The persistent allure of hadron physics

allure (n): the quality of being powerfully and mysteriously attractive or fascinating.

Stephen Lars Olsen Institute for Basic Science (Korea) MITP Workshop March

Part-I: "This"

some history

the proton, the oldest and most common hadron

Discovered by Rutherford 105 years ago

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science >

Series 6

Volume 37, 1919 - Issue 222

[581]

LIV. Collision of a Particles with Light Atoms. IV. An Anomalous Effect in Nitrogen. By Professor Sir E. RUTHERFORD, F.R.S.*

"...we must conclude ... that the hydrogen atom which is liberated formed a constituent part of the nitrogen nucleus."

strongest signal for N₂: $\alpha + {}^{14}N \rightarrow {}^{17}O + p$ 1st identified nuclear Transmutation reaction

 $KE_p = KE_{\alpha}$ -1.21 MeV

Eugen Goldstein 1850–1930

4. Ueber eine noch nicht untersuchte Strahlungsform an der Kathode inducirter Entladungen; von E. Goldstein.

Sitzungsber. d. k. Akad. d. Wissensch. zu Berlin vom 29. Juli 1886.)

PERFORATED

"About a not yet examined form of radiation at Cathode-Induced Discharges"

July 29,1886, 10 years before the discovery of the electron & 30 yrs before Rutherford

RAYS

-- largest for hydrogen

1956, Hofstadter: the proton isn't a point particle $e^- p \rightarrow e^- p$ elastic scattering

PHYSICAL REVIEW

A

VOLUME 103, NUMBER 5

SEPTEMBER 1, 1956

Structure of the Proton*

E. E. CHAMBERS[†] AND R. HOFSTADTER Department of Physics and High-Energy Physics Laboratory, Stanford University, Stanford, California (Received April 2, 1956)

Robert Hofstadter 1915-1990

Fermi & Dirac form factors What's \vec{F}_1 and \vec{F}_2 ?

assume exponential shapes: $F_1 = F_2$: $\rho(r) = \rho_0 \exp(-r/r_0)$

Status of r_E circa 2009 (5 decades later)

Proton charge radius R [fm]

Issues

 $G_{\rm E}(Q^2)$ is not a a simple dipole

$$G_E(Q^2) \neq G_{\text{dipole}} = \left(1 + \frac{Q^2}{0.71(\text{GeV}^2)}\right)^{-2}$$

nucleons' pion clouds produce "bumps" near Q²=0.15 GeV²

two approaches:

1) extrapolate to zero using model-motivated polynomial or spline fits to the data

(see Bernauer & Distler arXiv:1606.02159)

 2) extract pion cloud effects from e⁺e⁻→π⁺π⁻ and πN→πN data and include this in a dispersion relation

(see Lin, Hammer, Meissner PLB816,136254)

2010: *r_E* from muonic-Hydrogen Lamb-shift

66 yrs after Hofstader, r_E still uncertain to ~ ±5%

100 yrs later, the is proton still the source of interesting puzzles

Part-II: "That"

hadron thresholds

Time-like & space-like proton form-factors

Crossing symmetry:

 $\langle N(p')|j^{\mu}|N(p)\rangle \rightarrow \langle \overline{N}(p')N(p)|j^{\mu}|0\rangle$

the neglected time-like region

Robert Hofstadter

S. Pacetti et al., Phys Rep 550-551 (2015) 1

$e^+e^- \rightarrow p\bar{p}$ at threshold

$e^+e^- \rightarrow p\bar{p}$ at threshold

in point-like approx, there is a *non-zero* cross-section right at the threshold!

Sachs form factors

 $egin{aligned} G_E &= F_1 + rac{q^2}{4M^2}F_2 \ G_M &= F_1 + F_2 \end{aligned} egin{aligned} G_E(0) &= Q_N \ G_M(0) &= \mu_N \end{aligned}$

inconsistent with theory

What about neutral baryons?

$e^+e^- \rightarrow n\bar{n}$ or $\Lambda\bar{\Lambda}$ (or $\Sigma^0\bar{\Sigma}^0$ or $\Xi^0\bar{\Xi}^0$) at threshold

Integrated cross section: $\sigma_{n\bar{n}}(m_{n\bar{n}}) = \frac{4\pi\alpha^2\beta C}{3m_n^2} \left| G_{eff}(m_{n\bar{n}}) \right|^2 \left(1 + 1/2\tau \right)$

for point-like neutal particles $(n\overline{n} \text{ or } \Lambda\overline{\Lambda})$: C = 1

in point-like no Rydberg states approx: (Bohr-levels) $\sigma \propto \beta$ no "jump" expected m_m-2M_n

experiments see a $\sigma(e^+e^- \rightarrow n\bar{n})$ threshold jump

 $e^+e^- \rightarrow n\bar{n}$

BESIII Nature Phys17, 1200

experiments see a $\sigma(e^+e^- \rightarrow n\bar{n})$ threshold jump

initial state → final state: very different scales

quarks are point particles

$$\lambda_{\text{Compton}} \approx 1/2 m_p \approx 0.1 \text{ fm} << r_p \qquad q$$

$$e^+ \qquad e^- \qquad q$$
QED:
$$e^+ e^- \Rightarrow u \overline{u} \Rightarrow p \overline{p} \qquad \sigma_u = q_u^2 \sigma_{\text{point}}$$

$$e^+ e^- \Rightarrow d \overline{d} \Rightarrow p \overline{p} \qquad \sigma_d = q_d^2 \sigma_{\text{point}}$$

$$\sigma_{p \overline{p}} \stackrel{?}{=} (2q_u^2 + q_d^2) \sigma_{\text{point}}$$

initial state → final state: very different scales

add (quark charges)²

proton

incoherent sums!

$$\sum q_i^2 = \left(rac{2}{3}
ight)^2 + \left(rac{2}{3}
ight)^2 + \left(rac{1}{3}
ight)^2 = 1$$
 $\Delta \sigma_{\text{jump}} = 1 \times 850 \text{ pb}$

neutron

 $\Lambda^0 \Sigma^0 \Xi^0$

$$\sum q_i^2 = \left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2 = \frac{2}{3}$$

 $\Delta \sigma_{\text{jump}}$ =(2/3)×850 pb = 570 pb

 $\sum q_i^2 = \left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2 = \frac{2}{3} \qquad \Delta \sigma_{jump}^{\Sigma^0} = (2/3) \times \left(\frac{m_p}{m_{\Sigma}}\right)^2 850 \text{ pb} \stackrel{?}{=} 400 \text{ pb}$ $\Delta \sigma_{jump}^{\Sigma^0} = (2/3) \times \left(\frac{m_p}{m_{\Sigma}}\right)^2 850 \text{ pb} \stackrel{?}{=} 350 \text{ pb}$ $\Delta \sigma_{jump}^{\Xi^0} = (2/3) \times \left(\frac{m_p}{m_{\Xi}}\right)^2 850 \text{ pb} \stackrel{?}{=} 290 \text{ pb}$

$e^+e^- \rightarrow \Lambda^0 \overline{\Lambda}^0$ at Threshold

BESIII arXixv:2110.04510

BESIII PLB820,137557

$\sigma(e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-)$ has a threshold jump

$e^+e^- \rightarrow \Lambda \overline{\Lambda}$ not explained by final state interactions

adding (quark charges)² only works sometimes what else?

are there bound states in some channels, but not others?

-- spin=1 sub-threshold BB S-wave bound states --

Is there a sub-threshold $\Lambda\overline{\Lambda}$ state?

Hints of a $\sigma(e^+e^- \rightarrow K^+K^- K^+K^-)$ peak @ $2m_{\Lambda}$ seen in BaBar & BESIII

J^{PC}=0⁻⁺ baryonium?

-- spin=0 sub-threshold BB S-wave bound states? --

1st proposed by Fermi & Yang in 1949 (6 yrs prior to the \overline{p} discovery) *Phys.Rev.* 76 (1949) 1739-1743

Candidate 0⁻⁺ pp̄ bound state 1st seen in 2003

"protonium:" a pp bound state?

$X(1835) \rightarrow \pi^+\pi^-\eta'$ with 58M J/ψ decays (BESII)

BESII observation of X(1835) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

 $J/\psi \rightarrow \gamma p\bar{p}$ at BESIII (PWA)

pp bound state is required: Kang, Haidenbauer, Meissner: Phys. Rev. D 91 (2015) 7, 074003

X(1835) $\rightarrow \pi^+\pi^-\eta'$ with 1.1B J/ψ events (BESIII)

Flatté formula fit:

$$T = \frac{\sqrt{\rho_{out}}}{\mathcal{M}^2 - s - i\sum_k g_k^2 \rho_k}, \sum_k g_k^2 \rho_k \simeq g_0^2 (\rho_0 + \frac{g_{p\bar{p}}^2}{g_0^2} \rho_{p\bar{p}})$$

S.M. Flatte PLB 63, 224 (1976)

After ~130 years, still lots to learn about the proton

the scalar mesons near the KK threshold

the "light" scalar-meson nonet

Signal for $a_0(980) \rightarrow K^+K^-$

 \overline{pp} ANNIHILATION AT REST INTO $K_L K^\pm \pi^\mp$

Crystal Barrel Collab: PRD 57, 3860 (1998)

Signals for $f_0(980) \rightarrow \pi^+\pi^- \& K^+K^-$

Resonances in $J/\psi \rightarrow \phi \pi^+ \pi^-$ and $\phi K^+ K^-$

also: • No "light" J^P=1⁺ and 2⁺⁺ partner nonets in the same mass range.

- In qq meson nonets, the I=1 mesons have no s-quarks and are the lightest. However, the I=1 a₀(980) mesons are the nonet's heaviest.
- The $a_0(980)$ triplet has strong couplings to $K\overline{K}$.
- $m(f_0(980)) \sim m(a_0(980))$ implies "ideal" mixing & small s-quark content in $f_0(980)$
- Strong couplings to KK violate the OZI rule

39 yrs after it was 1st proposed

39 yrs after it was 1st proposed

 $f_0(980) \rightarrow a_0(980)$ mixing

BESIII PRL., 121, 022001

BESII PLB 607, 243 (2005)

compare with models

peeking at the insides of the a_0 - f_0 mesons

Summary

J.D. Bjorken

It is important to pay attention to the difficulties in a subject, rather than the successes. It is in thinking about the difficulties, more than in celebrating the progress, that advances are made.

