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You can talk about 
“this” and “that.”

OK, talk outline:
1) This
2) That



Part-I:	“This”

some	history



the	proton,	the	oldest	and	most	common	hadron
Discovered	by	Rutherford		105	years	ago

a +	14Nà 17O	+	p

“…we	must	conclude	… that	the	
hydrogen	atom	which	is	liberated	
formed	a	constituent		part	of	the
nitrogen	nucleus.” KEp=	KEa-1.21 MeV

moveable
a-source

⨀
“anode		ray”	

~0.2	Atm gas
B-field

eye-piece

ZnS phosphor

strongest	signal	for	N2:

Ag	foil
(a-stopper)

1st identified	nuclear
Transmutation	reaction



Eugen	Goldstein			1850- 1930

“About	a	not	yet	examined	form	of
radiation	at	Cathode-Induced	Discharges”

low-press.	H2

electrons
(ionize	the,H2)

V

-V

-
-

-
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canal	rays

phosphor

ionized
hydrogen

-- depended	on	the	type	of	gas
-- largest	for	hydrogen

Wilhelm	Wien	measured	q/m

July	29,1886,	10	years	before		
the	discovery	of	the	electron
&	30	yrs before	Rutherford	

+++

I	I	I	I



What's	F1 and	F2?

assume	exponential	shapes:
F1=F2:	r(r)=r0exp(-r/r0)

1915-1990Robert	Hofstadter
1915-1990

r=0.8	fm

r =0.77±0.10	fm

1956,	Hofstadter:	the	proton	isn’t	a	point	particle
e- p à e-p	elastic	scattering

pointlike

form	factors

1956	result

Fermi	&	Dirac	form	factors



Status	of	rE circa	2009	(5	decades	later)

e-p data	analyzed	with	dispersion	rel’s
Bonn:	PRC 75, 035202

PRL	105,242001



Issues
GE(Q2)	is	not	a	a	simple	dipole	

nucleons’	pion	clouds	produce	
”bumps”	near	Q2=0.15	GeV2

(MAMI)	PRL	105,242001

two	approaches:

1)	extrapolate	to	zero	using	model-motivated
polynomial	or	spline	fits	to	the	data	
(see	Bernauer &	Distler arXiv:1606.02159)

2)	extract	pion	cloud	effects	from	e+e-àp+p-

and	pNàpN	data	and	include	this	in	a
dispersion	relation

(see	Lin,	Hammer,	Meissner PLB816,136254)



2010:	rE from	muonic-Hydrogen	Lamb-shift

Ordinary
Hydrogen
dL.S.
L.S. =0.014%

dL.S.
L.S. =2%

H.	Pohl	et	al.,Nature 466,	213
~2	keV

~0.2	eV



66	yrs after	Hofstader,	rE still	uncertain	to	~ ±5%

see	Bernauer &	Distler arXiv:1606.02159

Bonn



66	yrs after	Hofstader,	rE still	uncertain	to	~ ±5%

see	Bernauer &	Distler arXiv:1606.02159



100	yrs later,	the	is	proton	still	the	source	of	
interesting	puzzles



Part-II:	“That”

hadron	thresholds



Time-like	&	space-like	proton	form-factors

q2<0
space-
like q2>0

time-like



Very	little	data

only	combined

is	measured

form-factors	are
complex

hyperon	form-factors
are	accessible		

related	by	crossing	symmetry

Fermi	&	Dirac	form	factors

Space-like	(q2<0)

Robert	Hofstadter

Time-like	(q2>4mp)
2

Huge	amount	of	data

100’s	of	experiments
starting	in	1954

Separate	determinations
of	GE,	GM &	Gpol

e+

e-

Geff
2
=
GM

2
+ 1
2τ GE

2

1+ 1
2τ

Geff only

the	neglected	time-like	region

1961	Nobel	Prize

q2<0

q2>0



e+e-àpp	at	threshold_

Integrated	cross	section:

pp	Rydberg states
(Bohr-levels)

mpp_

Sommerfeld resummation factor
..

σ pp (mpp ) =
4πα 2βC
3mp

2 Geff mpp( ) 2 1+1/ 2τ( )

for point-like charged particles:  C = πα / β
1− exp −πα / β( )→

πα
β

  ← when β → 0

Geff
2
=
GM

2
+ 1
2τ GE

2

1+ 1
2τ



e+e-àpp	at	threshold_

σ

mpp-2Mp_

_pp

Integrated	cross	section:

2Mp

pp	Rydberg states
(Bohr-levels)

mpp_

in point-like approx, there
is  a non-zero cross-section 
right at the threshold!

Sommerfeld resummation factor
..

σ pp (mpp ) =
4πα 2βC
3mp

2 Geff mpp( ) 2 1+1/ 2τ( )

for point-like charged particles:  C = πα / β
1− exp −πα / β( )→

πα
β

  ← when β → 0

sjump

Geff
2
=
GM

2
+ 1
2τ GE

2

1+ 1
2τ



This	is	what	is	seen

Ecm=2mp Ecm=2mn

σEcm=1.2	MeV

sjump≈850pb

CMD3		Solodov talk	at	Charm	2018
BaBar PRD	87,	092005	(2013)
CMD3	 PLB	759,	634	(2016)

by BaBar and CMD

Just as expected for a 
charge=1 point-like fermion

Rproton≈0.85	fm

& is produced by a Q2≈3.5 GeV 
𝜸*

but the proton is not point-like

e+

e-

lg*=	0.1	fm
_e+e- à pp

cross section jumps to 850 pb
within 1 MeV from threshold!

b≈0.03;	no	sign	of	a
phase-space	factor



inconsistent	with	theory

Nucl.Phys.A 929 (2014) 102-118

fit	to	pre	SND	data

~15	MeV
turn-on

<1	MeV
turn-on

The	final	state	is	dominated	
by	low-energy	nuclear	physics,
why	is	the	cross-section	so
close	to	the	point-like	value?



What	about	neutral	baryons?

_

Integrated	cross	section:

no	Rydberg states
(Bohr-levels)

in	point-like	
approx:

_

σ

mnn-2Mn_

no “jump” expected

σ nn (mnn ) =
4πα 2βC
3mn

2 Geff mnn( ) 2 1+1/ 2τ( )

e+e-à nn or	ΛΛ	(or	S0S0 or	X0X0)	at	threshold

for point-like neutal particles (nn or ΛΛ):    C = 1

__



experiments	see	a	σ(e+e- à nn)	threshold	jump_

Sjump≈500	pb
Oscillatory	behavior
is	also	observed

BESIII	Nature	Phys17,	1200

e+e- à nn_



experiments	see	a	σ(e+e- à nn)	threshold	jump_

SND

sjump≈500	pb

Threshold “jump”
this one is ~500pb &
2/3rds the pp one

Oscillatory	behavior
is	also	observed

BESIII	Nature	Phys17,	1200

SND:	EPJ	Web	Conf. 212 (2019) 07007

e+e- à nn_

_



initial	state	à final	state:	very	different	scales

lCompton ≈	1/2mp≈	0.1	fm<<rp

e+e- à uu	à pp

e+e- à ddà pp

su =	quspoint

sd =	qdspoint

spp =	(2qu+qd)spoint

_ _

_ _

2

2

2 2_

e+

e-

q

●

?

q

quarks are point particles

QED:



initial	state à final	state:	very	different	scales

lCompton ≈	1/2mp≈	0.1	fm<<rp

for	pp	within	1	MeV
of	the	2mp threshld:

drms ≈	7	fm >>rp

e+e- à uu	à pp

e+e- à ddà pp

su =	quspoint

sd =	qdspoint

spp =	(2qu+qd)spoint

_ _

_ _

2

2

2 2_

e+

e-

q

●

?

low	energy		pp		
scattering	length

_

Nuclear	Physics:

_

q

quarks are point particles nucleons are point particles

drms =?

QED:



add	(quark	charges)2

proton

neutron

Dsjump=1×850	pb

incoherent sums!

Dsjump=(2/3)×850	pb =	570	pb

s

L0/S0/X0
Dsjump=(2/3)× (----) 850	pb =	400	pb

mp
mL

2 ?L

Dsjump=(2/3)× (----) 850	pb =	350	pb
mp
mS

2 ?S0

Dsjump=(2/3)× (----) 850	pb =	290	pb
mp
mX

2 ?X0

predictions?



e+e-àL0L0 at	Threshold

Dsjump≈300	± 50	pb

_

Predicted	400	pb



e+e-àS0S0 and X0X0at	Threshold

Sjump≲40	pb

_ _

Sjump≲10	pb

BESIII	PLB820,137557
BESIII	arXixv:2110.04510

_

e+e-à S0S0 _

e+e-à X0X0

no jumps!

Predicted:	
350	pb

Predicted:	
290	pb



σ(e+e- à ΛcΛc)		has	a	threshold	jump+ -

mΛcΛc

sjump≈225	pb ⟹ consistent	with	σjump≈	145	pb
expected	for	a	point-like	particle

flat	after	that	(like	pp)

β≈0.025
_

_

Ecm=2mLc+	1.6	MeV



e+e-àLL not	explained	by	final	state	interactions

_

●
●PLB761,456 (2016)



adding	(quark	charges)2 only	works	sometimes
what	else?

what’s happening here (below threshold)

are there bound states in some channels, but not others?



JPC=1-- baryonium?

B
B_

JPC=1--

e+e- à BB_

S-wave

_-- spin=1	sub-threshold	BB		S-wave	bound	states	--



e+e- à K+K-K+K-

PRD	86,	012008

Hints	of	a	σ(e+e-àK+K- K+K-)	peak	@	2mΛ seen	in	BaBar &	BESIII

PRD	100,	032009

M=2232	±3.5	MeV		⟹ M-2mL=	0.8		± 3.5	MeV
G<14	MeV

mostly	due		to	e+e- à fK+K-2mL

~3.5s

Is	there	a	sub-threshold LL state?

_
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_



JPC=0-+	baryonium?

_-- spin=0	sub-threshold	BB		S-wave	bound	states?	--

p
p_

JPC=0-+

S-wave

J/y à g BB

_

1st	proposed	by	Fermi	&	Yang	in	1949	(6	yrs prior	to	the	p discovery)	Phys.Rev. 76 (1949) 1739-1743_



Candidate	0-+	pp	bound	state	1st seen	in	2003

JPC=0-+

0.0 0.1 0.2 0.3

BESII		PRL	91,	02001	(2003)J/ψà γpp_

_



“protonium:”	a	pp	bound	state?	

ppàgluonsàmesons
(π+π-η’?)

_

ppàpp_ _

S-wave annihilation “fall-apart” decays

2mp

“BE”

G.J.	Ding	&	M.L.	Yan		Phys.	Rev.	C	72,	015208
_



X(1835)àπ+π-η’ with	58M J/ψ decays	(BESII)

7.7s

BESII	PRL	95,	262001	(2005)

BESII	observation	of	X(1835)	in	

58M	J/y events

X(1835)“BE”≈ 40 MeV

2mp



J/ψà γ pp	at	BESIII		(PWA)_

BESIII		PRL	108,	112003	(2012)

M=1832±5+19	±19	MeV-17

G=13±20+11	±4	MeV-33

JPC=0-+

FSI	included:	A.	Sibirtsev et	al,	PRD71,	054010	(2005)

very narrow

pp bound state is required: Kang,	Haidenbauer,	Meissner:	Phys.Rev.D 91 (2015) 7, 074003_



X(1835)àπ+π-η’	with	1.1B	J/ψ events	(BESIII)

1.1B	J/y events

2mp
2mp

hppgy ¢® -+J



Flatte formula	fit:

Fit results:

X coupling to pp

X coupling to
everything else

_

‘
S.M.	Flatte
PLB	63,	224	(1976)

‘

2mp

2mp



Flatte formula	fit:

Fit results:

X coupling to pp

X coupling to
everything else

_

‘

S.M.	Flatte PLB	63,	224	(1976)
‘

2mp

2mp



After	~130	years,	still	lots	to	learn	about	the	proton



the	scalar	mesons	near	the	KK threshold

JP=0+

980

the	“light”	scalar-meson	nonet

_

-980 a0 a0 980+

k -

800k 0

800_

800k +

800

s
f0

600

980a0
0

k - k 0



a 0
(1
45

0)
0 η
π

Signal	for	a0(980)àηπ

a 0
(9
80

)à
K±
K L

Signal	for	a0(980)àK+K-

a0

γγèηπ0     Belle	

àηπ

a 0
(9
80
)è
ηπ

0

Crystal	Barrel	Collab:	PRD	57,	3860	(1998)								

Belle	Collab:
PRD	80,	032001	(2009)								

gKK
gηπ

=1.03±0.14

strong	a0(980)
coupling	to	KK



f0(980)àK+K-

f0(980)à π+π-

f2(1270)+f0(1370)àπ+π-

Signals	for	f0(980)àπ+π- &	K+K-

f’2(1525)+f0(1710)à K+K-

f0(1790)àπ+π-

gKK
gππ

=4.2±0.3

strong	f0(980)	
coupling	to	KK

_

BESII	PLB	607,	243	(2005)

Bf(J/ψàff0(980)	=	0.32±0.09	x 10-3



lots	of	puzzles:

§ No	“light”	JP=1+ and	2++	partner	nonets in	the	same	mass	range.

§ In	qqmeson	nonets,	the	I=1	mesons	have	no	s-quarks	and	are	the
lightest.		However,	the	I=1	a0(980)	mesons	are	the	nonet’s	heaviest.

§ The	a0(980)	triplet	has	strong	couplings	to	KK.

§ m(f0(980))~m(a0(980))		implies	“ideal”	mixing	&	small s-quark	content	in	f0(980)

§ Strong	couplings	to	KK violate	the	OZI	rule

_

_
pseudoscalars scalars

_

also:

typical unique
masses	are	inverted
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a0(980)0 f0(980)	mixing

isospin	violation	enhanced	
by	K0 – K+ mass	difference	

2mK+ =	987.4	MeV 2mK0 =	995.2	MeV

signal	is	a	narrow	line	shape:
G≈2(mK0-mK+)=7.8	MeV

PDG2020:
Mf0=	990	± 20	MeV	
Gf0=	~50	MeV

Ma0=	980	± 20	MeV
Ga0=	50	~	100	MeV

Achasov,	Devanin &	Shestakov,	
Phys.	Lett.	B88,	367	(1979)

2mK+ 2mK0

f0àa0
a0àf0

qq_

q2q2_

_

KK

a0—f0 substructure	probe
1st proposed	in	1979

Hanhart,	Kubis, &	Pelaez Phys.	Rev.	D76,	074028

J.J.	Wu	&	B.S.	Zou
PRD78,	074017

∝

phase	space	factors

much	narrower	than	Ga0 or	Gf0



cc1àa0(980)p
↳f0(980)àp+p-

BESIII	PRD,	95,	032002

BESIII
PRL,	121,	022001

cc1àa0(980)p
↳hp0

a0(980)àf0(980)	mixing 39	yrs after	it	was		1st proposed

signif.=7.4s



J/yàf0(980)f

↳p+p-
0

BESII	PLB	607,	243	(2005) BESIII	PRL.,	121,	022001

f0(980)àa0(980)	mixing

J/yàf0(980)f

↳a0(980)àhp0

39	yrs after	it		was	1st proposed

signif.=5.5s

(from	BESII)

BESIII
PRL.,	121,	022001



compare	with	models



peeking	at	the	insides	of	the	a0-f0 mesons

a0-f0
dressing
room



Summary

It	is	important	to	pay	attention	to	the	difficulties	in	a	
subject,	rather	than	the	successes.		It	is	in	thinking	
about	the	difficulties,	more	than	in	celebrating	the	
progress,	that	advances	are	made.

J.D.	Bjorken
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