moment of
unpolarized valence quark distributions. One can in
principle adopt any parametrization form that fulfills
the boundary conditions (7) and (8), and the predictive
power is kept by the universality of w(x) for all PDFs.
For comparison with measurements, we evolve the distri-
butions from 1.06GeV, which is the matching scale sug-
gested by the study of the strong coupling constant [59].
As shown in Figs. 1-3, our numerical results are in good
agreement with the global fit [15] and measurements [6–
10, 12]. The isovector combination �u+ � �d+, where
u+ and d+ stand for u + ū and d + d̄, is the distribu-
tion relevant to the axial charge sum rule (30). In Fig. 1,
the dashed blue curve is the contribution from the va-
lence state only, and the di↵erence with the full results,

FIG. 2. Polarized distributions of u, d, ū, and d̄ in comparison
with NNPDF global fit [15] and experimental data [10, 12].
The bands have the same meaning as in Fig. 1.

FIG. 3. Helicity asymmetries of u + ū and d + d̄ compared
with measurements. The bands and symbols have the same
meaning as in Fig. 1.

cases I, II and III, which include saturation of the ax-
ial sum rule is noticeable. This is consistent with the
analysis of the Pauli form factor in [60], which demon-
strates the significance of the sea quarks in describing
spin-related quantities. For each single flavor, shown in
Fig. 2, the variation of the results with three sets of co-
e�cients is large, because the sea quark coe�cients are
not well constrained by the procedure discussed above.
Furthermore, the truncation of the Fock state up to five-
quark states allowing only one pair of sea quarks may
potentially result in greater theoretical uncertainties for
each individual flavor. The axial sum rule provides an
important constraint but still leave some flexibility, like
adding the same term to uū and dd̄. Since the goal of this
letter is to introduce a new approach to study polarized
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cases I, II and III, which include saturation of the ax-
ial sum rule is noticeable. This is consistent with the
analysis of the Pauli form factor in [60], which demon-
strates the significance of the sea quarks in describing
spin-related quantities. For each single flavor, shown in
Fig. 2, the variation of the results with three sets of co-
e�cients is large, because the sea quark coe�cients are
not well constrained by the procedure discussed above.
Furthermore, the truncation of the Fock state up to five-
quark states allowing only one pair of sea quarks may
potentially result in greater theoretical uncertainties for
each individual flavor. The axial sum rule provides an
important constraint but still leave some flexibility, like
adding the same term to uū and dd̄. Since the goal of this
letter is to introduce a new approach to study polarized

Tianbo Liu, ∗ Raza Sabbir Sufian, Guy F. de T éramond, 

Hans Gunter Dösch,  Alexandre Deur, sjb

Polarized distributions for the 


isovector combination x[∆u+ (x) − ∆d+ (x)]

u+(x) = u(x) + ū(x)d+(x) = d(x) + d̄(x)

Δq(x) = q↑(x) − q↓(x)



2

where c is the dimensionless normalization factor

c�2 =
� 1

0
dx e

� 1
�2

„
m2

1
x +

m2
2

1�x

«

. (5)

The Fourier transform of (4) is the impact space LFWF

 ⌥(x,b⇥) =
c ⇥ 

⌅

⌦
x(1� x) e�

1
2 �2⇥2

, (6)

where the invariant quantity ⌃ is

⌃2 = x(1� x)b2
⇥ +

1
⇥4

⇤
m2

1

x
+

m2
2

1� x

⌅
. (7)

Impact space holographic LFWFs for the ⌅, K, D, �c, B
and �b mesons are depicted in Fig. 1.

The non-perturbative input to hard exclusive processes
and heavy hadron decays can be computed in terms of
gauge invariant hadronic distribution amplitudes (DAs),
which describe the momentum-fraction distribution of
partons at zero transverse impact distance in a Fock
state with a fixed number of constituents. The me-
son DA is computed from the transverse integral of the
valence quark light-front wavefunction in the light-cone
gauge [17]

⇧M (x,Q) =
� k2

⇥<Q2
d2k⇥
16⌅3

⌥M (x,k⇥), (8)

and thus ⇧(x) ⇥ ⇧(x,Q ⌅ ⇧) ⌅  ⌥(x,b⇥ ⌅ 0)/
 

4⌅.
From (6) we obtain the holographic distribution ampli-
tude ⇧(x)

⇧M (x) =
c ⇥

2⌅

⌦
x(1� x) e

� 1
2�2

»
m2

1
x +

m2
2

1�x

–

, (9)

in the soft wall model. The distribution amplitudes for
the ⌅, K, D, �c, mesons are shown in Fig. 2. Predictions
for the first and second moment of the meson distribution
amplitude

⌥⇤N �M =

⌥ 1
�1 ⇤N⇧M (⇤)
⌥ 1
�1 ⇧M (⇤)

, (10)

and comparison with available lattice computations are
given on Table I . In the chiral limit, the AdS distribu-
tion amplitude ⇧AdS(x) ⇤

⌦
x(1� x) gives for the second

moment ⌥⇤2�AdS ⌅ 1/4, compared with the asymptotic
value ⌥⇤2�PQCD ⌅ 1/5 from the PQCD asymptotic DA
⇧PQCD(x) ⇤ x(1� x) [17] .

...............

III. PARTONIC MASS SHIFT

We compute the partonic mass shift contribution to a
meson due to the constituents quark masses [21]

M2 =M2
massless +

⇧
m2

1

x

⌃
+
⇧

m2
2

1� x

⌃
, (11)

FIG. 1: Two-parton flavored meson holographic LFWF
⌅(x,b�): (a) |⇤+� = |ud�, (b) |K+� = |us�, (c) |D+� = |cd�,
(d) |�c� = |cc�, (e) |B+� = |ub� and (f) |�b� = |bb�. Values
for the quark masses used are mu = 2 MeV, md = 5 MeV,
ms = 95 Mev, mc = 1.25 GeV and mb = 4.2 GeV. The value
of ⇥ = 0.375 GeV is extracted from the pion form factor [16].

for the holographic LFWF (4). Results for the partonic
mass shift contribution �M =

�
M2 �M2

massless

⇥1/2 are
compared with hadronic masses on Table II.

.....

IV. CONCLUSIONS

..........

|�+ >= |ud̄ > |K+ >= |us̄ >

|D+ >= |cd̄ >

|�b >= |bb̄ >

|�c >= |cc̄ >

mu = 2 MeV
md = 5 MeV

ms = 95 MeV

mc = 1.25 GeV

mb = 4.2 GeV

� = 375 MeV

b[GeV�1]

x

|B+ >= |ub̄ >



G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d

2

dx2
+

g

x2
+

4uw � v
2

4
x

2
�

Retains conformal invariance of action despite mass scale!


Identical to LF Hamiltonian with unique potential and dilaton!


• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term

(dAFF)



A.P.  Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V (r) = Cr for heavy quarks

Harmonic Oscillator U(⇣) = 4⇣2 LF Potential for relativistic light quarks
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Remarkable Features of �
Light-Front Schrödinger Equation

•Relativistic, frame-independent


•QCD scale appears - unique LF potential


•Reproduces spectroscopy and dynamics of light-quark hadrons with 
one parameter


•Zero-mass pion for zero mass quarks!


•Regge slope same for n and L  -- not usual HO


•Splitting in L persists to high mass   -- contradicts conventional 
wisdom based on breakdown of chiral symmetry


•Phenomenology: LFWFs, Form factors, electroproduction


•Extension to heavy quarks

U(⇣) = 4⇣2 + 22(L + S � 1)

Dynamics + Spectroscopy! 



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale come from?  

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 

without affecting conformal invariance of action!

Unique confinement potential!

QCD does not know what MeV units mean!

Only Ratios of Masses Determined
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LFHQCD: Underlying Principles

• Poincarè Invariance: Independent of the observer’s Lorentz 
frame:  Quantization at Fixed Light-Front Time τ


• Causality: Information within causal horizon:  Light-Front


• Light-Front Holography: AdS5 = LF (3+1)


• Introduce Mass Scale κ while retaining the Conformal 
Invariance of the Action (dAFF)


• Unique Dilaton in AdS5:  


• Unique color-confining LF Potential


• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

e+2z2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)
Exploring QCD, Cambridge, August 20-24, 2007 Page 9



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q
+} = 2H, {S, S

+} = 2K

generates conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  +[�@x +
f

x
], Q+ =  [@x +

f

x
], S =  +x, S+ =  x

Haag, Lopuszanski, Sohnius (1974)

Superconformal Quantum Mechanics 

Q '
p

H, S '
p

K



Consider Rw = Q + wS; w: dimensions of mass squared

Superconformal Quantum Mechanics 

Retains Conformal Invariance of Action

G11 =
�
� @2

x + w2x2 + 2wf � w +
4(f + 1

2 )2 � 1
4x2

�

New Extended Hamiltonian  G is diagonal:

G = {Rw, R
+
w} = 2H + 2w2

K + 2wfI � 2wB

G22 =
�
� @2

x + w2x2 + 2wf + w +
4(f � 1

2 )2 � 1
4x2

�

Fubini and Rabinovici 

2B = �3

Eigenvalue of G: M2(n,L) = 42(n + LB + 1)

Baryon Equation

Identify f � 1
2 = LB , w = 2

Q '
p

H, S '
p

K

� = 2



�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM )

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

Superconformal 

Quantum Mechanics 

Same   !
S=0, P=+

� = 2

de Téramond, Dosch, Lorcé, sjb



Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Quark Chiral 
Symmetry of 
Eigenstate!

Nucleon spin carried by quark orbital angular momentum 

Nucleon: Equal Probability for L=0,1

Jz = + 1/2 :
1

2
[ |Sz

q = + 1/2, Lz = 0 > + |Sz
q = − 1/2, Lz = + 1 > ]

R1
0 d⇣

R 1
0 dx 2

+(⇣
2, x) =

R1
0 d⇣

R 1
0 dx 2

�(⇣
2, x) = 1

2

Baryon LFWFsLF Holography
Superconformal 


Quantum Mechanics 
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42S=1/2, P=+ S=1/2, P=+

S=3/2, P=-

S=1/2, P=- S=1/2, 3/2
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for LM=LB+1

Same slope

M2(n,LB) = 42(n + LB + 1)

M2(n,LM ) = 42(n + LM )

M2
meson

M2
nucleon

=
n + LM

n + LB + 1

Superconformal Quantum Mechanics 
Light-Front Holography

Universal slopes in n, L

de Téramond, Dosch, Lorcé, sjb
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⇢�� superpartner trajectories

L (Orbital Angular Momentum)

MESONS
[qq̄]

BARYONS
[qqq]

bosons fermions

with Guenter Dosch and Guy de Tèramond





Fit to the slope of Regge trajectories, 

including radial excitations

Same Regge Slope for Meson, Baryons: 

Supersymmetric feature of hadron physics

mu = md = 46 MeV, ms = 357 MeV

From ↵g1(Q2)
Deur

� = 2

κ = λ = 0.523 ± 0.024

Universal Mass Scale

de Téramond, Dosch, Lorcé, sjb



Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R
†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R
†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

Meson Baryon

Baryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C

Tetraquark: 

diquark + antidiquark



]

uu

ū

uu

uu
L = 0

L = 1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! (qq)
3̄C ! 3̄C

( )

( ) ( )
[

JPC = 2++

JP =
3

2

+ JPC = 1++

L = 0

�+(1232)

L = 1, S = 1

u u

u ū

f2(1270)

S = 1

S = 0

Superconformal Algebra 4-Plet 

Vector ()+ Scalar [] Diquarks

Tetraquark

Meson Baryon

d̄

a1(1260)



M. Nielsen, 
sjbNew Organization of the Hadron Spectrum

Meson Baryon        Tetraquark



`

• Universal quark light-front kinetic energy


• Universal quark light-front potential energy


• Universal Constant Contribution from AdS 
and Superconformal Quantum Mechanics

�M2
LFKE = 2(1 + 2n + L)

�M2
LFPE = 2(1 + 2n + L)

Equal: 

Virial 

Theorem 

hyperfine spin-spin

�M2
spin = 22(L + 2S + B � 1)

M2
H

2
= (1 + 2n + L) + (1 + 2n + L) + (2L + 4S + 2B � 2)

Universal Hadronic Decomposition



Using SU(6) flavor symmetry and normalization to static quantities
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Spacelike Pauli Form Factor
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JADE determination of �s(MZ)
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G. de Teramond, sjb 

From overlap of L = 1 and L = 0 LFWFs



we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ& with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a ¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ& ∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ& follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn ¼ 1.673 and
χd ¼ 2χn þ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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Supersymmetry across the light and heavy-light spectrum
de Téramond, Dosch, Lorcé, sjb



Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry

de Téramond, Dosch, Lorcé, sjb



a


a

Superpartners for states with one c quark

predictions             beautiful agreement!M. Nielsen, sjb 62



Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry

de Téramond, Dosch, Lorcé, sjb



Structure of Hadron Bound-State Equations in LFHQCD

4 Heavy-light and heavy-heavy hadronic sectors

• Extension to the heavy-light hadronic sector

[H. G. Dosch, GdT, S. J. Brodsky, PRD 92, 074010 (2015), PRD 95, 034016 (2017)]

• Extension to the double-heavy hadronic sector

[M. Nielsen and S. J. Brodsky, PRD, 114001 (2018)]

[M. Nielsen, S. J. Brodsky, GdT, H. G. Dosch, F. S. Navarra, L. Zou, PRD 98, 034002 (2018)]

• Extension to the isoscalar hadronic sector

[L. Zou, H. G. Dosch, GdT,S. J. Brodsky, arXiv:1901.11205 [hep-ph]]

Bound States in QCD, St Goar, 9 April 2019

Page 12



• A hidden symmetry of Color SU(3)C in hadron 
physics


• QCD: No squarks or gluinos!


• Emerges from Light-Front Holography and 
Super-Conformal Algebra


• Color Confinement


• Massless Pion in Chiral Limit

Supersymmetry in QCD



Superconformal Algebra
Four-Plet Representations

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R
†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R
†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

Meson Baryon

Tetraquark: 

diquark + antidiquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C



QCD Hidden-Color Hexadiquark in the Core of Nuclei

J. Rittenhouse West, G. de Teramond,  A. S. Goldhaber, I. Schmidt, sjb

<latexit sha1_base64="19YZfNFVpo6X8Nw1Ie0rAALGRyU="></latexit>

| HDQ >= |[ud][ud][ud][ud][ud][ud] >
mixes with
4
He|npnp >

 Increases alpha binding energy, EMC effects
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|p >= ↵|[ud]u > +�|[ud][ud]d̄ >

J. Rittenhouse West,  sjb (to be published) 

Diquarks Can Dominate Five-Quark Fock State of Proton
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Natural explanation why d̄(x) >> ū(x) in proton

<latexit sha1_base64="J8aMD+M2SoVIsJ/pGFjabqHCYVo="></latexit>

Other Consequences of [ud]3̄C ,I=0,J=0 diquark cluster
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Underlying Principles

• Polncarè Invariance: Independent of the observer’s Lorentz 
frame:  Quantization at Fixed Light-Front Time τ


• Causality: Information within causal horizon:  Light-Front


• Light-Front Holography: AdS5 = LF (3+1)


• Introduce mass scale κ while retaining the Conformal Invariance 
of the Action (dAFF)


• Unique Dilaton in AdS5:  


• Unique color-confining LF Potential


• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

e+2z2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)
Exploring QCD, Cambridge, August 20-24, 2007 Page 9

“Emergent Mass”

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


LFHQCD: An overview

Unpolarized GPDs and PDFs (HLFHS Collaboration, 2018)
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• Transverse impact parameter quark distribution

u(x,a?) =

Z
d2q?
(2⇡)2

e�ia?·q?Hu(x,q2
?)

ILCAC, 28 October 2020
Page 22



LFHQCD: An overview

Polarized GPDs and PDFs (HLFHS Collaboration, 2019)

• Separation of chiralities in the AdS action allows computation of the matrix elements of the axial current

including the correct normalization, once the coefficients c⌧ are fixed for the vector current

• Helicity retention between quark and parent hadron (pQCD prediction): limx!1
�q(x)
q(x) = 1

• No spin correlation with parent hadron: limx!0
�q(x)
q(x) = 0
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Longitudinal dynamics and chiral symmetry breaking in holographic light-front QCD

Guy F. de Téramond1, ⇤ and Stanley J. Brodsky2, †

1Laboratorio de F́ısica Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
2SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA

(Dated: April 18, 2021)

The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
to nonperturbative QCD dynamics, holographic light-
front QCD, leads to e↵ective semi-classical relativistic
bound-state equations for arbitrary spin [11], and it in-
corporates fundamental properties which are not appar-
ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2

?
x(1�x) !

k2
?

x(1�x) + m2
1

x + m2
2

1�x in the ground-state Gaussian wave
function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
squared s = (pq + pq̄)2 of the qq̄ pair. This substitution
leads to the longitudinal wave function [26]

�(x) = N e�
1
2�

�
m2

1
x +

m2
2

1�x

�
, (1)

with N a normalization factor [32]. The variable x is the
LF longitudinal momentum fraction x = k+/P+ and k?
is the relative transverse momentum. The partonic mass
shift contribution to hadron masses [33],

�M2 =

Z 1

0
dx�(x)

hm2
q

x
+

m2
q̄

1� x

i
�(x), (2)

used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
Longitudinal dynamics in HLFQCD.–We start from

the semiclassical LF transverse [5, 9] and longitudi-
nal [27, 30] Hamiltonian wave equations for mesons

✓
�

d2

d⇣2
�

1� 4L2

4⇣2
+ U?(⇣)

◆
�(⇣) = M2

?�(⇣), (3)

 
m2

q

x
+

m2
q̄

1� x
+ Uk(x)

!
�(x) = M2

k �(x), (4)

in the approximation where transverse and longitudinal
dynamics are separated. The variable ⇣ in (3) is the
invariant transverse variable, ⇣2 = x(1 � x)b2

?, with
b? the transverse impact distance conjugate to the rel-
ative transverse momentum k?, and L is the relative

Transverse and Longitudinal LF Confinement

Longitudinal contribution for nonzero quark mass

<latexit sha1_base64="suIp24jR0zQvadGI94q0R+gK96Q=">AAACBXicbZC9SwMxGMZz9avWr6uOOgSLIAjlroO6CEVBuggV7Ae055FLc21o7oMkJ5RrFxcn/w8XB0VEXBzd3fxvzF07aOsLIT+e531J3scJGRXSML61zNz8wuJSdjm3srq2vqHnN+siiDgmNRywgDcdJAijPqlJKhlphpwgz2Gk4fTPEr9xQ7iggX8lByGxPNT1qUsxkkqy9Z2L65JdgScwuePhcAQPUmyHhIe2XjCKRlpwFswJFMrG+f3b+2e+autf7U6AI4/4EjMkRMs0QmnFiEuKGRnl2pEgIcJ91CUthT7yiLDidIsR3FNKB7oBV8eXMFV/T8TIE2LgOarTQ7Inpr1E/M9rRdI9tmLqh5EkPh4/5EYMygAmkcAO5QRLNlCAMKfqrxD3EEdYquByKgRzeuVZqJeK5mGxdKnSOAXjyoJtsAv2gQmOQBlUQBXUAAa34AE8gWftTnvUXrTXcWtGm8xsgT+lffwARqOaOg==</latexit>

M2
H

= M2
|| +M2

?

S. S. Chabysheva and J.R.Hiller,

Constraint:    Rotational symmetry in 

non-relativistic heavy-quark limit.



2

LF orbital angular momentum L ⌘ |Lz
|max. As dis-

cussed by Chabysheva and Hiller [27], it is natural to
identify the potential for longitudinal dynamics with the
potential which underlies the t’Hooft model for large-NC

QCD (1+1) [27], and it has the same form as the in-
stantaneous LF potential which appears from gluon ex-
change in A+ = 0 LF gauge in QCD (3+1). As noted in
Refs. [27, 30], the resulting longitudinal eigenvalue equa-
tion for the longitudinal mass M2

k can be combined with

the holographic LF transverse equation (3) for M2
? to

incorporate massive quarks.
We write the meson LF wave function  as

 (x, ⇣,') =

s
x(1� x)

2⇡⇣
eiL'�(x)�(⇣), (5)

normalized to
R 1
0 dx�2(x) = 1 and

R1
0 d⇣ �2(⇣) = 1,

where we have factored out the longitudinal, trans-
verse and orbital dependence since the total e↵ective
LF Hamiltonian is written as the sum of longitudinal
and transverse components. The longitudinal mass M2

k
thus appears as a separation constant in the transverse
equation (3), namely M2

? ! M2
� M2

k [27]. As a re-
sult, the structure of the superconformal equation in the
transverse direction is not modified, even by heavy quark
masses, as long as transverse and longitudinal dynamics
can be separated. We have included in (5) the normal-
ization factor

p
x(1� x) which arises from the precise

mapping of AdS form factors to light-front physics in the
limit of zero quark masses [34].

The transverse LF equation (3) has a similar structure
as the wave equations derived in five-dimensional AdS
provided that one identifies ⇣ = z [5], the holographic
fifth-dimensional coordinate of AdS. This precise map-
ping allows us to relate the LF confinement potential U?
to the dilaton profile which modifies AdS space [9]. The
assumption of superconformal algebra then uniquely de-
termines the form of the transverse confining potential
for both mesons and nucleons [7, 8]: For mesons it is
given by [8, 35]

U?(⇣) = �2⇣2 + 2�(J � 1). (6)

In the factorized approximation, the radial and orbital
excitations are determined by the transverse potential
(6) with eigenvalues [9]

M2
?(n, J, L) = 4�

✓
n+

J + L

2

◆
, (7)

and eigenfunctions

�n,L(⇣) = �(1+L)/2

s
2n!

(n+L)!
⇣1/2+Le��⇣2/2LL

n(�⇣
2).

(8)
For the longitudinal component we will adopt the ef-

fective potential introduced by Li, Maris, Zhao and Vary

in [30] to generate a convenient orthonormal basis func-
tions in the LF longitudinal momentum variable x. It is
given by

Uk(x) = ��2@x (x(1� x) @x) , (9)

and contains the term �2x(1� x)z̃2 required to form an
oscillator potential in the LF longitudinal as well as in the
transverse directions. The longitudinal spatial variable
z̃ conjugate to the longitudinal momentum-x, z̃ ⇠ i@x,
is the frame-independent Io↵e coordinate of Miller and
Brodsky [36]. The potential (9) was introduced in the
context of basis light-front quantization [37, 38] and was
further used in [39–42].
The scale � in (9) is the longitudinal confinement

scale and has units of mass. In contrast, the trans-
verse confinement scale � in (6) has dimensions of mass
squared, but both scales are connected in the heavy
quark mass limit. To show this, consider the limit
mq,mq̄ ! mQ,mQ̄ � k?, kz, � ! �Q. In the non-

relativistic limit we find x = mQ+kz

mQ+mQ
, x =

mQ�kz

mQ+mQ
: It

leads to the non-relativistic rotationally-invariant poten-
tial U(r) ! V (r) = U(r)

mQ+mQ
= 1

2µ!
2r2, and the con-

straint

! = � =
�Q

mQ +mQ

, (10)

where µ =
mQmQ̄

mQ+mQ
and r2 = b2

?+ b2z, with bz the canon-

ical conjugate to kz, bz = i@kz .
In order to compute the longitudinal meson mass con-

tribution for an arbitrary LF wave function �(x), it is
convenient to perform an expansion in terms of the com-
plete basis of orthonormal functions generated by the lon-
gitudinal LF Hamiltonian equation (4) for the specific
potential (9)
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a very rapid convergence is found [27, 30] for the basis
function (11).
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LF orbital angular momentum L ⌘ |Lz
|max. As dis-

cussed by Chabysheva and Hiller [27], it is natural to
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potential which underlies the t’Hooft model for large-NC
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In order to compute the longitudinal meson mass con-

tribution for an arbitrary LF wave function �(x), it is
convenient to perform an expansion in terms of the com-
plete basis of orthonormal functions generated by the lon-
gitudinal LF Hamiltonian equation (4) for the specific
potential (9)
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4 (↵+ � + 2)(2 + ↵+ � + 2), with

↵ = 2mq/� and � = 2mq̄/� as shown in the Appendix.
For the invariant mass ansatz Eq. (1)
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a very rapid convergence is found [27, 30] for the basis
function (11).
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
to nonperturbative QCD dynamics, holographic light-
front QCD, leads to e↵ective semi-classical relativistic
bound-state equations for arbitrary spin [11], and it in-
corporates fundamental properties which are not appar-
ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2

?
x(1�x) !

k2
?

x(1�x) + m2
1

x + m2
2

1�x in the ground-state Gaussian wave
function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
squared s = (pq + pq̄)2 of the qq̄ pair. This substitution
leads to the longitudinal wave function [26]

�(x) = N e�
1
2�

�
m2

1
x +

m2
2

1�x

�
, (1)

with N a normalization factor [32]. The variable x is the
LF longitudinal momentum fraction x = k+/P+ and k?
is the relative transverse momentum. The partonic mass
shift contribution to hadron masses [33],

�M2 =

Z 1

0
dx�(x)

hm2
q

x
+

m2
q̄

1� x

i
�(x), (2)

used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
Longitudinal dynamics in HLFQCD.–We start from

the semiclassical LF transverse [5, 9] and longitudi-
nal [27, 30] Hamiltonian wave equations for mesons
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d⇣2
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m2

q

x
+

m2
q̄

1� x
+ Uk(x)

!
�(x) = M2

k �(x), (4)

in the approximation where transverse and longitudinal
dynamics are separated. The variable ⇣ in (3) is the
invariant transverse variable, ⇣2 = x(1 � x)b2

?, with
b? the transverse impact distance conjugate to the rel-
ative transverse momentum k?, and L is the relative
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dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
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Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
to nonperturbative QCD dynamics, holographic light-
front QCD, leads to e↵ective semi-classical relativistic
bound-state equations for arbitrary spin [11], and it in-
corporates fundamental properties which are not appar-
ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2

?
x(1�x) !

k2
?

x(1�x) + m2
1

x + m2
2

1�x in the ground-state Gaussian wave
function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
squared s = (pq + pq̄)2 of the qq̄ pair. This substitution
leads to the longitudinal wave function [26]

�(x) = N e�
1
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1
x +
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, (1)

with N a normalization factor [32]. The variable x is the
LF longitudinal momentum fraction x = k+/P+ and k?
is the relative transverse momentum. The partonic mass
shift contribution to hadron masses [33],

�M2 =

Z 1

0
dx�(x)
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+
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used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
Longitudinal dynamics in HLFQCD.–We start from

the semiclassical LF transverse [5, 9] and longitudi-
nal [27, 30] Hamiltonian wave equations for mesons
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in the approximation where transverse and longitudinal
dynamics are separated. The variable ⇣ in (3) is the
invariant transverse variable, ⇣2 = x(1 � x)b2
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b? the transverse impact distance conjugate to the rel-
ative transverse momentum k?, and L is the relative

<latexit sha1_base64="rpcj/ZiC1whOB5rNzgjs+B8tFpI=">AAACEHicbVC7TgJBFJ3FF+Jr1dJmIhixkOxuoTYmRBtLTFwgYYHMDrMwYfaRmVkDLvsJNv6KjYXG2Fra+TcOj0LBk9zk5Jx7c+89bsSokIbxrWWWlldW17LruY3Nre0dfXevKsKYY2LjkIW87iJBGA2ILalkpB5xgnyXkZrbvx77tXvCBQ2DOzmMSNNH3YB6FCOppLZ+XLDbyWiUwkvoCNr1UcuCg6J5OjiBiSMp6xD4kLasQlvPGyVjArhIzBnJgxkqbf3L6YQ49kkgMUNCNEwjks0EcUkxI2nOiQWJEO6jLmkoGiCfiGYyeSiFR0rpQC/kqgIJJ+rviQT5Qgx9V3X6SPbEvDcW//MasfQumgkNoliSAE8XeTGDMoTjdGCHcoIlGyqCMKfqVoh7iCMsVYY5FYI5//IiqVol86xk3Vr58tUsjiw4AIegCExwDsrgBlSADTB4BM/gFbxpT9qL9q59TFsz2mxmH/yB9vkDl2abCw==</latexit>

U|| = �2x(1� x)z̃2

G. A. Miller, sjb
<latexit sha1_base64="ogoCsUgYlIOAyIj6q+OqkNNmPf4="></latexit>

Io↵e length z̃: conjugate to LF x = k+

P+

2

LF orbital angular momentum L ⌘ |Lz
|max. As dis-

cussed by Chabysheva and Hiller [27], it is natural to
identify the potential for longitudinal dynamics with the
potential which underlies the t’Hooft model for large-NC

QCD (1+1) [27], and it has the same form as the in-
stantaneous LF potential which appears from gluon ex-
change in A+ = 0 LF gauge in QCD (3+1). As noted in
Refs. [27, 30], the resulting longitudinal eigenvalue equa-
tion for the longitudinal mass M2

k can be combined with

the holographic LF transverse equation (3) for M2
? to

incorporate massive quarks.
We write the meson LF wave function  as

 (x, ⇣,') =
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x(1� x)
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eiL'�(x)�(⇣), (5)

normalized to
R 1
0 dx�2(x) = 1 and

R1
0 d⇣ �2(⇣) = 1,

where we have factored out the longitudinal, trans-
verse and orbital dependence since the total e↵ective
LF Hamiltonian is written as the sum of longitudinal
and transverse components. The longitudinal mass M2

k
thus appears as a separation constant in the transverse
equation (3), namely M2

? ! M2
� M2

k [27]. As a re-
sult, the structure of the superconformal equation in the
transverse direction is not modified, even by heavy quark
masses, as long as transverse and longitudinal dynamics
can be separated. We have included in (5) the normal-
ization factor

p
x(1� x) which arises from the precise

mapping of AdS form factors to light-front physics in the
limit of zero quark masses [34].

The transverse LF equation (3) has a similar structure
as the wave equations derived in five-dimensional AdS
provided that one identifies ⇣ = z [5], the holographic
fifth-dimensional coordinate of AdS. This precise map-
ping allows us to relate the LF confinement potential U?
to the dilaton profile which modifies AdS space [9]. The
assumption of superconformal algebra then uniquely de-
termines the form of the transverse confining potential
for both mesons and nucleons [7, 8]: For mesons it is
given by [8, 35]

U?(⇣) = �2⇣2 + 2�(J � 1). (6)

In the factorized approximation, the radial and orbital
excitations are determined by the transverse potential
(6) with eigenvalues [9]
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For the longitudinal component we will adopt the ef-

fective potential introduced by Li, Maris, Zhao and Vary

in [30] to generate a convenient orthonormal basis func-
tions in the LF longitudinal momentum variable x. It is
given by

Uk(x) = ��2@x (x(1� x) @x) , (9)

and contains the term �2x(1� x)z̃2 required to form an
oscillator potential in the LF longitudinal as well as in the
transverse directions. The longitudinal spatial variable
z̃ conjugate to the longitudinal momentum-x, z̃ ⇠ i@x,
is the frame-independent Io↵e coordinate of Miller and
Brodsky [36]. The potential (9) was introduced in the
context of basis light-front quantization [37, 38] and was
further used in [39–42].
The scale � in (9) is the longitudinal confinement

scale and has units of mass. In contrast, the trans-
verse confinement scale � in (6) has dimensions of mass
squared, but both scales are connected in the heavy
quark mass limit. To show this, consider the limit
mq,mq̄ ! mQ,mQ̄ � k?, kz, � ! �Q. In the non-
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ical conjugate to kz, bz = i@kz .
In order to compute the longitudinal meson mass con-

tribution for an arbitrary LF wave function �(x), it is
convenient to perform an expansion in terms of the com-
plete basis of orthonormal functions generated by the lon-
gitudinal LF Hamiltonian equation (4) for the specific
potential (9)
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function (11).
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
to nonperturbative QCD dynamics, holographic light-
front QCD, leads to e↵ective semi-classical relativistic
bound-state equations for arbitrary spin [11], and it in-
corporates fundamental properties which are not appar-
ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2

?
x(1�x) !

k2
?

x(1�x) + m2
1

x + m2
2

1�x in the ground-state Gaussian wave
function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
squared s = (pq + pq̄)2 of the qq̄ pair. This substitution
leads to the longitudinal wave function [26]

�(x) = N e�
1
2�

�
m2

1
x +

m2
2

1�x

�
, (1)

with N a normalization factor [32]. The variable x is the
LF longitudinal momentum fraction x = k+/P+ and k?
is the relative transverse momentum. The partonic mass
shift contribution to hadron masses [33],

�M2 =

Z 1

0
dx�(x)

hm2
q

x
+

m2
q̄

1� x

i
�(x), (2)

used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
Longitudinal dynamics in HLFQCD.–We start from

the semiclassical LF transverse [5, 9] and longitudi-
nal [27, 30] Hamiltonian wave equations for mesons

✓
�

d2

d⇣2
�

1� 4L2

4⇣2
+ U?(⇣)

◆
�(⇣) = M2

?�(⇣), (3)

 
m2

q

x
+

m2
q̄

1� x
+ Uk(x)

!
�(x) = M2

k �(x), (4)

in the approximation where transverse and longitudinal
dynamics are separated. The variable ⇣ in (3) is the
invariant transverse variable, ⇣2 = x(1 � x)b2

?, with
b? the transverse impact distance conjugate to the rel-
ative transverse momentum k?, and L is the relative
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Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
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ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2
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x(1�x) + m2
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1�x in the ground-state Gaussian wave
function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
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used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
Longitudinal dynamics in HLFQCD.–We start from
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nal [27, 30] Hamiltonian wave equations for mesons
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

The lowest mode eigenfunction in (??) has identical

form as the approximate analytic solution obtained in [?
? ], �(x) ⇠ x�1(1� x)�2 , where the exponents �i are de-

termined by quark masses and the longitudinal coupling

g, which in QCD(1+1) has units of mass. In the ’t Hooft

model [? ] the longitudinal equation (??) becomes the

non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0

)

(x� x0)2

= M2
k �(x), (1)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power

expansion of (??) at x = ✏ and a similar expression from

the upper bound x = 1�✏. Spontaneous chiral symmetry

breaking occurs in the limit NC ! 1, followed by the

limit mq ! 0 with the result �i = (3m2
i /⇡g

2NC)
1/2

from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (2)

from integrating (??) [? ? ]. Comparison with (??)
leads to � = g

p
⇡NC/3 = const, since g scales as g ⇠

1
p
NC and chiral logarithms are suppressed at NC !

1. We notice that both (??) and (??) receive identical

contributions from the potential and kinetic energy terms

in agreement with the virial theorem.
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1Laboratorio de F́ısica Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
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Expand in complete orthonormal basis
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X


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 ⌫

2(,↵,�), (2)

where ⌫2(,↵,�) = 1
4 (↵+ � + 2)(2 + ↵+ � + 2), with

↵ = 2mq/� and � = 2mq̄/�.
a very rapid convergence is found [? ? ] for the basis

function (1).
Chiral symmetry breaking.–The chiral limit follows di-

rectly from (2) since all the coe�cients C vanish for
 6= 0 in this limit. From (2) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (3)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (4)

where the “vacuum condensate” h  i ⌘ 1
2 hūu+d̄di plays

the role of a chiral order parameter. The same linear de-
pendence arises for the (3 + 1) e↵ective LF Hamiltonian,

since the constraints from the superconformal algebra re-
quire that the contribution to the pion mass from the
transverse LF dynamics is identically zero.
Interpret as in-hadron condensate.
The lowest mode eigenfunction in (1) has identical

form as the approximate analytic solution obtained in [?
? ], �(x) ⇠ x�1(1� x)�2 , where the exponents �i are de-
termined by quark masses and the longitudinal coupling
g, which in QCD(1+1) has units of mass. In the ’t Hooft
model [? ] the longitudinal equation (??) becomes the
non-linear equation
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with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (6) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (6)

from integrating (6) [? ? ]. Comparison with (4) leads to
� = g

p
⇡NC/3 = const, since g scales as g ⇠ 1

p
NC and

chiral logarithms are suppressed at NC ! 1. We notice
that both (4) and (7) receive identical contributions from
the potential and kinetic energy terms in agreement with
the virial theorem.
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rectly from (2) since all the coe�cients C vanish for
 6= 0 in this limit. From (2) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (3)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (4)

where the “vacuum condensate” h  i ⌘ 1
2 hūu+d̄di plays

the role of a chiral order parameter. The same linear de-
pendence arises for the (3 + 1) e↵ective LF Hamiltonian,

since the constraints from the superconformal algebra re-
quire that the contribution to the pion mass from the
transverse LF dynamics is identically zero.
Interpret as in-hadron condensate.
The lowest mode eigenfunction in (1) has identical

form as the approximate analytic solution obtained in [?
? ], �(x) ⇠ x�1(1� x)�2 , where the exponents �i are de-
termined by quark masses and the longitudinal coupling
g, which in QCD(1+1) has units of mass. In the ’t Hooft
model [? ] the longitudinal equation (??) becomes the
non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0)

(x� x0)2

= M2
k �(x), (5)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (6) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (6)

from integrating (6) [? ? ]. Comparison with (4) leads to
� = g

p
⇡NC/3 = const, since g scales as g ⇠ 1

p
NC and

chiral logarithms are suppressed at NC ! 1. We notice
that both (4) and (7) receive identical contributions from
the potential and kinetic energy terms in agreement with
the virial theorem.

Mode expansion 
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Chiral symmetry breaking.–The chiral limit follows di-
rectly from (12) since all the coe�cients C vanish for
 6= 0 in this limit. From (12) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (14)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation [43]

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (15)

where the vacuum condensate h  i ⌘ 1
2 hūu + d̄di plays

the role of a chiral order parameter. The same linear de-
pendence in (14) arises for the (3 + 1) e↵ective LF Hamil-
tonian, since the constraints from the superconformal al-
gebra requires that the contribution to the pion mass
from the transverse LF dynamics is identically zero [8].

The lowest mode eigenfunction in (11) has identi-
cal form as the approximate analytic solution obtained
in [21, 22], �(x) ⇠ x�1(1 � x)�2 , where the exponents
�i are determined by quark masses and the longitudinal
coupling g, which in QCD(1+1) has units of mass. In the
’t Hooft model [21] the longitudinal equation (4) becomes
the non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0)

(x� x0)2

= M2
k �(x), (16)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (16) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (17)

from integrating (16) [21, 23]. Comparison with (14)
leads to � = g

p
⇡NC/3 = const, since g scales as

g ⇠ 1
p
NC and chiral logarithms are suppressed at

NC ! 1. We notice that both (14) and (17) receive
identical contributions from the potential and kinetic en-
ergy terms in agreement with the virial theorem.

Numerical results.–In practice, we need to know the
value of the scale � and the quark masses to compute
M2

k . In the heavy quark limit Eq. (10) coincides with the

heavy-quark e↵ective theory (HQET) result [44], which
requires that the confining scale is proportional to the
mass of the heavy meson:

p
�Q = C

p
MQ [13, 28]. The

value is C = 0.49± 0.02 GeV1/2 for MQ � 1.8 GeV [15],
namely � ' C2 = 0.24 GeV. We assume that this value
of the longitudinal confinement scale to remain constant,
a result supported by the large NC QCD(1 + 1) ’t Hooft
model discussed above. Thus, fixing C ' 0.5 GeV1/2

at all scales, we can determine the e↵ective light quark
masses mu and md from the measured pion mass and the
strange quark mass, ms, from the kaon mass using (12):
The value of the �(1020) mass is then a prediction. No-
tice that the �(1020) vector meson also has the transverse
mass component M? =

p
2� from the spin-spin interac-

tion in supersymmetric LF holographic QCD [9, 35] withp
� = 0.523 GeV.

TABLE I. Lowest expansion coe�cients C in (13).

 = 0  = 1  = 2  = 3  = 4  = 5  = 6
C(ud̄) 0.998 0 0.055 0 0.010 0 -0.003
C(us̄) 0.967 -0.231 0.100 -0.006 -0.009 0.013 -0.016
C(ss̄) 0.998 0 0.038 0 -0.045 0 -0.024
C(uc̄) 0.958 -0.267 0.097 -0.012 -0.003 0 -0.007
C(cc̄) 0.999 0 0.016 0 -0.020 0 -0.003

We show in Table I the values of the lowest expansion
coe�cients. The results for the light meson masses in
Fig. 1 correspond to the values mu = md = 28 MeV and
ms = 326 MeV. Meson masses are determined from the
stability plateau in Fig. 1. For light quark masses con-
tributions above max ' 20 introduce large uncertainties
from highly oscillatory integrands. In Fig. 2 we show the
e↵ect of the strong oscillations from the large  behavior
of the Jacobi Polynomials [46] by examining the varia-
tion of the results for quark masses in interval mq = 28
MeV to mq = 28⇥ 10�8 MeV.

π

K
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ηc
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0.5
1
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FIG. 1. Numerical evaluation of ground state meson masses
from the stability plateau in the figure using (12). The hori-
zontal grey lines in the figure are the observed masses [45].

The distribution amplitude (DA) [47], X(x) ⌘p
x(1� x�(x), for the pion, kaon and J/ mesons are

shown in Fig. (3). Due to the rapid convergence of the
exponential wave function in the basis expansion (13),
very few modes are required to reproduce the invari-
ant mass ansatz. The DAs predicted by holographic LF
QCD at the initial nonperturbative scale should then
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Convergence of ground state meson masses with increasing 
The horizontal grey lines in the figure are the observed masses.
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Interpret <  ̄ > as an in-hadron condensate

Longitudinal dynamics and chiral symmetry breaking in holographic light-front QCD
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Chiral symmetry breaking.–The chiral limit follows di-
rectly from (??) since all the coe�cients C vanish for
 6= 0 in this limit. From (??) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (1)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (2)

where the “vacuum condensate” h  i ⌘ 1
2 hūu+d̄di plays

the role of a chiral order parameter. The same linear de-
pendence arises for the (3 + 1) e↵ective LF Hamiltonian,
since the constraints from the superconformal algebra re-
quire that the contribution to the pion mass from the
transverse LF dynamics is identically zero.

Interpret as in-hadron condensate.

The lowest mode eigenfunction in (??) has identical
form as the approximate analytic solution obtained in [?
? ], �(x) ⇠ x�1(1� x)�2 , where the exponents �i are de-
termined by quark masses and the longitudinal coupling

g, which in QCD(1+1) has units of mass. In the ’t Hooft
model [? ] the longitudinal equation (??) becomes the
non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0)

(x� x0)2

= M2
k �(x), (3)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (3) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (4)

from integrating (3) [? ? ]. Comparison with (1) leads to
� = g

p
⇡NC/3 = const, since g scales as g ⇠ 1

p
NC and

chiral logarithms are suppressed at NC ! 1. We notice
that both (1) and (4) receive identical contributions from
the potential and kinetic energy terms in agreement with
the virial theorem.
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FIG. 2. Numerical evaluation of the pion mass for quark
masses in the range mq = 28 MeV (upper blue dotted line)
to mq = 28 ⇥ 10�8 MeV (lower mauve dotted line) manifest
the spurious divergence of the numerical results from highly
oscillatory integrands at large `, in sharp contrast with the
exact chiral result (17).

tion [47–49]. The Dyson-Schwinger results for the pion
DA [50] are very similar to the chiral result X(x) =p

x(1� x) from LF holographic mapping [34].
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FIG. 3. Light-front distribution amplitudes X(x) for the ⇡,
K, D and J/ mesons: the red curve is the invariant mass
result, dot dashed black curves are individual modes in the
expansion (16), dashed blue curve represent the sum of modes
in the figure. Notice that the J/ result is well described by
the zero mode alone.

We can extend our analysis to the heavy quark sector
provided that longitudinal and transverse dynamics can
be separated to a good approximation. In contrast with
the light quark mass sector, mq,mq̄ ⌧ �, most of the
hadron mass in the heavy sector, mQ,mQ̄ � �, comes
from quark masses. The expansion coe�cients of the
invariant mass wave function (16) for the the uc and cc
mesons are shown in Table I. We determine the e↵ective
charm quark mass from the ⌘c using (14) and compute,
for example, the mass of the D meson as a prediction.

We find for MD a value within 14% of its measured value
for mc ' 1.4 GeV. Our simple approximation does not
include the contribution from one-gluon exchange, which
becomes relevant for heavy quark masses.
Conclusions and Outlook.–The light-front semiclassi-

cal approximation described in this article determines the
confinement strength in the longitudinal direction as well
as the e↵ective scale of chiral symmetry breaking. As
such, it accounts for most of the meson mass, consistent
with the GMOR relation and the spontaneous breaking
of chiral symmetry. Following [27] we have separated
the light-front longitudinal and transverse dynamics and
adopted from [30] a potential which generates a conve-
nient basis function in the longitudinal direction. It al-
lows us to expand the LF invariant mass wave function
(1), reducing, in practice, the highly complex and non-
local four-dimensional LF QCD Hamiltonian to a set of
two independent second order di↵erential equations, con-
sistent with the local structure of semiclassical AdS equa-
tions in the holographic variable [51, 52]. In the limit of
heavy quark masses, the combined potential reduces to
a rotational-invariant oscillator thus establishing a con-
nection of the longitudinal and transverse scales.
The origin and physical interpretation of the longitu-

dinal scale �, which has the role of a condensate h ̄ i,
remains to be explored, but as we have shown here, it is
related to the dimensionful constant g in QCD(1 + 1) at
large NC . In QCD lattice field theory, for example, the
structure of the vacuum is sampled in the Euclidean re-
gion where non-trivial field configurations from the gauge
topology provide a mechanism for symmetry breaking
through the Banks-Casher relation, h ̄ i = �⇡⇢(0), with
⇢(0) the density or Dirac-zero modes [53, 54]. However,
the relation between chiral symmetry breaking and con-
finement has remained elusive. In this context, it has
been argued that the chiral condensate, usually viewed
as a constant mass scale which fills all spacetime, is in-
stead contained within hadrons, therefore a property of
hadron dynamics [50, 55].
The fact that the nonzero pion mass is a consequence of

longitudinal LF confinement is a remarkable result. One
would expect, for example, from the two-dimensional
’t Hooft [21] or Schwinger [22] models in light-front coor-
dinates, that the pion mass from the mechanism of chiral
symmetry breaking originates in the longitudinal compo-
nent of the wave function [23], since the kinetic quark
mass terms only depend on the longitudinal variable.
However, this would not be the case if the transverse ki-
netic and potential energy of the pion would not exactly
cancel as required by the superconformal structure of the
transverse LF Hamiltonian. The pion plays a special role
since it is the unique hadronic state of zero mass. Since
it does not have a baryonic partner, the pion breaks the
meson-baryon hadronic supersymmetry [8]. In contrast,
the proton mass (as well as the mass of radial and or-
bital hadron excited states) is generated by the addition



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement
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Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb

e�(z) = e+2z2
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•Can be used as standard QCD coupling


•Well measured


•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme


•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
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 αg1 from the Bjorken Sum data 

!30
A. Deur  04/14/2021 ILCAC seminar

Q2(GeV2)

Γ
1p-

n

JLab EG4
JLab EG4/E97110
JLab EG1-DVCS
JLab EG1b

JLab E94010/EG1a
JLab EG1a
DESY HERMES

CERN COMPASS (2015)

SLAC E143
SLAC E155

JLab RSS

pQCD leading twist

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5

} Prel
im

.

Bjorken sum�1
p-n measurements



!31

Bjorken sum�1
p-n measurements

A. Deur  04/14/2021 ILCAC seminar

 αg1 from the Bjorken Sum data 
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Matching Scale

Matching the couplings from LFHQCD and pQCD

 12

Bjorken sum rule:

Imposing continuity for α 
and its first derivative

Effective coupling in LFHQCD 
(valid at low-Q2)

A. Deur, S.J. Brodsky, G.F. de Téramond,  
Phys. Lett. B 750, 528 (2015); J. Phys. G 44, 105005 (2017).

Analytic, defined at all scales, IR Fixed Point

Running Coupling from AdS/QCD



4

���� �/����
���	 ���� (
���)
���	 ���� (
�
�)
���� ������
�����������
���� ���

��������
���� �
�
/�
��
���� �
��/�
��
���	 ���
�������	
����
���

� ���� ��� � ��
���

���

���

���

���

���

� [���]

�
(�
)/
�

FIG. 2. Solid (blue) curve: predicted process-independent
RGI running-coupling α̂PI(k2), Eq. (6). The shaded (blue)
band bracketing this curve combines a 95% confidence-level
window based on existing lattice-QCD results for the gluon
two-point function with an error of 10% in the continuum
extraction of the RGI product LF in Eqs. (1). World data
on αg1

[55–80]. The shaded (yellow) band on k > 1GeV
represents αg1

obtained from the Bjorken sum by using QCD
evolution [81–83] to extrapolate high-k2 data into the depicted
region, following Refs. [55, 56]; and, for additional context, the
dashed (red) curve is the light-front holographic model of αg1

canvassed in Ref. [45].

charge αg1(k
2) are depicted in Fig. 2 and therein com-

pared with our prediction for the process-independent
RGI running-coupling α̂PI(k2). Owing to asymptotic
freedom, all reasonable definitions of a QCD effective
charge must agree on k2 ! 1GeV2 and our approach
guarantees this connection. To be specific, in terms of
the widely-used MS running coupling [3]:

αg1(k
2) = α

MS
(k2)(1 + 1.14α

MS
(k2) + . . .) , (8a)

α̂PI(k
2) = α

MS
(k2)(1 + 1.09α

MS
(k2) + . . .) , (8b)

where Eq. (8a) may be built from, e.g. Refs. [84, 85].
Significantly, there is also near precise agreement with

data on the IR domain, k2 " m2
0, and complete accord

on k2 ≥ m2
0. Fig. 1 makes plain that any agreement on

k2 ∈ [0.01, 1]GeV2 is non-trivial because ghost-gluon in-
teractions produce as much as 40% of α̂PI(k2) on this
domain: if these effects were omitted from the gluon
vacuum polarisation, then αg1 and α̂PI would differ by
roughly a factor of two on the critical domain of transi-
tion between strong and perturbative QCD.

5: Conclusions.—We have defined and calculated a
process-independent running-coupling for QCD, α̂PI(k2)
[Eq. (6), Fig. 1]. This is a new type of effective charge,
which is an analogue of the Gell-Mann–Low effective cou-
pling in QED, being completely determined by the gauge-
boson two-point function. Our prediction for α̂PI(k2) is

parameter-free, being obtained by combining the self-
consistent solution of a set of Dyson-Schwinger equa-
tions with results from lattice-QCD; and it smoothly uni-
fies the nonperturbative and perturbative domains of the
strong-interaction theory. This process-independent run-
ning coupling is known to unify a vast array of observ-
ables, e.g. the pion mass and decay constant, and the
light meson spectrum [86]; the parton distribution am-
plitudes of light- and heavy-mesons [87–89], associated
elastic and transition form factors [90, 91], etc.
Finally, and perhaps surprisingly at first sight, α̂PI(k2)

is almost pointwise identical at infrared momenta to the
process-dependent effective charge, αg1 , defined via the
Bjorken sum rule, one of the most basic constraints on
our knowledge of nucleon spin structure, and in com-
plete agreement on the domain of perturbative momenta
[Fig. 2]. Equivalence on the perturbative domain is guar-
anteed for any two reasonable definitions of QCD’s ef-
fective charge, but here the subleading terms differ by
just 4% [Eqs. (8)]. An excellent match at infrared mo-
menta, i.e. below the scale at which perturbation theory
would locate the Landau pole, is non-trivial; and crucial
to this agreement is the careful treatment and incorpo-
ration of a special class of gluon-ghost scattering effects.
One is naturally compelled to ask how these two appar-
ently unrelated definitions of a QCD effective charge can
be so similar? We attribute this outcome to a physi-
cally useful feature of the Bjorken sum rule, viz. it is
an isospin non-singlet relation and hence contributions
from many hard-to-compute processes are suppressed,
and these same processes are omitted in our computa-
tion of α̂PI(k2).
The analysis herein unifies two vastly different ap-

proaches to understanding the infrared behaviour of
QCD, one essentially phenomenological and the other de-
liberately computational, embedded within QCD. There
is no Landau pole in our predicted running coupling.
In fact, there is an inflection point at

√
k2 = 0.7GeV,

marking a transition wall at which, as momenta de-
creasing from the ultraviolet promote growth in the cou-
pling, that coupling turns away from the Landau pole,
the growth slows, and finally the coupling saturates:
α̂PI(k2 = 0) ≈ 0.9π [Fig. 2]. This unification identifies
the Bjorken sum rule as a near direct means by which to
gain empirical insight into a QCD analogue of the Gell-
Mann–Low effective charge.
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We unify two widely different approaches to understanding the infrared behaviour of quantum
chromodynamics (QCD), one essentially phenomenological, based on data, and the other computa-
tional, realised via quantum field equations in the continuum theory. Using the latter, we explain
and calculate a process-independent running-coupling for QCD, a new type of effective charge that
is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is
almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which
provides one of the most basic constraints on our knowledge of nucleon spin structure. This re-
veals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD’s
Gell-Mann–Low effective charge.

1: Introduction.— In quantum gauge field theories de-
fined in four spacetime dimensions, the Lagrangian cou-
plings and masses do not remain constant. Instead, ow-
ing to the need for ultraviolet (UV) renormalisation, they
come to depend on a mass scale, which can often be re-
lated to the energy or momentum at which a given pro-
cess occurs. The archetype is quantum electrodynamics
(QED), for which a sensible perturbation theory can be
defined [1]. Within this framework, owing to the Ward
identity [2], there is a single running coupling, measur-
ing the strength of the photon–charged-fermion vertex,
which can be obtained by summing the collection of vir-
tual processes that change the bare photon into a dressed
object, viz. by computing the photon vacuum polarisa-
tion. QED’s running coupling is known to great accuracy
[3] and the running has been observed directly [4, 5].

A new coupling appears when electromagnetism is
combined with weak interactions to produce the Stan-
dard Electroweak Model [6]. It may be characterised by
sin2 θW , where θW is a scale-dependent angle which spec-
ifies the particular mixing between the model’s defining
neutral gauge bosons that produces the observed photon
and Z0-boson. A perturbation theory can also be de-
fined for the electroweak theory [7] so that sin2 θW can
be computed and compared with precise experiments [3].

At first sight, the addition of quantum chromodynam-
ics (QCD) [8] to the Standard Model does not quali-
tatively change anything, despite the presence of four
possibly distinct strong-interaction vertices (gluon-ghost,
three-gluon, four-gluon and gluon-quark) in the renor-
malised theory. An array of Slavnov-Taylor identities
(STIs) [9, 10], implementing BRST symmetry [11, 12]
(a generalisation of non-Abelian gauge invariance for the
quantised theory) ensures that a single running coupling
characterises all four interactions on the domain within
which perturbation theory is valid. The difference here
is that whilst QCD is asymptotically free and extant ev-

idence suggests that perturbation theory is valid at large
momentum scales, all dynamics is nonperturbative at
those scales typical of everyday strong-interaction phe-
nomena, e.g. ζ ! mp, where mp is the proton’s mass.

The questions that arise are how many distinct run-
ning couplings exist in nonperturbative QCD, and how
can they be computed? Given that there are four individ-
ual, apparently UV-divergent interaction vertices in the
perturbative treatment of QCD, there could be as many
as four distinct couplings at infrared (IR) momenta. (Of
course, if nonperturbatively there are two or more cou-
plings, they must all become equivalent on the perturba-
tive domain.) In our view, nonperturbatively, too, QCD
possesses a unique running coupling. The alternative ad-
mits the possibility of a different renormalisation-group-
invariant (RGI) intrinsic mass-scale for each coupling and
no guarantee of a connection between them. In such cir-
cumstances, BRST symmetry would likely be irreparably
broken by nonperturbative dynamics and one would be
pressed to conclude that QCD was non-renormalisable
owing to IR dynamics. There is no empirical evidence
to support such a conclusion: QCD does seem to be a
well-defined theory at all momentum scales, owing to the
dynamical generation of gluon [13–18] and quark masses
[19–21], which are large at IR momenta.

2: Process-independent running coupling.—Poincaré co-
variance is of enormous importance in modern physics,
e.g. it places severe limitations on the nature and number
of those independent amplitudes that are required to fully
specify any one of a gauge theory’s n-point Schwinger
functions (Euclidean Green functions). Analyses and
quantisation procedures that violate Poincaré covariance
lead to a rapid proliferation in the number of such func-
tions. For example, the gluon 2-point function (propaga-
tor, Dµν) is completely specified by one scalar function
in the class of linear covariant gauges; but, in the class of
axial gauges, two unconnected functions are required and
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in agreement with the qualitative analysis at the begin-
ning of this section that the charm quark tends to carry
larger momentum than the anticharm quark based on the
charm quark form factors from the lattice calculation.
From the x[c(x)� c̄(x)] distribution obtained combining

Figure 3: The distribution function x[c(x) � c̄(x)] obtained from the
LFHQCD formalism using the lattice QCD input of charm electro-
magnetic form factors Gc

E,M(Q2). The outer cyan band indicates an
estimate of systematic uncertainty in the x[c(x) � c̄(x)] distribution
obtained from a variation of the hadron scale c by 5%.

LQCD results of Gc
E,M(Q2) and LFHQCD formalism,

we can calculate the first moment of the di↵erence of
c(x) and c̄(x) PDFs to be

hxic�c̄ =

Z 1

0
dx x [c(x) � c̄(x)] = 0.00047(15). (15)

The [c(x) � c̄(x)] distribution result is about 3 times
smaller in magnitude than the s(x)� s̄(x) distribution ob-
tained with the same formalism [46]. Although a small
asymmetry could be a result of the cancellation of two
relatively large c(x) and c̄(x) distributions, it is possible
that the intrinsic charm and anticharm distributions are
both small. Furthermore, the charm and anticharm dis-
tributions at high energy scales are dominated by the ex-
trinsic sea from perturbative radiations. The experimen-
tal observation and isolation of the intrinsic charm e↵ect
are extremely challenging in such cases. Thus it is not
surprising that the recent measurement of J/ and D0

productions by the LHCb collaboration [13] found no
intrinsic charm e↵ect. An ideal place to investigate the
intrinsic charm would be the J/ or open charm produc-
tions at relatively low energies, e.g., at JLab, although
it is also possible to see intrinsic charm e↵ects in very
accurate measurements of high energy reactions. In ad-
dition, lepton-nucleon scattering may provide a cleaner

probe than nucleon-nucleon scattering to help reduce
backgrounds and increase the chance to observe the in-
trinsic charm e↵ect, and therefore the future EIC will
provide such opportunities.

The nonzero value of Gc
E(Q2) can also originate

from the interference of the q ! gq ! cc̄q and
q ! ggq ! cc̄q sub-processes, without the exis-
tence of IC. However, as mentioned earlier, this extrin-
sic [c(x) � c̄(x)] asymmetry which arises at the next-to-
next-to-leading order level is negligible [38]. Moreover,
according to [38], this extrinsic asymmetry would re-
sult in a much smaller and negative value of the first
moment of [c(x) � c̄(x)] distribution hxic�c̄ compared to
hxic�c̄ = 0.00047(15) obtained in this calculation. A
negative value for hxic�c̄ would also result in a positive
[c(x)� c̄(x)] distribution at small x and a negative distri-
bution at large x, in contrast to the [c(x)� c̄(x)] distribu-
tion we have obtained here. But the evidence based on
the [s(x) � s̄(x)] distribution in [46], the EMC measure-
ment [8], and perturbative QCD computation [38] seem
to indicate extremely small values of extrinsic charm for
x > 0.1. The present determination of the [c(x) � c̄(x)]
distribution gives a strong evidence from LQCD for the
existence of nonperturbative intrinsic heavy quarks in
the nucleon wavefunction at large x ⇠ 0.4 � 0.5 with
a magnitude consistent with experimental signals. A
consequence of this result is Higgs production at large
xF > 0.8 in pp collisions at the LHC from the di-
rect coupling of the Higgs to the intrinsic heavy quark
pair [81].

4. Conclusion and outlook

In this article, we have presented the first lattice
QCD calculation of the charm quark electromagnetic
form factors in the physical limit. This first lattice
QCD calculation indicates that a nonzero charm elec-
tric form factor corresponds to the intrinsic charm-
anticharm asymmetry in the nucleon sea, thereby pro-
viding an indication of the existence of nonzero intrinsic
charm based on a first-principles calculation. In addi-
tion, the nonzero value of the charm magnetic form fac-
tor indicates a nonzero orbital angular momentum con-
tribution to the nucleon coming from the charm quarks.
We have discussed that the existence of IC is supported
by QCD and how an accurate knowledge of the intrinsic
charm can help to remove bias in the global fits of PDFs
and related phenomenological studies.

Motivated by the new lattice results, we have used the
nonperturbative light-front holographic framework in-
corporating the QCD inclusive-exclusive connection at
large x to determine the [c(x)� c̄(x)] asymmetry up to a
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LFHQCD: Underlying Principles

• Poincarè Invariance: Independent of the observer’s Lorentz 
frame:  Quantization at Fixed Light-Front Time τ


• Causality: Information within causal horizon:  Light-Front


• Light-Front Holography: AdS5 = LF (3+1)


• Introduce Mass Scale κ while retaining the Conformal 
Invariance of the Action (dAFF)


• Unique Dilaton in AdS5:  


• Unique color-confining LF Potential


• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

e+2z2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)
Exploring QCD, Cambridge, August 20-24, 2007 Page 9



Compute Hadron Structure, Spectroscopy, and 
Dynamics from Light-Front Holography

• Color Confinement


• Origin of the QCD Mass Scale


• Meson and Baryon Spectroscopy


• Exotic States: Tetraquarks, Pentaquarks, Gluonium,


• Universal Regge Slopes: n, L, Mesons and Baryons


• Almost Massless Pion: GMOR Chiral Symmetry Breaking




• QCD Coupling at all Scales  


• Eliminate Scale Uncertainties and Scheme Dependence: PMC


3

Chiral symmetry breaking.–The chiral limit follows di-
rectly from (12) since all the coe�cients C vanish for
 6= 0 in this limit. From (12) we obtain

M2
⇡ = �(mu+md) +O

�
(mu+md)

2
�
, (14)

in the limit mu,md ! 0. It has the same linear depen-
dence in the quark mass as the Gell-Mann-Oakes-Renner
(GMOR) relation [43]

M2
⇡f

2
⇡ = �

1
2 (mu+md)hūu+d̄di+O

�
(mu+md)

2
�
, (15)

where the vacuum condensate h  i ⌘ 1
2 hūu + d̄di plays

the role of a chiral order parameter. The same linear de-
pendence in (14) arises for the (3 + 1) e↵ective LF Hamil-
tonian, since the constraints from the superconformal al-
gebra require that the contribution to the pion mass from
the transverse LF dynamics is identically zero [8].

The lowest mode eigenfunction in (11) has identi-
cal form as the approximate analytic solution obtained
in [21, 22], �(x) ⇠ x�1(1 � x)�2 , where the exponents
�i are determined by quark masses and the longitudinal
coupling g, which in QCD(1+1) has units of mass. In the
’t Hooft model [21] the longitudinal equation (4) becomes
the non-linear equation

 
m2

q

x
+

m2
q̄

1� x

!
�(x) +

g2NC

⇡
P

Z 1

0
dx0�(x)� �(x0)

(x� x0)2

= M2
k �(x), (16)

with ⇡m2
q/g

2NC�1+⇡�1 cot(⇡�1) = 0 from the x-power
expansion of (16) at x = ✏ and a similar expression from
the upper bound x = 1�✏. Spontaneous chiral symmetry
breaking occurs in the limit NC ! 1, followed by the
limit mq ! 0 with the result �i = (3m2

i /⇡g
2NC)1/2 from

the expansion of the transcendental equation above and

M2
⇡ = g

p
⇡NC/3 (mu +md) +O

�
(mu+md)

2
�
, (17)

from integrating (16) [21, 23]. Comparison with (14)
leads to � = g

p
⇡NC/3 = const, since g scales as

g ⇠ 1
p
NC and chiral logarithms are suppressed at

NC ! 1. We notice that both (14) and (17) receive
identical contributions from the potential and kinetic en-
ergy terms in agreement with the virial theorem.

Numerical results.–In practice, we need to know the
value of the scale � and the quark masses to compute
M2

k . In the heavy quark limit Eq. (10) coincides with the

heavy-quark e↵ective theory (HQET) result [44], which
requires that the confining scale is proportional to the
mass of the heavy meson:

p
�Q = C

p
MQ [13, 28]. The

value is C = 0.49± 0.02 GeV1/2 for MQ � 1.8 GeV [15],
namely � ' C2 = 0.24 GeV. We assume that this value
of the longitudinal confinement scale to remain constant,
a result supported by the large NC QCD(1 + 1) ’t Hooft
model discussed above. Thus, fixing C ' 0.5 GeV1/2

at all scales, we can determine the e↵ective light quark
masses mu and md from the measured pion mass and the
strange quark mass, ms, from the kaon mass using (12):
The value of the �(1020) mass is then a prediction. No-
tice that the �(1020) vector meson also has the transverse
mass component M? =

p
2� from the spin-spin interac-

tion in supersymmetric LF holographic QCD [9, 35] withp
� = 0.523 GeV.

TABLE I. Lowest expansion coe�cients C in (13).

 = 0  = 1  = 2  = 3  = 4  = 5  = 6
C(ud̄) 0.998 0 0.055 0 0.010 0 -0.003
C(us̄) 0.967 -0.231 0.100 -0.006 -0.009 0.013 -0.016
C(ss̄) 0.998 0 0.038 0 -0.045 0 -0.024
C(uc̄) 0.958 -0.267 0.097 -0.012 -0.003 0 -0.007
C(cc̄) 0.999 0 0.016 0 -0.020 0 -0.003

We show in Table I the values of the lowest expansion
coe�cients. The results for the light meson masses in
Fig. 1 correspond to the values mu = md = 28 MeV and
ms = 326 MeV. Meson masses are determined from the
stability plateau in Fig. 1. For light quark masses con-
tributions above max ' 20 introduce large uncertainties
from highly oscillatory integrands. In Fig. 2 we show the
e↵ect of the strong oscillations from the large  behavior
of the Jacobi Polynomials [46] by examining the variation
of the results for quark masses in the interval mq = 28
MeV to mq = 28⇥ 10�8 MeV.

FIG. 1. Numerical evaluation of ground state meson masses
from the stability plateau in the figure using (12). The hori-
zontal grey lines in the figure are the observed masses [45].

The distribution amplitude (DA) [47], X(x) ⌘p
x(1� x�(x), for the pion, kaon and J/ mesons are

shown in Fig. (3). Due to the rapid convergence of the
exponential wave function in the basis expansion (13),
very few modes are required to reproduce the invari-
ant mass ansatz. The DAs predicted by holographic LF
QCD at the initial nonperturbative scale should then

αs(Q2)

Valence and Higher Fock StatesℒQCD → ψH
n (xi, ⃗k ⊥i, λi)



M. Nielsen, 
sjbNew Organization of the Hadron Spectrum
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New World of Tetraquarks

• Diquark: Color-Confined Constituents: Color

• Diquark-Antidiquark bound states

•

3C ⇥ 3C = 3̄C + 6C

3̄C ⇥ 3C = 1C

Bound!

�(TN) ' 2�(pN)� �(⇡N)

3̄C

2
⇥
�([{qq}N) + �(qN)

⇤
� [�(qN) + �(q̄N)] = [�({qq}N) + �({qq}N)]

Candidates f0(980)I = 0, JP = 0+, partner of proton

a1(1260)I = 0, JP = 1+, partner of �(1233)

de Tèramond, Dosch, Lorce, sjb

Test twist=4, power-law fall-off of form factors
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Light-Front Holography:  First Approximation to QCD
• Color Confinement, Analytic form of confinement potential


• Retains underlying conformal properties of QCD despite mass scale  (DeAlfaro-Fubini-Furlan 
Principle)


• Massless quark-antiquark pion bound state in chiral limit, GMOR


• QCD coupling at all scales


• Connection of perturbative and nonperturbative mass scales


• Poincarè Invariant


• Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L


• Supersymmetric 4-Plet:  Meson-Baryon -Tetraquark Symmetry


• Light-Front Wavefunctions


• Form Factors, Structure Functions, Hadronic Observables


• OPE: Constituent Counting Rules


• Hadronization at the Amplitude Level:  Many Phenomenological Tests


• Systematically improvable:  Basis LF Quantization (BLFQ)



7th International Conference on High Energy Physics in the LHC Era7th International Conference on High Energy Physics in the LHC Era

 Stan Brodsky Supersymmetric Features of Hadron Physics 

from Superconformal Algebra 

and Light-Front Holography 19 April 2021

4/6/21, 6:11 PMUniversity Of Kentucky Logo Png, Transparent Png - kindpng

Page 1 of 4https://www.kindpng.com/imgv/iiJhTxo_university-of-kentucky-logo-png-transparent-png/

Similar With University Of Kentucky Logo Png

University Of Kentucky Logo Png, Transparent Png

!  FREE DOWNLOAD

!  FREE DOWNLOAD

FILE SIZE: 31 KB

RESOLUTION: 1280X341

IMAGE LICENSE: PERSONAL USE ONLY

DOWNLOADS: 3

/ 9 VIEWS

DOWNLOAD FREE CLIP ART1. ››

CREATE YOUR OWN LOGO2. ››

MAKE MY OWN LOGO3. ››

DOWNLOAD FREE IMAGES4. ››

VECTOR CLIP ART5. ››

MAZDA CX 5 DEALS6. ››

Sponsored | Business Focus

!  FREE DOWNLOAD

University Of Kentucky Logo Png

Monster University Png

Kansas University Logo Png

Harvard University Png

Kentucky Png

Indiana University Logo Png

POPULAR SEARCHES

Uploaded by Gabriellemii

  SEND MESSAGE    DMCA

Search ...  " BE A CONTRIBUTOR LOGIN SIGN UP

Invariance Principles of Quantum Field Theory

• Polncarè Invariance:  Physical predictions must be 
independent of the observer’s Lorentz frame:  Front Form


• Causality: Information within causal horizon:  Front Form


• Gauge Invariance: Physical predictions of gauge theories 
must be independent of the choice of gauge


• Scheme-Independence: Physical predictions of 
renormalizable theories must be independent of the 
choice of the renormalization scheme —               
Principle of Maximum Conformality (PMC)


• Mass-Scale Invariance:                                     
Conformal Invariance of the Action (DAFF) 

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/
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Broad questions and current status. 
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MITP Virtual Workshop 

“Hadron Spectroscopy: The Next Big Steps"



M. Nielsen, 
sjbNew Organization of the Hadron Spectrum

Baryon        TetraquarkMeson



Superconformal Algebra
Four-Plet Representations
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Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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Meson Baryon

Tetraquark: 

diquark + antidiquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C
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Singapore
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Quark and Gluon Color confinement

Derive color-confining potential from QCD itself

Study effects of confinement in dynamical observables, 

such as QCD jets



• Study Non-perturbative dynamical effects

• Physics of QCD running coupling at all scales

• Precision QCD: Eliminate renormalization scale and 
scheme ambiguities, as in QED

• Use diffractive events to study heavy quark, production, 
heavy hadron spectroscopy

• QED / QCD Interference effects, e.g., in diffraction 
events. QED photon mimics C=- odderon

MITP Virtual Workshop 

“Hadron Spectroscopy: The Next Big Steps"



Matching Scale

Matching the couplings from LFHQCD and pQCD

 12

Bjorken sum rule:

Imposing continuity for α 
and its first derivative

Effective coupling in LFHQCD 
(valid at low-Q2)

A. Deur, S.J. Brodsky, G.F. de Téramond,  
Phys. Lett. B 750, 528 (2015); J. Phys. G 44, 105005 (2017).

Analytic, defined at all scales, IR Fixed Point

Running Coupling from AdS/QCD



Fundamental Question: Origin of the QCD Mass Scale

n Pion massless for mq=0

n What sets the mass of the proton when mq=0 ?

n QCD: No knowledge of MeV units:                                             

Only ratios of masses can be predicted

n Novel proposal by de Alfaro, Fubini, and Furlan (DAFF):                

Mass scale κ can appear in Hamiltonian leaving the action 
conformal!


n Unique Color-Confinement Potential  

n Eigenstates of Light-Front Hamiltonian determine hadronic 

mass spectrum and LF wavefunctions

n Superconformal algebra: Degenerate meson, baryon,  

and tetraquark mass spectrum

n Running QCD Coupling at all scales:   Predict ⇤MS

mp

 H(xi,~k?i,�i)

4⇣2



• Intrinsic Heavy Quarks


• Rigorous QCD Phenomena


• Not included in DGLAP


• High x


• Strong heavy quark/antiquark asymmetries 

MITP Virtual Workshop 

“Hadron Spectroscopy: The Next Big Steps"



p p

Probability (QED) � 1
M4

�

Probability (QCD) � 1
M2

Q

Proton 5-quark Fock State :

Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb

Polyakov, et al.


 

xQ � (m2
Q + k2

�)1/2

Q

Q

QCD predicts 

Intrinsic 

Heavy Quarks 
at high x!

Minimal off-
shellness!

Use AdS/QCD LFWF

g ! QQ̄ at low x: High M2



p p

Probability (QED) � 1
M4

�

Probability (QCD) � 1
M2

Q

Proton Self Energy 

Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb

M. Polyakov, et al.


• Collins, Ellis, Gunion, Mueller, sjb; 

Fixed LF time

Q

Q

Rigorous OPE Analysis

Hoyer, Peterson, Sakai, sjb



in agreement with the qualitative analysis at the begin-
ning of this section that the charm quark tends to carry
larger momentum than the anticharm quark based on the
charm quark form factors from the lattice calculation.
From the x[c(x)� c̄(x)] distribution obtained combining

Figure 3: The distribution function x[c(x) � c̄(x)] obtained from the
LFHQCD formalism using the lattice QCD input of charm electro-
magnetic form factors Gc

E,M(Q2). The outer cyan band indicates an
estimate of systematic uncertainty in the x[c(x) � c̄(x)] distribution
obtained from a variation of the hadron scale c by 5%.

LQCD results of Gc
E,M(Q2) and LFHQCD formalism,

we can calculate the first moment of the di↵erence of
c(x) and c̄(x) PDFs to be

hxic�c̄ =

Z 1

0
dx x [c(x) � c̄(x)] = 0.00047(15). (15)

The [c(x) � c̄(x)] distribution result is about 3 times
smaller in magnitude than the s(x)� s̄(x) distribution ob-
tained with the same formalism [46]. Although a small
asymmetry could be a result of the cancellation of two
relatively large c(x) and c̄(x) distributions, it is possible
that the intrinsic charm and anticharm distributions are
both small. Furthermore, the charm and anticharm dis-
tributions at high energy scales are dominated by the ex-
trinsic sea from perturbative radiations. The experimen-
tal observation and isolation of the intrinsic charm e↵ect
are extremely challenging in such cases. Thus it is not
surprising that the recent measurement of J/ and D0

productions by the LHCb collaboration [13] found no
intrinsic charm e↵ect. An ideal place to investigate the
intrinsic charm would be the J/ or open charm produc-
tions at relatively low energies, e.g., at JLab, although
it is also possible to see intrinsic charm e↵ects in very
accurate measurements of high energy reactions. In ad-
dition, lepton-nucleon scattering may provide a cleaner

probe than nucleon-nucleon scattering to help reduce
backgrounds and increase the chance to observe the in-
trinsic charm e↵ect, and therefore the future EIC will
provide such opportunities.

The nonzero value of Gc
E(Q2) can also originate

from the interference of the q ! gq ! cc̄q and
q ! ggq ! cc̄q sub-processes, without the exis-
tence of IC. However, as mentioned earlier, this extrin-
sic [c(x) � c̄(x)] asymmetry which arises at the next-to-
next-to-leading order level is negligible [38]. Moreover,
according to [38], this extrinsic asymmetry would re-
sult in a much smaller and negative value of the first
moment of [c(x) � c̄(x)] distribution hxic�c̄ compared to
hxic�c̄ = 0.00047(15) obtained in this calculation. A
negative value for hxic�c̄ would also result in a positive
[c(x)� c̄(x)] distribution at small x and a negative distri-
bution at large x, in contrast to the [c(x)� c̄(x)] distribu-
tion we have obtained here. But the evidence based on
the [s(x) � s̄(x)] distribution in [46], the EMC measure-
ment [8], and perturbative QCD computation [38] seem
to indicate extremely small values of extrinsic charm for
x > 0.1. The present determination of the [c(x) � c̄(x)]
distribution gives a strong evidence from LQCD for the
existence of nonperturbative intrinsic heavy quarks in
the nucleon wavefunction at large x ⇠ 0.4 � 0.5 with
a magnitude consistent with experimental signals. A
consequence of this result is Higgs production at large
xF > 0.8 in pp collisions at the LHC from the di-
rect coupling of the Higgs to the intrinsic heavy quark
pair [81].

4. Conclusion and outlook

In this article, we have presented the first lattice
QCD calculation of the charm quark electromagnetic
form factors in the physical limit. This first lattice
QCD calculation indicates that a nonzero charm elec-
tric form factor corresponds to the intrinsic charm-
anticharm asymmetry in the nucleon sea, thereby pro-
viding an indication of the existence of nonzero intrinsic
charm based on a first-principles calculation. In addi-
tion, the nonzero value of the charm magnetic form fac-
tor indicates a nonzero orbital angular momentum con-
tribution to the nucleon coming from the charm quarks.
We have discussed that the existence of IC is supported
by QCD and how an accurate knowledge of the intrinsic
charm can help to remove bias in the global fits of PDFs
and related phenomenological studies.

Motivated by the new lattice results, we have used the
nonperturbative light-front holographic framework in-
corporating the QCD inclusive-exclusive connection at
large x to determine the [c(x)� c̄(x)] asymmetry up to a
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• Novel Nuclear Spectroscopy


• Effects of Diquarks


• Antishadowing


• Hidden Color


• Explanation of Strong Nuclear Binding

MITP Virtual Workshop 

“Hadron Spectroscopy: The Next Big Steps"

Nuclear QCD



Novel Light-Front Physics

• LFWFs defined at fixed LF time τ— Off-shell in invariant mass


• Violation of sum rules for nuclear pdfs:  Glauber processes


• Color Transparency


• Hidden Color 


• Anomalous Nuclear Dependence quarkonium


• Flavor-Dependent Anti-shadowing


• Wigner Function: Product of LF Wavefunctions


• LF Temperature — Frame Independent


• Hidden Supersymmetry


• LF Temperature: Frame-Independent


• Collisions of Flux-Tubes at the EIC produce ridges correlated with electron scattering plane


• Chiral Symmetry not broken at high mass
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A

2 /F D
2 . The ordinate indicates the fractional differences

between experimental data and theoretical values: (Rexp −

Rtheo)/Rtheo.
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FIG. 3: (Color online) Comparison with experimental data of
R = F A

2 /F C,Li
2

. The ratios (Rexp − Rtheo)/Rtheo are shown.

ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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FIG. 5: (Color online) Parametrization results are compared
with the data of F2 ratios F Ca

2 /F D
2 and Drell-Yan ratios

σpCa
DY /σpD

DY . The theoretical curves and uncertainties are cal-
culated at Q2=5 GeV2 for the F2 ratios and at Q2=50 GeV2

for the Drell-Yan ratios.

As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.
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Anti-Shadowing

Shadowing
M. Hirai, S. Kumano and T. H. Nagai,
“Nuclear parton distribution functions
and their uncertainties,”
Phys. Rev. C 70, 044905 (2004)
[arXiv:hep-ph/0404093].



The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Diffraction via Reggeon Exchange gives constructive 
interference!

Anti-shadowing



We present a high-quality description of the deuteron electromagnetic 
form factors in a soft-wall AdS/QCD approach. We first propose an 

effective action describing the dynamics of the deuteron in the presence 
of an external vector field. Based on this action the deuteron 

electromagnetic form factors are calculated, displaying the correct 1/Q10 

power scaling for large Q2 values. This finding is consistent with quark 
counting rules and the earlier observation that this result holds in 

confining gauge/gravity duals. The Q2 dependence of the deuteron form 
factors is defined by a single and universal scale parameter κ, which is 

fixed from data.
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electromagnetic form factors
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LF orbital angular momentum L ⌘ |Lz
|max. As dis-

cussed by Chabysheva and Hiller [27], it is natural to
identify the potential for longitudinal dynamics with the
potential which underlies the t’Hooft model for large-NC

QCD (1+1) [27], and it has the same form as the in-
stantaneous LF potential which appears from gluon ex-
change in A+ = 0 LF gauge in QCD (3+1). As noted in
Refs. [27, 30], the resulting longitudinal eigenvalue equa-
tion for the longitudinal mass M2

k can be combined with

the holographic LF transverse equation (3) for M2
? to

incorporate massive quarks.
We write the meson LF wave function  as

 (x, ⇣,') =

s
x(1� x)

2⇡⇣
eiL'�(x)�(⇣), (5)

normalized to
R 1
0 dx�2(x) = 1 and

R1
0 d⇣ �2(⇣) = 1,

where we have factored out the longitudinal, trans-
verse and orbital dependence since the total e↵ective
LF Hamiltonian is written as the sum of longitudinal
and transverse components. The longitudinal mass M2

k
thus appears as a separation constant in the transverse
equation (3), namely M2

? ! M2
� M2

k [27]. As a re-
sult, the structure of the superconformal equation in the
transverse direction is not modified, even by heavy quark
masses, as long as transverse and longitudinal dynamics
can be separated. We have included in (5) the normal-
ization factor

p
x(1� x) which arises from the precise

mapping of AdS form factors to light-front physics in the
limit of zero quark masses [34].

The transverse LF equation (3) has a similar structure
as the wave equations derived in five-dimensional AdS
provided that one identifies ⇣ = z [5], the holographic
fifth-dimensional coordinate of AdS. This precise map-
ping allows us to relate the LF confinement potential U?
to the dilaton profile which modifies AdS space [9]. The
assumption of superconformal algebra then uniquely de-
termines the form of the transverse confining potential
for both mesons and nucleons [7, 8]: For mesons it is
given by [8, 35]

U?(⇣) = �2⇣2 + 2�(J � 1). (6)

In the factorized approximation, the radial and orbital
excitations are determined by the transverse potential
(6) with eigenvalues [9]

M2
?(n, J, L) = 4�

✓
n+

J + L

2

◆
, (7)

and eigenfunctions

�n,L(⇣) = �(1+L)/2

s
2n!

(n+L)!
⇣1/2+Le��⇣2/2LL

n(�⇣
2).

(8)
For the longitudinal component we will adopt the ef-

fective potential introduced by Li, Maris, Zhao and Vary

in [30] to generate a convenient orthonormal basis func-
tions in the LF longitudinal momentum variable x. It is
given by

Uk(x) = ��2@x (x(1� x) @x) , (9)

and contains the term �2x(1� x)z̃2 required to form an
oscillator potential in the LF longitudinal as well as in the
transverse directions. The longitudinal spatial variable
z̃ conjugate to the longitudinal momentum-x, z̃ ⇠ i@x,
is the frame-independent Io↵e coordinate of Miller and
Brodsky [36]. The potential (9) was introduced in the
context of basis light-front quantization [37, 38] and was
further used in [39–42].
The scale � in (9) is the longitudinal confinement

scale and has units of mass. In contrast, the trans-
verse confinement scale � in (6) has dimensions of mass
squared, but both scales are connected in the heavy
quark mass limit. To show this, consider the limit
mq,mq̄ ! mQ,mQ̄ � k?, kz, � ! �Q. In the non-

relativistic limit we find x = mQ+kz

mQ+mQ
, x =

mQ�kz

mQ+mQ
: It

leads to the non-relativistic rotationally-invariant poten-
tial U(r) ! V (r) = U(r)

mQ+mQ
= 1

2µ!
2r2, and the con-

straint

! = � =
�Q

mQ +mQ

, (10)

where µ =
mQmQ̄

mQ+mQ
and r2 = b2

?+ b2z, with bz the canon-

ical conjugate to kz, bz = i@kz .
In order to compute the longitudinal meson mass con-

tribution for an arbitrary LF wave function �(x), it is
convenient to perform an expansion in terms of the com-
plete basis of orthonormal functions generated by the lon-
gitudinal LF Hamiltonian equation (4) for the specific
potential (9)

�↵,�
 (x) = Nx↵/2(1� x)�/2P (↵,�)

 (1� 2x). (11)

Thus,

M2
k = �2

Z 1

0
dx�(x)

⇣
� @x (x(1� x)@x)

+
1

4

h↵2

x
+

�2

1� x

i⌘
�(x) = �2

X



C2
 ⌫

2(,↵,�), (12)

where ⌫2(,↵,�) = 1
4 (↵+ � + 2)(2 + ↵+ � + 2), with

↵ = 2mq/� and � = 2mq̄/� as shown in the Appendix.
For the invariant mass ansatz Eq. (1)

N exp

⇢
�
�2

8�

✓
↵2

x
+

�2

1� x

◆�
=

X



C �(x), (13)

a very rapid convergence is found [27, 30] for the basis
function (11).
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Longitudinal dynamics and chiral symmetry breaking in holographic light-front QCD
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
to nonperturbative QCD dynamics, holographic light-
front QCD, leads to e↵ective semi-classical relativistic
bound-state equations for arbitrary spin [11], and it in-
corporates fundamental properties which are not appar-
ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2

?
x(1�x) !

k2
?

x(1�x) + m2
1

x + m2
2

1�x in the ground-state Gaussian wave
function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
squared s = (pq + pq̄)2 of the qq̄ pair. This substitution
leads to the longitudinal wave function [26]

�(x) = N e�
1
2�

�
m2

1
x +

m2
2

1�x

�
, (1)

with N a normalization factor [32]. The variable x is the
LF longitudinal momentum fraction x = k+/P+ and k?
is the relative transverse momentum. The partonic mass
shift contribution to hadron masses [33],

�M2 =

Z 1

0
dx�(x)

hm2
q

x
+

m2
q̄

1� x

i
�(x), (2)

used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
Longitudinal dynamics in HLFQCD.–We start from

the semiclassical LF transverse [5, 9] and longitudi-
nal [27, 30] Hamiltonian wave equations for mesons

✓
�

d2

d⇣2
�

1� 4L2

4⇣2
+ U?(⇣)

◆
�(⇣) = M2

?�(⇣), (3)

 
m2

q

x
+

m2
q̄

1� x
+ Uk(x)

!
�(x) = M2

k �(x), (4)

in the approximation where transverse and longitudinal
dynamics are separated. The variable ⇣ in (3) is the
invariant transverse variable, ⇣2 = x(1 � x)b2

?, with
b? the transverse impact distance conjugate to the rel-
ative transverse momentum k?, and L is the relative

Transverse Confinement
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a?(Q2)

3

down or absorbed with greater probability as compared
with a pion projectile with a smaller transverse impact
area for the same Q

2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De

0
X,

where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
convoluted with a two-body reduced form factor fR [29],
FD

�
Q

2
�

= fR

�
Q

2
�
Fp

�
1
4Q

2
�
Fn

�
1
4Q

2
�
, where fR(Q2)

is computed from the overlap of the reduced two-body
light-front wave functions (LFWFs): Q

2
fR(Q2) ' const

at large Q
2. The nucleon form factors FN are evalu-

ated at Q2
/4, since both nucleons share the momentum

transferred to the bound state by the incoming probe.
Therefore CT for eA ! De

0
X should occur at a Q

2 scale
four times higher than CT in eA ! pe

0
X.

We expect a similar e↵ect in comparing the relative CT
of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.

The spatial transverse-size dependence of the impact-
parameter on the momentum transfer t = �Q

2 is com-
puted from the expectation value of the profile function
f(x) = ha2?(x)i/4

ha2?(t)i⌧ =

R
dx 4f(x)⇢⌧ (x, t)R

dx⇢⌧ (x, t)

= 4F⌧ (t)
�1 d

dt
F⌧ (t)

=
1

�
[ (⌧ � ↵(t))�  (1� ↵(t)] , (8)

where the distribution ⇢⌧ (x, t) = q⌧ (x) exp [tf(x)].
The result (10) follows directly from the expression
of the form factor (5) since B(u, v)�1

@vB(u, v) =
( (v)�  (u+ v)), with  (z) the digamma function
 (z) = �(z)�1 d

dz�(z).
For integer twist ⌧ = N we can use the recurrence

relation for the digamma function  (z + 1) �  (z) = 1
z

to obtain

ha2?(t)i⌧ =
1

�

⌧�1X

j=1

1

j � ↵(t)
, (9)

an expression reminiscent of the classical Regge pole

structure of the scattering amplitude. For large values
of the momentum transfer t = �Q

2 it leads to

ha2?(Q2)i⌧ ! 4(⌧ � 1)

Q2
. (10)

In contrast with the dependence of the transverse impact
area as a function of x (4), the behavior in Q

2 depends on
twist and the Regge intercept ↵(0) of the vector meson
coupling with the quark current in the hadron.

FIG. 2. The transverse impact area as a function of Q2
and

the number of constituents ⌧ implies a significant delay in the

onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].
. . .
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Appendix A: Form factors and parton distributions
in light-front QCD

The light-front formalism provides an exact repre-
sentation of current matrix elements in terms of the
overlap of frame-independent light-front wave functions
in a light-front Fock basis expansion with components
 n(xi,k?i,�i), where the internal partonic coordinates,
the longitudinal momentum fraction xi and the trans-
verse momentum k?i, obey the momentum conservation
sum rules

Pn
i=1 xi = 1, and

Pn
i=1 k?i = 0. The LFWFs

also depend on �i, the projection of the constituent’s spin
along the z direction.

In terms of overlap of LFWFs in momentum space the
electromagnetic form factor is given by the Drell-Yan-
West (DYW) expression [27, 30]

F (q2) =

X
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16⇡3
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nX
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�
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⇣ nX

j=1

k?j

⌘

X

j

ej 
⇤
n(xi,k

0
?i,�i) n(xi,k?i,�i), (A1)

where the variables of the light-front Fock components
in the final state are given by k0

?i = k?i + (1 � xi)q?
for a struck constituent quark and k0

?i = k?i �xi q? for
each spectator. The formula is exact if the sum is over
all Fock states n.

The DYW expression for the form factor can be writ-
ten in impact space by Fourier transforming (A1) in mo-
mentum space to impact transverse space [22]. This is
a convenient form to obtain the impact dependent rep-
resentation of GPDs [23], but also for the holographic
mapping of AdS results, since the form factor can be ex-
pressed in terms of the product of light-front wave func-
tions with identical variables. To this purpose, we express
(A1) in terms of n�1 independent transverse impact vari-
ables b?j , j = 1, 2, . . . , n � 1, conjugate to the relative
transverse momentum coordinate k?i, and label by n the
active charged parton which interacts with the current.
Using the Fourier expansion

 n(xj ,k?j) =

(4⇡)(n�1)/2
n�1Y

j=1

Z
d
2b?j exp

⇣
i

n�1X

k=1

b?k · k?k

⌘
 n(xj ,b?j),

(A2)

we find [22, 24]

F (q2) =

X

n
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j=1

Z
dxj

Z
d
2b?j exp
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iq? ·

n�1X

j=1
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⌘
| n(xj ,b?j)|2 ,

(A3)

corresponding to a change of transverse momentum xjq?
for each of the n � 1 spectators. The internal parton
variables, the longitudinal momentum fraction xi and
the transverse impact coordinate b?i obey the sum rulesPn

i=1 xi = 1 and
Pn

i=1 b?i = 0.

The form factor in light-front quantization has an exact
representation in terms of a single particle density [22, 24]

F (q2) =

Z 1

0
dx ⇢(x,q?), (A4)

where ⇢(x,q?) is given by

⇢(x,q?) =
X
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The integration in (A5) is over the coordinates of the
n� 1 spectator partons, and x = xn is the coordinate of
the active charged quark.

We can also write the form factor (A4) in terms
of a single-particle transverse distribution ⇢(x,a?) in
transverse-impact space [22]

F (q2) =

Z 1

0
dx

Z
d
2a?e

ia?·q?q(x,a?), (A6)

P
i xi = 1

1

~a? ⌘
Pn�1

j=1 xj
~b?j
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3

down or absorbed with greater probability as compared
with a pion projectile with a smaller transverse impact
area for the same Q

2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De

0
X,

where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
convoluted with a two-body reduced form factor fR [29],
FD

�
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2
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= fR

�
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�
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�
1
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2
�
Fn
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1
4Q

2
�
, where fR(Q2)

is computed from the overlap of the reduced two-body
light-front wave functions (LFWFs): Q

2
fR(Q2) ' const

at large Q
2. The nucleon form factors FN are evalu-

ated at Q2
/4, since both nucleons share the momentum

transferred to the bound state by the incoming probe.
Therefore CT for eA ! De

0
X should occur at a Q

2 scale
four times higher than CT in eA ! pe

0
X.

We expect a similar e↵ect in comparing the relative CT
of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.

The spatial transverse-size dependence of the impact-
parameter on the momentum transfer t = �Q

2 is com-
puted from the expectation value of the profile function
f(x) = ha2?(x)i/4

ha2?(t)i⌧ =

R
dx 4f(x)⇢⌧ (x, t)R

dx⇢⌧ (x, t)

= 4F⌧ (t)
�1 d

dt
F⌧ (t)

=
1

�
[ (⌧ � ↵(t))�  (1� ↵(t)] , (8)

where the distribution ⇢⌧ (x, t) = q⌧ (x) exp [tf(x)].
The result (10) follows directly from the expression
of the form factor (5) since B(u, v)�1

@vB(u, v) =
( (v)�  (u+ v)), with  (z) the digamma function
 (z) = �(z)�1 d

dz�(z).
For integer twist ⌧ = N we can use the recurrence

relation for the digamma function  (z + 1) �  (z) = 1
z

to obtain

ha2?(t)i⌧ =
1

�

⌧�1X

j=1

1

j � ↵(t)
, (9)

an expression reminiscent of the classical Regge pole

structure of the scattering amplitude. For large values
of the momentum transfer t = �Q

2 it leads to

ha2?(Q2)i⌧ ! 4(⌧ � 1)

Q2
. (10)

In contrast with the dependence of the transverse impact
area as a function of x (4), the behavior in Q

2 depends on
twist and the Regge intercept ↵(0) of the vector meson
coupling with the quark current in the hadron.

FIG. 2. The transverse impact area as a function of Q2
and

the number of constituents ⌧ implies a significant delay in the

onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].
. . .
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At large light-front momentum fraction x, and equivalently at large values of Q2, the transverse size of a 
hadron behaves as a point-like color-singlet object. This behavior is the origin of color transparency in 
nuclei. 


Although the dependence of the transverse impact area as a function of x is universal, the behavior in Q2 

depends on properties of the hadron, such as its twist. 
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representation (Appendix A)
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where the light-front transverse-impact distribution
q(x,a?) is the Fourier transform of the distribution
⇢(x, t) ⌘ q(x) exp [tf(x)] [22–25]
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The spatial transverse-size dependence of the impact-
parameter on the longitudinal momentum fraction x is
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thus uniquely determined by the hadron’s profile func-
tion. At large momentum transfer �t = Q

2 the main
support of the integral in (1) comes from the regime
f(x) ⇠ 1/Q2, and one finds the expected dimensional
result for the scaling behavior of the impact transverse
size [1], namely ha2?(Q2)i ⇠ 1

Q2 .

In LF holographic QCD the form factor is expressed
in terms of Euler’s Beta function B(u, v) = B(v, u) =
�(u)�(v)
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0
t is the Regge trajectory of the

vector meson which couples to the quark current in the
hadron and N⌧ is a normalization factor. The trajectory
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and w

0(x) � 0. The profile function f(x) and the PDF
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0 = 1/4�. Boundary conditions at x ! 0 fol-

low from the Regge behavior, w(x) ⇠ x, and at x ! 1
from the inclusive-exclusive counting rules [27], q⌧ (x) ⇠

(1 � x)2⌧�3, which fix w
0(1) = 0. These physical condi-

tions, together with the constraints written above, basi-
cally determine the form of w(x).

FIG. 1. Transverse-impact dependence of a hadron on the

longitudinal momentum fraction x. At large x, equivalently
at large values of Q2

, the hadron behaves as a pointlike ob-

ject. This behavior is attributed to be at the origin of color

transparency in nuclei.

We show in Fig. 1 the transverse-impact dependence
on the longitudinal momentum fraction x. This behav-
ior is universal and depends only on the profile function
f(x) (6) which, in LF holographic QCD, is determined
by the hadron mass scale �, a flavor independent con-
stant in the light sector, and the longitudinal function
w(x) which is also flavor independent [12]. It is also in-
dependent of the number of components of a hadron and
of the nature of the lepton current which scatters o↵ the
hadron. At large x, equivalently at large values of Q2, the
hadron converges to its pointlike configuration (PLC) as
expected in a very high momentum transfer reaction. We
use the specific form of w(x) given in Refs. [17, 18] where
the value of the mass scale  ⌘

p
� = 0.523± 0.024 GeV

is determined from the di↵erent light hadron channels,
including all radial and orbital excitations [28].

III. ONSET OF COLOR TRANSPARENCY

We have shown above that the transverse-impact de-
pendence on the longitudinal momentum fraction x is
universal, however the relative transparency is not. In
fact, one expects form general considerations that the
initial formation of a PLC for a bound state with a large
number of constituents –the deuteron for example, with
a larger phase space, has a lower probability to fluctuate
to a small configuration as compared with a two-particle
bound state, say the pion. Consequently, it would present
to the nuclear environment a larger transverse impact
area as it travels across the nucleon and will be slowed
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down or absorbed with greater probability as compared
with a pion projectile with a smaller transverse impact
area for the same Q

2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De

0
X,

where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
convoluted with a two-body reduced form factor fR [29],
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is computed from the overlap of the reduced two-body
light-front wave functions (LFWFs): Q
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fR(Q2) ' const

at large Q
2. The nucleon form factors FN are evalu-

ated at Q2
/4, since both nucleons share the momentum

transferred to the bound state by the incoming probe.
Therefore CT for eA ! De

0
X should occur at a Q

2 scale
four times higher than CT in eA ! pe

0
X.

We expect a similar e↵ect in comparing the relative CT
of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.

The spatial transverse-size dependence of the impact-
parameter on the momentum transfer t = �Q

2 is com-
puted from the expectation value of the profile function
f(x) = ha2?(x)i/4
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where the distribution ⇢⌧ (x, t) = q⌧ (x) exp [tf(x)].
The result (10) follows directly from the expression
of the form factor (5) since B(u, v)�1

@vB(u, v) =
( (v)�  (u+ v)), with  (z) the digamma function
 (z) = �(z)�1 d

dz�(z).
For integer twist ⌧ = N we can use the recurrence

relation for the digamma function  (z + 1) �  (z) = 1
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to obtain
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an expression reminiscent of the classical Regge pole

structure of the scattering amplitude. For large values
of the momentum transfer t = �Q

2 it leads to

ha2?(Q2)i⌧ ! 4(⌧ � 1)

Q2
. (10)

In contrast with the dependence of the transverse impact
area as a function of x (4), the behavior in Q

2 depends on
twist and the Regge intercept ↵(0) of the vector meson
coupling with the quark current in the hadron.

FIG. 2. The transverse impact area as a function of Q2
and

the number of constituents ⌧ implies a significant delay in the

onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].
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down or absorbed with greater probability as compared
with a pion projectile with a smaller transverse impact
area for the same Q

2. The particle with a larger num-
ber of constituents will thus require a larger Q2 to have
the same transparency: the onset of color transparency
will be higher when compared with the fewer components
projectile.

To illustrate this point consider for example an experi-
ment that measures CT for the deuteron in eA ! De

0
X,

where the deuteron is produced isolated with large trans-
verse momentum q opposite to the electron. As a result
of the LF cluster decomposition, the deuteron wave func-
tion factorizes into two distinct nucleon wave functions
convoluted with a two-body reduced form factor fR [29],
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We expect a similar e↵ect in comparing the relative CT
of nucleons with pions where the detailed dependence on
the individual constituents in the LFWF is essential. The
integrand of (A5) is in fact a function of q?·xjb?j where
the transverse coordinate b?j in impact space is the vari-
able conjugate to the LF relative transverse momentum
of particle j and xj represents its longitudinal momentum
fraction. The index j is summed over the n � 1 specta-
tors: It corresponds to a change of transverse momentum
xjq? for each spectator particle and this dependence is
crucial to study the relative CT of di↵erent hadrons.

The spatial transverse-size dependence of the impact-
parameter on the momentum transfer t = �Q

2 is com-
puted from the expectation value of the profile function
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The result (10) follows directly from the expression
of the form factor (5) since B(u, v)�1

@vB(u, v) =
( (v)�  (u+ v)), with  (z) the digamma function
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to obtain
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an expression reminiscent of the classical Regge pole

structure of the scattering amplitude. For large values
of the momentum transfer t = �Q

2 it leads to

ha2?(Q2)i⌧ ! 4(⌧ � 1)

Q2
. (10)

In contrast with the dependence of the transverse impact
area as a function of x (4), the behavior in Q

2 depends on
twist and the Regge intercept ↵(0) of the vector meson
coupling with the quark current in the hadron.
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the number of constituents ⌧ implies a significant delay in the

onset of color transparency at intermediate energies for ⌧ > 2.

IV. DISCUSSION OF RESULTS

As we show in Fig. 2 the gap in the transverse impact
area for di↵erent twist is more significative at intermedi-
ate energies and for low twist values, particularly between
twist two and three. For example, the e↵ective transverse
impact surface for twist two at 8 GeV2 is similar to that
of twist 3 at 20 GeV2; or the impact surface at 4 GeV2

for twist 2 is similar to that of twist 4 also at 20 GeV2,
thus implying an important delay in the CT onset at in-
termediate energies in terms of the quark constituents.
For the proton this is particularly relevant since it con-
tains twist-3 but also twist-4 in its LFWF to generate
its anomalous magnetic moment, thus requiring a larger
onset in CT as measured in [6].
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Guy F. de Téramond1, ⇤ and Stanley J. Brodsky2, †
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The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal
dynamics with its chiral limit protected by the superconformal algebraic structure which governs its
transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confine-
ment strength in this direction: It is also responsible for most of the light meson ground state mass
consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the break-
ing of chiral symmetry are found to be di↵erent manifestations of the same underlying dynamics
like in ’t Hooft large NC QCD(1 + 1) model.

Introduction.–In spite of the important progress of Eu-
clidean lattice gauge theory, a basic understanding of the
mechanism of color confinement and its relation to chi-
ral symmetry breaking in QCD, two fundamental phe-
nomena of strong interactions, has remained an unsolved
problem. Recent developments based on superconfor-
mal quantum mechanics [1, 2] in light-front quantiza-
tion [3] and its holographic embedding on a higher dimen-
sional gravity theory [4] (gauge/gravity correspondence)
have led to new analytic insights into the structure of
hadrons and their dynamics [5–10]. This new approach
to nonperturbative QCD dynamics, holographic light-
front QCD, leads to e↵ective semi-classical relativistic
bound-state equations for arbitrary spin [11], and it in-
corporates fundamental properties which are not appar-
ent from the QCD Lagrangian, such as the emergence of
the hadron mass scale, the prediction of a massless pion
in the chiral limit, and the remarkable connections be-
tween meson, baryon and tetraquark spectroscopy across
the full hadron spectrum [12–15]. Phenomenological ex-
tensions of the holographic QCD approach also describe
the running of the QCD coupling ↵s(Q2) in the nonper-
turbative domain [16, 17] and provide nontrivial connec-
tions between the dynamics of form factors and polarized
and unpolarized quark distributions with pre-QCD non-
perturbative approaches such as Regge theory and the
Veneziano model [18–20].

In this letter we examine the e↵ect of longitudi-
nal light-front dynamics for the computation of hadron
masses, confinement, and chiral symmetry breaking mo-
tivated by the previous work in Refs. [21–30]. Although
light-front holography, based on the Maldacena conjec-
ture [4] and the superconformal algebraic structure in [2],
determines the confinement potential in the light-front
(LF) transverse coordinates in the zero quark mass chi-
ral limit [10], an extension is required to incorporate
color-confining LF longitudinal dynamics for non-zero
quark masses [31]. This extension of holographic LF
QCD (HLFQCD) should preserve its successful predic-
tions while restoring 3-dimensional rotational invariance
in the heavy-quark limit.

A simple ansatz to account for quark masses in holo-
graphic LF QCD was introduced in [26] based on the
o↵-shell dependence of the LF wave function on the in-
variant mass which controls the bound state. For a two-
parton state this amounts to the substitution k2

?
x(1�x) !

k2
?

x(1�x) + m2
1

x + m2
2

1�x in the ground-state Gaussian wave
function to include the expression for the LF kinetic en-
ergy with quark masses: It is also the invariant mass
squared s = (pq + pq̄)2 of the qq̄ pair. This substitution
leads to the longitudinal wave function [26]

�(x) = N e�
1
2�

�
m2

1
x +

m2
2

1�x

�
, (1)

with N a normalization factor [32]. The variable x is the
LF longitudinal momentum fraction x = k+/P+ and k?
is the relative transverse momentum. The partonic mass
shift contribution to hadron masses [33],

�M2 =

Z 1

0
dx�(x)

hm2
q

x
+

m2
q̄

1� x

i
�(x), (2)

used in [26, 28] does not account for the explicit contri-
bution from a longitudinal potential to hadron masses.
As we shall show in this letter, we can extend our holo-
graphic framework by combining the longitudinal dy-
namics with the transverse superconformal results in a
semiclassical approximation consistent with our previous
holographic results [9, 10].
Longitudinal dynamics in HLFQCD.–We start from

the semiclassical LF transverse [5, 9] and longitudi-
nal [27, 30] Hamiltonian wave equations for mesons

✓
�

d2

d⇣2
�

1� 4L2

4⇣2
+ U?(⇣)

◆
�(⇣) = M2

?�(⇣), (3)

 
m2

q

x
+

m2
q̄

1� x
+ Uk(x)

!
�(x) = M2

k �(x), (4)

in the approximation where transverse and longitudinal
dynamics are separated. The variable ⇣ in (3) is the
invariant transverse variable, ⇣2 = x(1 � x)b2

?, with
b? the transverse impact distance conjugate to the rel-
ative transverse momentum k?, and L is the relative
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U|| = �2x(1� x)z̃2

G. A. Miller, sjb
<latexit sha1_base64="ogoCsUgYlIOAyIj6q+OqkNNmPf4="></latexit>

Io↵e length z̃: conjugate to LF x = k+

P+

2

LF orbital angular momentum L ⌘ |Lz
|max. As dis-

cussed by Chabysheva and Hiller [27], it is natural to
identify the potential for longitudinal dynamics with the
potential which underlies the t’Hooft model for large-NC

QCD (1+1) [27], and it has the same form as the in-
stantaneous LF potential which appears from gluon ex-
change in A+ = 0 LF gauge in QCD (3+1). As noted in
Refs. [27, 30], the resulting longitudinal eigenvalue equa-
tion for the longitudinal mass M2

k can be combined with

the holographic LF transverse equation (3) for M2
? to

incorporate massive quarks.
We write the meson LF wave function  as

 (x, ⇣,') =

s
x(1� x)

2⇡⇣
eiL'�(x)�(⇣), (5)

normalized to
R 1
0 dx�2(x) = 1 and

R1
0 d⇣ �2(⇣) = 1,

where we have factored out the longitudinal, trans-
verse and orbital dependence since the total e↵ective
LF Hamiltonian is written as the sum of longitudinal
and transverse components. The longitudinal mass M2

k
thus appears as a separation constant in the transverse
equation (3), namely M2

? ! M2
� M2

k [27]. As a re-
sult, the structure of the superconformal equation in the
transverse direction is not modified, even by heavy quark
masses, as long as transverse and longitudinal dynamics
can be separated. We have included in (5) the normal-
ization factor

p
x(1� x) which arises from the precise

mapping of AdS form factors to light-front physics in the
limit of zero quark masses [34].

The transverse LF equation (3) has a similar structure
as the wave equations derived in five-dimensional AdS
provided that one identifies ⇣ = z [5], the holographic
fifth-dimensional coordinate of AdS. This precise map-
ping allows us to relate the LF confinement potential U?
to the dilaton profile which modifies AdS space [9]. The
assumption of superconformal algebra then uniquely de-
termines the form of the transverse confining potential
for both mesons and nucleons [7, 8]: For mesons it is
given by [8, 35]

U?(⇣) = �2⇣2 + 2�(J � 1). (6)

In the factorized approximation, the radial and orbital
excitations are determined by the transverse potential
(6) with eigenvalues [9]

M2
?(n, J, L) = 4�

✓
n+

J + L

2

◆
, (7)

and eigenfunctions

�n,L(⇣) = �(1+L)/2

s
2n!

(n+L)!
⇣1/2+Le��⇣2/2LL

n(�⇣
2).

(8)
For the longitudinal component we will adopt the ef-

fective potential introduced by Li, Maris, Zhao and Vary

in [30] to generate a convenient orthonormal basis func-
tions in the LF longitudinal momentum variable x. It is
given by

Uk(x) = ��2@x (x(1� x) @x) , (9)

and contains the term �2x(1� x)z̃2 required to form an
oscillator potential in the LF longitudinal as well as in the
transverse directions. The longitudinal spatial variable
z̃ conjugate to the longitudinal momentum-x, z̃ ⇠ i@x,
is the frame-independent Io↵e coordinate of Miller and
Brodsky [36]. The potential (9) was introduced in the
context of basis light-front quantization [37, 38] and was
further used in [39–42].
The scale � in (9) is the longitudinal confinement

scale and has units of mass. In contrast, the trans-
verse confinement scale � in (6) has dimensions of mass
squared, but both scales are connected in the heavy
quark mass limit. To show this, consider the limit
mq,mq̄ ! mQ,mQ̄ � k?, kz, � ! �Q. In the non-

relativistic limit we find x = mQ+kz

mQ+mQ
, x =

mQ�kz

mQ+mQ
: It

leads to the non-relativistic rotationally-invariant poten-
tial U(r) ! V (r) = U(r)

mQ+mQ
= 1

2µ!
2r2, and the con-

straint

! = � =
�Q

mQ +mQ

, (10)

where µ =
mQmQ̄

mQ+mQ
and r2 = b2

?+ b2z, with bz the canon-

ical conjugate to kz, bz = i@kz .
In order to compute the longitudinal meson mass con-

tribution for an arbitrary LF wave function �(x), it is
convenient to perform an expansion in terms of the com-
plete basis of orthonormal functions generated by the lon-
gitudinal LF Hamiltonian equation (4) for the specific
potential (9)

�↵,�
 (x) = Nx↵/2(1� x)�/2P (↵,�)

 (1� 2x). (11)

Thus,

M2
k = �2

Z 1

0
dx�(x)

⇣
� @x (x(1� x)@x)

+
1

4

h↵2

x
+

�2

1� x

i⌘
�(x) = �2

X



C2
 ⌫

2(,↵,�), (12)

where ⌫2(,↵,�) = 1
4 (↵+ � + 2)(2 + ↵+ � + 2), with

↵ = 2mq/� and � = 2mq̄/� as shown in the Appendix.
For the invariant mass ansatz Eq. (1)

N exp

⇢
�
�2

8�

✓
↵2

x
+

�2

1� x

◆�
=

X



C �(x), (13)

a very rapid convergence is found [27, 30] for the basis
function (11).

Longitudinal Confinement

Li, Maris, Zhao, Vary
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k+2 LF interaction in A+ = 0 gauge
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t’ Hooft Equation QCD(1+1)NC!1Same potential:

de Teramond, sjb
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c

c

c̄

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u
Singapore

Implications of LHCb measurements and future prospects
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|p >= Cvalence|u[ud] > +Cintrinsic|c̄[cu][ud] >
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  Double-charm tetraquarks 
and other exotics
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Light Front Holography,  Intrinsic Charm, 

and Tetraquarks
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Novel QCD Effects in Hadrons and Nuclei    Stan BrodskyAPS-GHP Denver
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Novel Effects Derived from Light-Front 
Wavefunctions

• Color Transparency


• Intrinsic heavy quarks at high x


• Asymmetries 


• Spin correlations, counting rules at x to 1


• Diffractive deep inelastic scattering


• Nuclear Effects:  Hidden Color

s(x) 6= s̄(x), ū(x) 6= d̄(x)

ep ! epX

c(x), b(x)


