Endpoint singularities in μe backward scattering

(and the soft-overlap form factor for exclusive B decays)

Philipp Böer

based on: 2205.06021 with G. Bell and T. Feldmann, and PB PhD thesis 2018

MITP program "Power Expansions on the Lightcone" Mainz, Germany

22 September 2022

Outline

1. Introduction
2. Endpoint singularities in muon-electron backward scattering
3. Soft overlap form factor for non-relativistic $B_{c} \rightarrow \eta_{c}$ transitions
4. Conclusion

1. Introduction

Introduction

Aim of soft-collinear factorization:

1. combined expansion in $\mu_{\text {low }} / \mu_{\text {high }}$ and α_{S}
\rightarrow requires rigorous power-counting scheme
2. separate dynamics related to momentum regions with different virtualities and/or rapidities
\rightarrow separation of perturbative and non-perturbative dynamics in hadronic processes
3. employ Renormalization Group Equations to sum large logarithms to all orders

$$
\alpha_{s}^{n} \ln ^{m}\left(\frac{\mu_{\text {low }}}{\mu_{\text {high }}}\right)
$$

Introduction

Aim of soft-collinear factorization:

1. combined expansion in $\mu_{\text {low }} / \mu_{\text {high }}$ and α_{s}
\rightarrow requires rigorous power-counting scheme
2. separate dynamics related to momentum regions with different virtualities and/or rapidities
\rightarrow separation of perturbative and non-perturbative dynamics in hadronic processes
3. employ Renormalization Group Equations to sum large logarithms to all orders

$$
\alpha_{s}^{n} \ln ^{m}\left(\frac{\mu_{\text {low }}}{\mu_{\text {high }}}\right)
$$

Problem: standard procedure may lead to ill-defined convolution integrals

- they may only converge in $d=4-2 \varepsilon$ dimensions (SCET ${ }_{\mathrm{I}}$)
\rightarrow standard renormalization program breaks down
- dim.-reg. insufficient to separate modes with equal virtuality but different rapidity (SCET ${ }_{\text {II }}$)
\rightarrow analytic regulators violate naive decoupling ("collinear anomaly")
- often related to soft fermions (\rightarrow n.l.p.!)

Incomplete List of Examples

- off-diagonal channels in DIS
- bottom induced $h \rightarrow \gamma \gamma$ decay
- off-diagonal gluon thrust

In B-meson decays:

- power-corrections in $B \rightarrow h_{1} h_{2}$ decays (e.g. weak annihilation)
[BBNS '99/00]
- power-corrections in radiative $B \rightarrow \gamma \ell \nu$ decays
[e.g. Beneke,Rohrwild '11]
- heavy-to-light form factors [Beneke,Feldmann '00]
- certain QED corrections in $B_{S} \rightarrow \mu^{+} \mu^{-}$

Incomplete List of Examples

- off-diagonal channels in DIS
- bottom induced $h \rightarrow \gamma \gamma$ decay
- off-diagonal gluon thrust
- ...

In B-meson decays:

- power-corrections in $B \rightarrow h_{1} h_{2}$ decays (e.g. weak annihilation)
[BBNS '99/00]
- power-corrections in radiative $B \rightarrow \gamma \ell \nu$ decays
[e.g. Beneke,Rohrwild '11]
- heavy-to-light form factors [Beneke,Feldmann '00]
- certain QED corrections in $B_{S} \rightarrow \mu^{+} \mu^{-}$

Problem seems to arise generically in SCET at subleading power! A better understanding would constitute a major step in controlling the $1 / E$ expansion.
$\Lambda_{\mathrm{QCD}} / m_{B} \gtrsim 0.1$ is not extremely small. Very relevant in B physics!

2. muon-electron backward scattering: a prime example for endpoint singularities

based on arXiv:2205.06021 with G. Bell and T. Feldmann

Why "prime example"?

Clean framework to study physics of endpoint singularities, because ...
\checkmark perturbative QED process from the textbook
\checkmark resummed double logarithms known for >50 years [Gorshove et al. 1966]
\checkmark they arise from single scalar Integral at each order in $\alpha_{\mathrm{em}}(\rightarrow$ playground for method-of-regions)
\checkmark bare factorization theorem can be reduced to a single term at the DL level
\checkmark most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. $h \rightarrow \gamma \gamma$, gluon thrust)
\checkmark mimics structure of endpoint singularities in exclusive B decays (\& other hard-exclusive processes)
:(phenomenologically not the most relevant process
:(subleading logarithms way more complicated and unknown

Why "prime example"?

Clean framework to study physics of endpoint singularities, because ...
\checkmark perturbative QED process from the textbook
\checkmark resummed double logarithms known for >50 years
\checkmark they arise from single scalar Integral at each order in $\alpha_{\mathrm{em}}(\rightarrow$ playground for method-of-regions)
\checkmark bare factorization theorem can be reduced to a single term at the DL level
\checkmark most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. $h \rightarrow \gamma \gamma$, gluon thrust)
\checkmark mimics structure of endpoint singularities in exclusive B decays (\& other hard-exclusive processes)
:(phenomenologically not the most relevant process
:(subleading logarithms way more complicated and unknown

Why "prime example"?

Clean framework to study physics of endpoint singularities, because ...
\checkmark perturbative QED process from the textbook
\checkmark resummed double logarithms known for >50 years
\checkmark they arise from single scalar Integral at each order in $\alpha_{\mathrm{em}}(\rightarrow$ playground for method-of-regions)
\checkmark bare factorization theorem can be reduced to a single term at the DL level
\checkmark most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. $h \rightarrow \gamma \gamma$, gluon thrust)
\checkmark mimics structure of endpoint singularities in exclusive B decays (\& other hard-exclusive processes)
:(phenomenologically not the most relevant process
:(subleading logarithms way more complicated and unknown

Why "prime example"?

Clean framework to study physics of endpoint singularities, because ...
\checkmark perturbative QED process from the textbook
\checkmark resummed double logarithms known for >50 years
\checkmark they arise from single scalar Integral at each order in $\alpha_{\mathrm{em}}(\rightarrow$ playground for method-of-regions)
\checkmark bare factorization theorem can be reduced to a single term at the DL level
\checkmark most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. $h \rightarrow \gamma \gamma$, gluon thrust)
\checkmark mimics structure of endpoint singularities in exclusive B decays (\& other hard-exclusive processes)
:(phenomenologically not the most relevant process
:(subleading logarithms way more complicated and unknown

Why "prime example"?

Clean framework to study physics of endpoint singularities, because ...
\checkmark perturbative QED process from the textbook
\checkmark resummed double logarithms known for >50 years
\checkmark they arise from single scalar Integral at each order in $\alpha_{\mathrm{em}}(\rightarrow$ playground for method-of-regions)
\checkmark bare factorization theorem can be reduced to a single term at the DL level
\checkmark most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. $h \rightarrow \gamma \gamma$, gluon thrust)
\checkmark mimics structure of endpoint singularities in exclusive B decays (\& other hard-exclusive processes)
:(phenomenologically not the most relevant process
:(subleading logarithms way more complicated and unknown

Why "prime example"?

Clean framework to study physics of endpoint singularities, because ...
\checkmark perturbative QED process from the textbook
\checkmark resummed double logarithms known for >50 years
\checkmark they arise from single scalar Integral at each order in $\alpha_{\mathrm{em}}(\rightarrow$ playground for method-of-regions)
\checkmark bare factorization theorem can be reduced to a single term at the DL level
\checkmark most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. $h \rightarrow \gamma \gamma$, gluon thrust)
\checkmark mimics structure of endpoint singularities in exclusive B decays (\& other hard-exclusive processes)
:(phenomenologically not the most relevant process
:(subleading logarithms way more complicated and unknown

Why "prime example"?

Clean framework to study physics of endpoint singularities, because ...
\checkmark perturbative QED process from the textbook
\checkmark resummed double logarithms known for >50 years
\checkmark they arise from single scalar Integral at each order in $\alpha_{\mathrm{em}}(\rightarrow$ playground for method-of-regions)
\checkmark bare factorization theorem can be reduced to a single term at the DL level
\checkmark most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. $h \rightarrow \gamma \gamma$, gluon thrust)
\checkmark mimics structure of endpoint singularities in exclusive B decays (\& other hard-exclusive processes)
:(phenomenologically not the most relevant process
subleading logarithms way more complicated and unknown

Why "prime example"?

Clean framework to study physics of endpoint singularities, because ...
\checkmark perturbative QED process from the textbook
\checkmark resummed double logarithms known for >50 years
\checkmark they arise from single scalar Integral at each order in $\alpha_{\mathrm{em}}(\rightarrow$ playground for method-of-regions)
\checkmark bare factorization theorem can be reduced to a single term at the DL level
\checkmark most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. $h \rightarrow \gamma \gamma$, gluon thrust)
\checkmark mimics structure of endpoint singularities in exclusive B decays (\& other hard-exclusive processes)
:(phenomenologically not the most relevant process
:(subleading logarithms way more complicated and unknown

Backward Scattering

$$
2 \rightarrow 2 \text { process: } \quad e^{-}(p) \mu^{-}(\bar{p}) \rightarrow e^{-}(\bar{p}) \mu^{-}(p) \quad \text { at } \quad s \approx-t \gg m_{\mu}^{2} \sim m_{e}^{2} \gg u
$$

- consider common mass $m_{\mu} \simeq m_{e} \rightarrow m$ for simplicity (but distinguishable flavours)
- expansion parameter: $\lambda=m / \sqrt{s}$, and light-cone vectors

$$
p^{\mu}=\frac{\sqrt{s}}{2} n_{-}^{\mu}+\frac{m^{2}}{2 \sqrt{s}} n_{+}^{\mu} \quad \quad \bar{p}^{\mu}=\frac{\sqrt{s}}{2} n_{+}^{\mu}+\frac{m^{2}}{2 \sqrt{s}} n_{-}^{\mu}
$$

Backward Scattering

$$
2 \rightarrow 2 \text { process: } \quad e^{-}(p) \mu^{-}(\bar{p}) \rightarrow e^{-}(\bar{p}) \mu^{-}(p) \quad \text { at } \quad s \approx-t \gg m_{\mu}^{2} \sim m_{e}^{2} \gg u
$$

- consider common mass $m_{\mu} \simeq m_{e} \rightarrow m$ for simplicity (but distinguishable flavours)
- expansion parameter: $\lambda=m / \sqrt{s}$, and light-cone vectors

$$
p^{\mu}=\frac{\sqrt{s}}{2} n_{-}^{\mu}+\frac{m^{2}}{2 \sqrt{s}} n_{+}^{\mu} \quad \quad \bar{p}^{\mu}=\frac{\sqrt{s}}{2} n_{+}^{\mu}+\frac{m^{2}}{2 \sqrt{s}} n_{-}^{\mu}
$$

- high-energy limit: $\quad \mathcal{M}=F_{1}(\lambda) \mathcal{M}^{(0)}+F_{2}(\lambda) \widetilde{\mathcal{M}}$
\rightarrow leading DLs in form factor $F_{1}(\lambda)$ that multiplies tree amplitude $\mathcal{M}^{(0)} \sim \alpha_{\mathrm{em}}$
- DL at NLO from twisted box: $\quad F_{1}(\lambda)=1+\frac{\alpha_{\mathrm{em}}}{2 \pi} \frac{1}{2} \ln ^{2} \lambda^{2}+\ldots$

Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, $k^{\mu} \sim \lambda$:

Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, $k^{\mu} \sim \lambda$:

After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

$$
F_{1}^{(1)}(\lambda) \sim \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}-m^{2}} \frac{1}{(k-p)^{2}} \frac{1}{(k-\bar{p})^{2}}
$$

Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, $k^{\mu} \sim \lambda$:

After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

$$
F_{1}^{(1)}(\lambda) \sim \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}-m^{2}} \frac{1}{(k-p)^{2}} \frac{1}{(k-\bar{p})^{2}}
$$

Photon propagators become eikonal:

$$
(k-p)^{2}+i 0 \simeq-\sqrt{s}\left(n_{-} k\right)+i 0, \quad(k-\bar{p})^{2}+i 0 \simeq-\sqrt{s}\left(n_{+} k\right)+i 0
$$

Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, $k^{\mu} \sim \lambda$:

After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

$$
F_{1}^{(1)}(\lambda) \sim \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}-m^{2}} \frac{1}{(k-p)^{2}} \frac{1}{(k-\bar{p})^{2}}
$$

Photon propagators become eikonal:

$$
(k-p)^{2}+i 0 \simeq-\sqrt{s}\left(n_{-} k\right)+i 0, \quad(k-\bar{p})^{2}+i 0 \simeq-\sqrt{s}\left(n_{+} k\right)+i 0
$$

Non-vanishing contribution from discontinuity of soft lepton propagator:

$$
\int \frac{d k_{\perp}^{2}}{k^{2}-m^{2}+i 0} \rightarrow-2 \pi i \theta\left(\left(n_{+} k\right)\left(n_{-} k\right)-m^{2}\right)
$$

Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, $k^{\mu} \sim \lambda$:

After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

$$
F_{1}^{(1)}(\lambda) \sim \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{k^{2}-m^{2}} \frac{1}{(k-p)^{2}} \frac{1}{(k-\bar{p})^{2}}
$$

Photon propagators become eikonal:

$$
(k-p)^{2}+i 0 \simeq-\sqrt{s}\left(n_{-} k\right)+i 0, \quad(k-\bar{p})^{2}+i 0 \simeq-\sqrt{s}\left(n_{+} k\right)+i 0
$$

Non-vanishing contribution from discontinuity of soft lepton propagator:

$$
\int \frac{d k_{\perp}^{2}}{k^{2}-m^{2}+i 0} \rightarrow-2 \pi i \theta\left(\left(n_{+} k\right)\left(n_{-} k\right)-m^{2}\right)
$$

Traditional approach: put hard cut-offs on longitudinal momenta $\left(n_{ \pm} k\right) \leq \sqrt{s}$

$$
F_{1}^{(1)}(\lambda) \simeq \int_{\lambda^{2}}^{1} \frac{d x}{x} \int_{\lambda^{2} / x}^{1} \frac{d y}{y}=\frac{1}{2} \ln ^{2} \lambda^{2} \quad \checkmark \quad\left(n_{+} k=x \sqrt{s}, n_{-} k=y \sqrt{s}\right)
$$

Isolating the Double-Log's at Higher Orders

all photon propagators eikonal: $\quad\left(k_{i}-k_{i-1}\right)^{2}+i 0 \simeq-\left(n_{+} k_{i}\right)\left(n_{-} k_{i-1}\right)+i 0$
strongly ordered longitudinal lepton momenta:

$$
\begin{aligned}
& \frac{m^{2}}{\sqrt{s}} \approx n_{+} \bar{p} \ll n_{+} k_{1} \ll \cdots<n_{+} k_{n} \ll n_{+} p \approx \sqrt{s} \\
& \sqrt{s} \approx n_{-} \bar{p} \gg n_{-} k_{1} \gg \cdots \gg n_{-} k_{n} \gg n_{+} p \approx \frac{m^{2}}{\sqrt{s}}
\end{aligned}
$$

Isolating the Double-Log's at Higher Orders

all photon propagators eikonal: $\quad\left(k_{i}-k_{i-1}\right)^{2}+i 0 \simeq-\left(n_{+} k_{i}\right)\left(n_{-} k_{i-1}\right)+i 0$
strongly ordered longitudinal lepton momenta:

$$
\begin{aligned}
& \frac{m^{2}}{\sqrt{s}} \approx n_{+} \bar{p} \ll n_{+} k_{1} \ll \cdots n_{+} k_{n} \ll n_{+} p \approx \sqrt{s} \\
& \sqrt{s} \approx n_{-} \bar{p} \gg n_{-} k_{1} \gg \cdots \gg n_{-} k_{n} \gg n_{+} p \approx \frac{m^{2}}{\sqrt{s}}
\end{aligned}
$$

yields nested integrals:

$$
F_{1}^{(n)}(\lambda) \simeq \int_{\lambda^{2}}^{1} \frac{d x_{1}}{x_{1}} \int_{x_{1}}^{1} \frac{d x_{2}}{x_{2}} \cdots \int_{x_{n-1}}^{1} \frac{d x_{n}}{x_{n}} \int_{\lambda^{2} / x_{1}}^{1} \frac{d y_{1}}{y_{1}} \int_{\lambda^{2} / x_{2}}^{y_{1}} \frac{d y_{2}}{y_{2}} \cdots \int_{\lambda^{2} / x_{n}}^{y_{n-1}} \frac{d y_{n}}{y_{n}}=\frac{\ln ^{2 n} \lambda^{2}}{n!(n+1)!}
$$

Isolating the Double-Log's at Higher Orders

all photon propagators eikonal: $\quad\left(k_{i}-k_{i-1}\right)^{2}+i 0 \simeq-\left(n_{+} k_{i}\right)\left(n_{-} k_{i-1}\right)+i 0$
strongly ordered longitudinal lepton momenta:

$$
\begin{aligned}
& \frac{m^{2}}{\sqrt{s}} \approx n_{+} \bar{p} \ll n_{+} k_{1} \ll \cdots n_{+} k_{n} \ll n_{+} p \approx \sqrt{s} \\
& \sqrt{s} \approx n_{-} \bar{p} \gg n_{-} k_{1} \gg \cdots \gg n_{-} k_{n} \gg n_{+} p \approx \frac{m^{2}}{\sqrt{s}}
\end{aligned}
$$

that sum up to modified Bessel function:

$$
F_{1}(\lambda) \simeq \sum_{n=0}^{\infty}\left(\frac{\alpha_{\mathrm{em}}}{2 \pi}\right)^{n} F_{1}^{(n)}(\lambda)=\frac{l_{1}(2 \sqrt{z})}{\sqrt{z}}, \quad \text { with } \quad z=\frac{\alpha_{\mathrm{em}}}{2 \pi} \ln ^{2} \lambda^{2}
$$

Isolating the Double-Log's at Higher Orders

$$
F_{1}(\lambda) \simeq \sum_{n=0}^{\infty}\left(\frac{\alpha_{\mathrm{em}}}{2 \pi}\right)^{n} F_{1}^{(n)}(\lambda)=\frac{l_{1}(2 \sqrt{z})}{\sqrt{z}}, \quad \text { with } \quad z=\frac{\alpha_{\mathrm{em}}}{2 \pi} \ln ^{2} \lambda^{2}
$$

However, ...

- only the leading double-logarithms identified in this way
- scale of running coupling undetermined
- factorize non-pert. physics from short-distance dynamics (in hadronic processes)

Goal: Formulate problem in SCET in terms of a renormalized factorization theorem!
... work in progress! Highly non-trivial endpoint singular convolutions!

Method-of-Regions Analysis

$$
\mathcal{I}^{(\text {hard })}=\frac{1}{\varepsilon^{2}}+\frac{1}{\varepsilon} \ln \frac{\mu^{2}}{s}+\frac{1}{2} \ln ^{2} \frac{\mu^{2}}{s}-\frac{\pi^{2}}{12}+\mathcal{O}(\varepsilon)
$$

- contains Sudakov-type double-logarithms involving the hard scale μ / \sqrt{s}

Method-of-Regions Analysis

$\mathcal{I}^{(\mathrm{c})}=e^{\varepsilon \gamma_{E}} \Gamma(\varepsilon)\left(\frac{\mu^{2}}{m^{2}}\right)^{\varepsilon} \int_{0}^{1} \frac{d x}{x}(1-x)^{-2 \varepsilon}\left(\frac{\nu}{x \sqrt{s}}\right)^{\alpha}=-\left(\frac{1}{\alpha}+\ln \frac{\nu}{\sqrt{s}}\right)\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{m^{2}}\right)+\frac{\pi^{2}}{3}+\mathcal{O}(\alpha, \varepsilon)$

- standard UV singularity $\Gamma(\varepsilon)$ from $k_{\perp} \rightarrow \infty$
- Endpoint-singularity for $n_{+} k=x \sqrt{s} \rightarrow 0$
\rightarrow ill-defined in dim.-reg. due to lepton mass $m \neq 0$
\rightarrow rapidity divergence! Fermion propagator overlaps between low-energy regions
\rightarrow No IR-singularity in the conventional sense (no mode below $\mu \sim m$)
- requires additional (analytic) rapidity regulator (e.g. [Becher/Bell,Ebert et al.,Chiu et al.,Neill et al.,...])
\rightarrow here: $\left(\nu / 2 k_{0}\right)^{\alpha}$ preserves symmetry, so $\mathcal{I}^{(c)}=\mathcal{I}^{(\bar{c})}$
\rightarrow small virtuality $\mu \sim m$, large energy $\nu \sim \sqrt{s}$

Method-of-Regions Analysis

Method-of-Regions Analysis

$$
\mathcal{I}^{(\mathrm{s})}=2\left(\frac{1}{\alpha}+\ln \frac{\nu}{m}\right)\left(\frac{1}{\varepsilon}+\ln \frac{\mu^{2}}{m^{2}}\right)-\frac{1}{\varepsilon^{2}}-\frac{1}{\varepsilon} \ln \frac{\mu^{2}}{m^{2}}-\frac{1}{2} \ln \frac{\mu^{2}}{m^{2}}+\frac{\pi^{2}}{12}+\mathcal{O}(\alpha, \varepsilon)
$$

- again ill-defined in dim.-reg.
$\rightarrow 1 / \alpha$ singularity from both limits $n_{+} k \rightarrow \infty$ and $n_{-} k \rightarrow \infty$
- symmetric regulator remains unexpanded: $2 k_{0}=n_{+} k+n_{-} k=(x+y) \sqrt{s}$
\rightarrow small virtuality $\mu \sim m$, small energy $\nu \sim m$
\rightarrow can be made scaleless by choosing an asymmetric regulator, e.g. $\left(\nu / n_{+} k\right)^{\alpha}$

Method-of-Regions Analysis

- Sum of regions:

$$
\mathcal{I}^{(\text {hard })}+\mathcal{I}^{(c)}+\mathcal{I}^{(\bar{c})}+\mathcal{I}^{(s)}=\frac{1}{2} \ln ^{2} \lambda^{2}+\frac{2 \pi^{2}}{3}
$$

\checkmark dimensional and analytic regulator drop out
\checkmark leading DL recovered

- remaining one-loop graphs standard
\rightarrow no endpoint-singularity, no analytic regulator, DL cancels

Formulation in SCET

Two-step matching: QED $\xrightarrow{s \rightarrow \infty}$ SCET $_{\text {I }} \xrightarrow{\sqrt{s} m \rightarrow \infty}$ SCET $_{\text {III }}$:
(boring diagrams not shown)

Schematic form of bare factorization formula

$$
F_{1}(\lambda) \simeq f_{\bar{c}} \otimes H \otimes f_{c}
$$

Formulation in SCET

Two-step matching: QED $\xrightarrow{s \rightarrow \infty}$ SCET $_{\text {I }} \xrightarrow{\sqrt{s} m \rightarrow \infty}$ SCET $_{\text {III }}$:
(boring diagrams not shown)

Schematic form of bare factorization formula

$$
F_{1}(\lambda) \simeq f_{\bar{c}} \otimes H \otimes f_{c}+f_{\bar{c}} \otimes J_{\bar{h} c} \otimes S \otimes J_{h c} \otimes f_{c}
$$

Formulation in SCET

Two-step matching: QED $\xrightarrow{s \rightarrow \infty}$ SCET $_{\text {I }} \xrightarrow{\sqrt{s} m \rightarrow \infty}$ SCET $_{\text {III }}$:

Schematic form of bare factorization formula

$$
F_{1}(\lambda) \simeq f_{\bar{c}} \otimes H \otimes f_{c}+f_{\bar{c}} \otimes J_{\bar{h} c} \otimes S \otimes J_{h c} \otimes f_{c}
$$

- soft contribution leading power due to specific soft-enhancement mechanism (\rightarrow backup)
\checkmark individual bare soft and coll. fct's defined as SCET operator matrix elements, e.g.
$\left\langle\mu^{-}(p)\right| \bar{\chi}_{c}^{(\mu)}\left(\tau n_{+}\right) \frac{\boldsymbol{h}_{+}}{2} P_{R(L)} \chi_{c}^{(e)}(0)\left|e^{-}(p)\right\rangle=\int d x e^{i x \tau n_{+} p}\left\{f_{c}(x)\left[\bar{u}_{\xi}^{(\mu)} \frac{\dot{H}_{+}}{2} P_{R(L)} u_{\xi}^{(e)}\right]+\tilde{f}_{c}(x)\left[\bar{u}_{\xi}^{(\mu)} \frac{\underline{h}_{+}}{2} P_{L(R)} u_{\xi}^{(e)}\right]\right\}$
\rightarrow generalized parton distributions (forward, but flavour-non-diagonal)
\rightarrow helicity-flipping functions $\tilde{f}_{c}(x)$ and $\tilde{f}_{\bar{c}}(y)$ do not contribute to leading DLs

Formulation in SCET

Two-step matching: QED $\stackrel{s \rightarrow \infty}{\rightarrow}$ SCET $_{\text {I }} \xrightarrow{\sqrt{s} m \rightarrow \infty}$ SCET $_{\text {II }}$:

Schematic form of bare factorization formula

$$
F_{1}(\lambda) \simeq f_{\bar{c}} \otimes H \otimes f_{c}+f_{\bar{c}} \otimes J_{\bar{h} c} \otimes S \otimes J_{h c} \otimes f_{c}
$$

- At one-loop level

$$
f_{C}(x) \simeq \delta(1-x)+\frac{\alpha_{\mathrm{em}}}{2 \pi} \theta(x) \theta(1-x)\left(\frac{\mu^{2}}{m^{2}}\right)^{\varepsilon} \Gamma(\varepsilon)(1+\mathcal{O}(x))
$$

\rightarrow convolution integrals $\int \frac{d x}{x} f_{c}(x)$ require rapidity regulator!

> ?? How to renormalize functions before performing the convolutions ??

Endpoint-Refactorization

Q: Can we understand the $x \rightarrow 0$ asymptotics of the bare functions $f_{c}(x)$ to all orders in α_{em} ?
Can we isolate and subtract the divergences?

Recall: Rapidity diverences arise from the soft limit of the coll. fermion propagators!
\rightarrow interpret $f_{c}(x)$ for $x \rightarrow 0$ as multi-scale object

$$
f_{c}(x \rightarrow 0) \simeq \int \frac{d x^{\prime}}{x^{\prime}} f_{c}\left(x^{\prime}\right) \int \frac{d \rho}{\rho} J_{h c}\left(\rho x^{\prime}\right) S(\rho, x)
$$

\checkmark reflects structure of the second term $f \otimes J \otimes S \otimes J \otimes f$ as $1 / \alpha$ poles must cancel

Endpoint-Refactorization

Q: Can we understand the $x \rightarrow 0$ asymptotics of the bare functions $f_{c}(x)$ to all orders in α_{em} ?
Can we isolate and subtract the divergences?

Recall: Rapidity diverences arise from the soft limit of the coll. fermion propagators!
\rightarrow interpret $f_{c}(x)$ for $x \rightarrow 0$ as multi-scale object

$$
f_{c}(x \rightarrow 0) \simeq \int \frac{d x^{\prime}}{x^{\prime}} f_{c}\left(x^{\prime}\right) \int \frac{d \rho}{\rho} J_{h c}\left(\rho x^{\prime}\right) S(\rho, x)
$$

\checkmark reflects structure of the second term $f \otimes J \otimes S \otimes J \otimes f$ as $1 / \alpha$ poles must cancel

Implications: (before expansion in ε !)
1.) collinear functions receive positive powers of x^{ε} from $J_{h c} \Rightarrow\left\langle x^{-1-n \varepsilon}\right\rangle_{f_{c}} \sim 1 / \alpha, \forall n$
2.) $1 / \alpha$ cancel within $f_{c}(x \rightarrow 0)$ and generate powers of $\ln x \Rightarrow$ higher powers in $1 / \alpha$
3.) peculiar structure as $f_{c}\left(x^{\prime}\right)$ arises on the RHS $\quad \Rightarrow \quad$ non-additive problem

Endpoint-Refactorization

Q: Can we understand the $x \rightarrow 0$ asymptotics of the bare functions $f_{c}(x)$ to all orders in α_{em} ?
Can we isolate and subtract the divergences?
Recall: Rapidity diverences arise from the soft limit of the coll. fermion propagators!
\rightarrow interpret $f_{c}(x)$ for $x \rightarrow 0$ as multi-scale object

$$
f_{c}(x \rightarrow 0) \simeq \int \frac{d x^{\prime}}{x^{\prime}} f_{c}\left(x^{\prime}\right) \int \frac{d \rho}{\rho} J_{h c}\left(\rho x^{\prime}\right) S(\rho, x)
$$

\checkmark reflects structure of the second term $f \otimes J \otimes S \otimes J \otimes f$ as $1 / \alpha$ poles must cancel

Example: at four-loop $f_{c}(x)$ has the following asymptotic structure:

$$
f_{c}^{(4)}(x \rightarrow 0) \simeq\left(\frac{\mu^{2}}{m^{2}}\right)^{4 \varepsilon}\left\{\frac{x^{3 \varepsilon}-15 x^{2 \varepsilon}+339 x^{\varepsilon}-325}{144 \varepsilon^{7}}-\frac{\left(3 x^{\varepsilon}+23\right) \ln x}{12 \varepsilon^{6}}-\frac{3 \ln ^{2} x}{4 \varepsilon^{5}}-\frac{\ln ^{3} x}{6 \varepsilon^{4}}\right\}
$$

Resummation from Consistency Relations

Despite the complexity of the problem, the DL series is completely determined by
(i) scale separation (of bare quantities)
(ii) consistency (i.e. pole cancellation in $1 / \alpha$ and $1 / \varepsilon$)
(iii) refactorization

Resummation from Consistency Relations

Despite the complexity of the problem, the DL series is completely determined by
(i) scale separation (of bare quantities)
(ii) consistency (i.e. pole cancellation in $1 / \alpha$ and $1 / \varepsilon$)
(iii) refactorization

1. Use asymmetric regulator that makes soft contribution scaleless: (clear scale separation \checkmark)

$$
F_{1}(\lambda) \simeq \int_{0}^{1} \frac{d x}{x} f_{c}\left(x ; \frac{\mu}{m}, \frac{\nu}{\sqrt{s}}\right) \int_{0}^{1} \frac{d y}{y} f_{\bar{c}}\left(y ; \frac{\mu}{m}, \frac{\nu \sqrt{s}}{m^{2}}\right) H\left(\frac{\mu^{2}}{x y s}\right)
$$

\rightarrow single term that involves only leading-twist projections

Resummation from Consistency Relations

Despite the complexity of the problem, the DL series is completely determined by
(i) scale separation (of bare quantities)
(ii) consistency (i.e. pole cancellation in $1 / \alpha$ and $1 / \varepsilon$)
(iii) refactorization

1. Use asymmetric regulator that makes soft contribution scaleless: (clear scale separation \checkmark)

$$
F_{1}(\lambda) \simeq \int_{0}^{1} \frac{d x}{x} f_{c}\left(x ; \frac{\mu}{m}, \frac{\nu}{\sqrt{s}}\right) \int_{0}^{1} \frac{d y}{y} f_{\bar{c}}\left(y ; \frac{\mu}{m}, \frac{\nu \sqrt{s}}{m^{2}}\right) H\left(\frac{\mu^{2}}{x y s}\right)
$$

\rightarrow single term that involves only leading-twist projections
2. Insert perturbative expansion of hard function at double-log level:

$$
H\left(\frac{\mu^{2}}{x y s}\right) \simeq \sum_{n=0}^{\infty} z_{h}^{n} h^{(n)}(x y)^{-n \varepsilon} \quad \text { with } \quad z_{h}=\frac{\alpha_{\mathrm{em}}}{2 \pi} \frac{1}{\varepsilon^{2}}\left(\frac{\mu^{2}}{s}\right)^{\varepsilon}
$$

Form factor expressed as infinite sum of products of divergent moments:

$$
F_{1}(\lambda)=\sum_{n=0}^{\infty} z_{h}^{n} h^{(n)}\left\langle x^{-1-n \varepsilon}\right\rangle_{f_{c}}\left(\frac{\mu}{m}, \frac{\nu}{\sqrt{s}}\right)\left\langle y^{-1-n \varepsilon}\right\rangle_{f_{\bar{c}}}\left(\frac{\mu}{m}, \frac{\nu \sqrt{s}}{m^{2}}\right)
$$

Resummation from Consistency Relations

3. Rapidity poles must cancel at each order in the hard-matching
\rightarrow Collinear Anomaly: large rapidity log's exponentiate in products
$\rightarrow F_{1}$ expressed as infinite sum of anomaly exponents \mathcal{F}_{n} and "remainder functions" r_{n}

$$
F_{1}(\lambda)=\sum_{n=0}^{\infty} z_{h}^{n} h^{(n)} r_{n}(\mu / m) \cdot\left(\frac{m^{2}}{s}\right)^{\mathcal{F}_{n}(\mu / m)}
$$

Resummation from Consistency Relations

3. Rapidity poles must cancel at each order in the hard-matching
\rightarrow Collinear Anomaly: large rapidity log's exponentiate in products
$\rightarrow F_{1}$ expressed as infinite sum of anomaly exponents \mathcal{F}_{n} and "remainder functions" r_{n}

$$
F_{1}(\lambda)=\sum_{n=0}^{\infty} z_{h}^{n} h^{(n)} r_{n}(\mu / m) \cdot\left(\frac{m^{2}}{s}\right)^{\mathcal{F}_{n}(\mu / m)}
$$

4. Insert perturbative expansion (with constraints from refactorization)

$$
r_{n}(\mu / m)=\sum_{k=0}^{\infty}\left(\frac{\alpha_{\mathrm{em}}}{2 \pi}\right)^{k}\left(\frac{\mu^{2}}{m^{2}}\right)^{k \varepsilon} \frac{r_{n}^{(k)}}{\varepsilon^{2 k}}, \quad \mathcal{F}_{n}(\mu / m)=\sum_{l=n+1}^{\infty}\left(\frac{\alpha_{\mathrm{em}}}{2 \pi}\right)^{\prime}\left(\frac{\mu^{2}}{m^{2}}\right)^{I \varepsilon} \frac{\mathcal{F}_{n}^{(I)}}{\varepsilon^{2 l-1}}
$$

Resummation from Consistency Relations

3. Rapidity poles must cancel at each order in the hard-matching
\rightarrow Collinear Anomaly: large rapidity log's exponentiate in products
[Becher,Bell,Neubert '11]
$\rightarrow F_{1}$ expressed as infinite sum of anomaly exponents \mathcal{F}_{n} and "remainder functions" r_{n}

$$
F_{1}(\lambda)=\sum_{n=0}^{\infty} z_{h}^{n} h^{(n)} r_{n}(\mu / m) \cdot\left(\frac{m^{2}}{s}\right)^{\mathcal{F}_{n}(\mu / m)}
$$

4. Insert perturbative expansion (with constraints from refactorization)

$$
r_{n}(\mu / m)=\sum_{k=0}^{\infty}\left(\frac{\alpha_{\mathrm{em}}}{2 \pi}\right)^{k}\left(\frac{\mu^{2}}{m^{2}}\right)^{k \varepsilon} \frac{r_{n}^{(k)}}{\varepsilon^{2 k}}, \quad \mathcal{F}_{n}(\mu / m)=\sum_{l=n+1}^{\infty}\left(\frac{\alpha_{\mathrm{em}}}{2 \pi}\right)^{\prime}\left(\frac{\mu^{2}}{m^{2}}\right)^{I \varepsilon} \frac{\mathcal{F}_{n}^{(I)}}{\varepsilon^{2 l-1}}
$$

5. Form factor finite for $\varepsilon \rightarrow 0$ gives consistency relations between ($\left.h^{(n)}, r_{n}^{(k)}, \mathcal{F}_{n}^{(k)}\right)$
\checkmark reproduce known result order-by-order:

$$
F_{1}(\lambda) \simeq \frac{I_{1}\left(2 \sqrt{h^{(1)} z}\right)}{\sqrt{h^{(1) z}}}
$$

\checkmark single unknown coefficient $h^{(1)}=1$ determined from one-loop calculation
! need infinite perturbative series of anomaly exponents

Comparison to $h \rightarrow \gamma \gamma$

At first sight, the two processes seem to be very similar at the technical level: SCET $_{\text {II }}$, same modes, massive fermion propagators, analytic regulators, . . . but:

Comparison to $h \rightarrow \gamma \gamma$

At first sight, the two processes seem to be very similar at the technical level: SCET $_{\text {II }}$, same modes, massive fermion propagators, analytic regulators, . . . but:

Bare factorization theorem for form factor F_{1} takes the schematic form

$$
f_{\bar{c}} \otimes H \otimes f_{c}+f_{\bar{c}} \otimes J_{\overline{h c}} \otimes S \otimes J_{h c} \otimes f_{c}
$$

- endpoint-div. cancel in products of inv. moments \rightarrow exponentiation of rapidity poles
- iterative refactorization condition: $f_{c}(x \rightarrow 0) \sim f_{c} \otimes J_{h c} \otimes S$
- soft function does not vanish for zero argument (upper cut-off insufficient to cure endpoint)

Comparison to $h \rightarrow \gamma \gamma$

At first sight, the two processes seem to be very similar at the technical level: SCET $_{\text {II }}$, same modes, massive fermion propagators, analytic regulators, . . . but:

Bare factorization theorem for form factor F_{1} takes the schematic form

$$
f_{\bar{c}} \otimes H \otimes f_{c}+f_{\bar{c}} \otimes J_{\overline{h c}} \otimes S \otimes J_{h c} \otimes f_{c}
$$

- endpoint-div. cancel in products of inv. moments \rightarrow exponentiation of rapidity poles
- iterative refactorization condition: $f_{c}(x \rightarrow 0) \sim f_{c} \otimes J_{h c} \otimes S$
- soft function does not vanish for zero argument (upper cut-off insufficient to cure endpoint)
$h \rightarrow \gamma \gamma$ bare factorization theorem can be written as

$$
H_{1} \cdot\langle\gamma \gamma| O_{1}|h\rangle+H_{2} \otimes\langle\gamma \gamma| O_{2}|h\rangle+H_{2} \otimes\langle\gamma \gamma| \bar{O}_{2}|h\rangle+H_{3} \cdot J_{\overline{h c}} \otimes S \otimes J_{h c}
$$

- endpoint-div. cancel in sum of inv. moments \rightarrow linear rapidity pole to all orders
- refactorization condition takes simpler form: $\left.\langle\gamma \gamma| O_{2}|h\rangle\right|_{x \rightarrow 0} \sim J_{h c} \otimes S$
- soft function vanishes for zero argument

Reason: Collinear and soft function in $h \rightarrow \gamma \gamma$ both helicity suppressed in m_{b} / m_{H}.
But this is not the case in the $2 \rightarrow 2$ scattering process $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$.

Summary: Muon-Electron Backward Scattering

\checkmark simple $2 \rightarrow 2$ textbook process in QED
\checkmark leading log's resum to modified Bessel function (known for >50 years)
\checkmark Bessel function in SCET recovered by iterative pattern of endpoint singularities
\rightarrow infinite tower of collinear-anomaly exponents
\rightarrow leading-power DLs already more complicated than other examples in the literature
1.) "scale-separation"
2.) consistency (pole-cancellation, "collinear anomaly")
3.) re-factorization

- So far we did not derive a renormalized factorization theorem
\rightarrow need to figure out whether rearrangement (in spirit of $h \rightarrow \gamma \gamma$) can be generalized
- next: mimics the endpoint structure in exclusive B_{C} decays, but in a much simpler setup

3. The soft-overlap form factor in non-relativistic $B_{c} \rightarrow \eta_{c}$ transitions

based on: PB PhD thesis 2018

The Soft-Overlap Form Factor ξ_{π}

Form factor $=$ non-perturbative input in exclusive semi-leptonic B decays, e.g. $B \rightarrow \pi \ell \nu$:

$$
\langle\pi(p)| \bar{q} \gamma^{\mu} b\left|B\left(p_{B}\right)\right\rangle=F_{+}\left(q^{2}\right)\left(p_{B}^{\mu}+p^{\mu}\right)+F_{-}\left(q^{2}\right) q^{\mu}
$$

At large pion energies (small q^{2}) \rightarrow use SCET to factorize hard, $h c$, coll., soft

- $\mathbf{m}_{\mathbf{b}} \rightarrow \infty$: two SCET operators

- $\sqrt{m_{b} \Lambda_{\mathrm{QCD}}} \rightarrow \infty: J_{B}$ factorizes into convergent convolutions of LCDAs $\phi_{B}^{+}(\omega)$ and $\phi_{\pi}(u) \checkmark$ J_{A} does not factorize due to endpoint-divergent convolutions

However, A-type contribution spin-symmetry preserving:
[Beneke,Feldmann '00]

$$
F_{i}\left(q^{2}\right)=H_{i}\left(q^{2}, \mu\right) \cdot \xi_{\pi}\left(q^{2}, \mu\right) \quad+\quad(\text { factorizable })_{i}
$$

with the soft-overlap form factor ξ_{π} defined as a $\operatorname{SCET}_{\mathrm{I}}$ hadronic matrix element

$$
2 E_{\pi} \xi_{\pi}=\langle\pi(p)| \bar{\chi}_{n c} h_{V}\left|\bar{B}_{c}\right\rangle
$$

$\xi_{\pi}:$ Tree-Level Matching

- SCET $_{\text {II }}$ operator basis:

$$
\begin{aligned}
& \mathcal{O}_{1}=\left[\bar{\chi}(0) \frac{\hbar}{2} \gamma_{5} \chi(s \bar{n})\right]\left[\overline{\mathcal{Q}}_{s}(\tau n) \frac{\hbar \hbar}{4} \gamma_{5} \mathcal{H}_{v}(0)\right] \quad \longrightarrow \phi_{B}^{-} \phi_{\pi} \\
& \mathcal{O}_{2}=\left[\bar{\chi}(0) \frac{\hbar}{2} \gamma_{5} i \not \phi_{\perp} \chi(s \bar{n})\right]\left[\overline{\mathcal{Q}}_{s}(\tau n) \frac{\phi}{2} \gamma_{5} \mathcal{H}_{v}(0)\right] \quad \longrightarrow \phi_{B}^{+}\left\{\phi_{p}, \phi_{\sigma}, \phi_{3}\right\} \\
& \mathcal{O}_{3}=\left[\bar{\chi}(0) \frac{\hbar \hbar}{2} \gamma_{5} \mathcal{A}_{c, \perp}(r \bar{n}) \chi(s \bar{n})\right]\left[\overline{\mathcal{Q}}_{s}(\tau n) \frac{\phi}{2} \gamma_{5} \mathcal{H}_{v}(0)\right] \longrightarrow \phi_{B}^{+} \phi_{3} \\
& \mathcal{O}_{4}=\left[\bar{\chi}(0) \frac{\hbar \hbar}{2} \gamma_{5} \chi(s \bar{n})\right]\left[\overline{\mathcal{Q}}_{s}(\tau n) \mathcal{A}_{s, \perp}(\sigma n) \frac{\hbar}{2} \gamma_{5} \mathcal{H}_{V}(0)\right] \longrightarrow \psi_{A-V} \phi_{\pi} \\
& \mathcal{O}_{m}=\left[\bar{\chi}(0) \frac{\hbar}{2} \gamma_{5} \chi(s \bar{n})\right]\left[\overline{\mathcal{Q}}_{s}(\tau n) \frac{\hbar}{2} \gamma_{5} \mathcal{H}_{v}(0)\right] \\
& \longrightarrow m \phi_{B}^{+} \oint_{\pi}
\end{aligned}
$$

- The operator \mathcal{O}_{m} contributes only for non-vanishing light-quark masses

$\xi_{\pi}:$ Tree-Level Matching

(+ symmetric diagrams with coll. gluon)
Remark: First non-vanishing contribution with correct quantum numbers for $J_{A}=\bar{\chi}_{h c} h_{V} \rightarrow \bar{\chi}_{h c}^{(5)} h_{V}$ in the notation of [Beneke/Feldmann 0311335].
$\Psi_{h c}^{(5)} \sim \lambda^{5}$ describes splitting into one soft quark + two collinear quarks (+ soft and coll. gluons)

$\xi_{\pi}:$ Tree-Level Matching

- Tree-level bare factorization formula:

$$
\begin{aligned}
\xi_{\pi}\left(E_{\pi}\right) \sim & C_{F} \int_{0}^{\infty} \mathrm{d} \omega \int_{0}^{1} \mathrm{~d} u\left[\frac{\phi_{B}^{-}(\omega)}{\omega} \frac{1+\bar{u}}{\bar{u}^{2}} \phi_{\pi}(u)+\frac{\phi_{B}^{+}(\omega)}{\omega} \frac{u}{\bar{u}^{2}} \phi_{\pi}(u)\right. \\
& \left.+\frac{\phi_{B}^{+}(\omega)}{\omega^{2}}\left(-\frac{m_{q} \bar{u}+2 m_{\bar{q}}}{\bar{u}^{2}} \phi_{\pi}(u)+3 \frac{\mu_{\pi} \phi_{P}(u)}{\bar{u}}+\frac{\tilde{\mu}_{\pi}}{6} \frac{\phi_{\sigma}^{\prime}(u)}{\bar{u}}\right)\right] \\
& -2\left(C_{F}-C_{A} / 2\right) \frac{f_{3 \pi}}{f_{\pi}} \int_{0}^{\infty} \mathrm{d} \omega \frac{\phi_{B}^{+}(\omega)}{\omega^{2}} \int \mathcal{D} \alpha \frac{\phi_{3 \pi}\left(\left\{\alpha_{i}\right\}\right)}{\alpha_{g} \alpha_{\bar{q}}\left(\alpha_{g}+\alpha_{\bar{q}}\right)} \\
& +2\left(C_{F}-C_{A} / 2\right) \int_{0}^{\infty} \mathrm{d} \omega \int_{0}^{\infty} \mathrm{d} \xi \frac{\psi_{A-v}(\omega, \xi)}{\omega \xi(\omega+\xi)} \int_{0}^{1} \mathrm{~d} u \frac{\phi_{\pi}(u)}{\bar{u}^{2}}
\end{aligned}
$$

- Almost all convolutions endpoint-divergent for $\omega \rightarrow 0$ and $\bar{u} \rightarrow 0$!
- For example: $\phi_{B}^{+} \sim \omega, \phi_{B}^{-} \sim$ const. for $\omega \rightarrow 0$, and $\phi_{\pi} \sim \bar{u}, \phi_{P} \sim \phi_{\sigma}^{\prime} \sim$ const. for $\bar{u} \rightarrow 0$
- They appear in products!

Non-Relativistic Bound States

LCDAs are non-perturbative hadronic objects ... How to approach the problem?
\rightarrow consider non-relativistic bound states: $B_{c} \rightarrow \eta_{c}$ in the limit $m_{b} \gg m_{c} \gg \Lambda_{\mathrm{QCD}}$
\rightarrow LO in NR expansion: $2 \rightarrow 2$ scattering process of on-shell massive quarks (with correct spin projections)
e.g. [Bell/Feldmann '05+'08, Bell '06]

$$
\left(v \cdot v^{\prime} \equiv \gamma \sim \mathcal{O}\left(m_{B} / m_{\eta}\right) \gg 1\right)
$$

\checkmark quark masses provide physical IR cut-off (they mimic Λ_{QCD})
\checkmark perturbative partonic calculation can be trusted down to the low scale m_{c}
\rightarrow perturbative corrections to the LCDAs
[Bell/Feldmann '08]
\rightarrow at tree-level: $\phi_{B}^{+}(\omega)=\phi_{B}^{-}(\omega)=\delta\left(\omega-m_{c}\right)$ and $\phi_{\pi}(u)=\phi_{P}(u)=\delta(u-1 / 2)$
:(realistic quarks massless(?). quark masses complicate the analysis
\rightarrow endpoint-div's show up as rapidity poles in rad. corr., requires rapidity regulator

Momentum Regions

- Standard modes for analytic regulators $\left(\nu / n_{ \pm} k\right)^{\alpha},(\nu / v k)^{\alpha}$
\rightarrow no soft-collinear messenger modes with virtuality below m_{c}
\rightarrow bare factorization theorem gives finite form factor

- Endpoint divergences arise from the soft limit of the collinear sector, and vice versa
\rightarrow they cancel between inv. moments of the B_{c} and the η_{c} LCDAs
\rightarrow different hadronic matrix elements have a common overlap in the endpoint region

Structure of Rapidity Divergences: NLO

. now start computing one-loop diagrams like

and find for the leading rapidity sing. of the soft moments (here used $\left(\nu / n_{+} k\right)^{\alpha}$, use EoM for 3-particle DA)

$$
2 m_{\bar{q}} \int_{0}^{\infty} \frac{d \omega}{\omega^{2}} \phi_{B}^{+}(\omega) \simeq \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B}^{-}(\omega) \simeq \frac{\alpha_{s} C_{F}}{4 \pi} \frac{1}{m_{\bar{q}}}\left(\frac{\mu^{2}}{m_{\bar{q}}^{2}}\right)^{\varepsilon}\left(\frac{\nu}{m_{\bar{q}}}\right)^{\alpha} \frac{4}{\alpha \varepsilon}
$$

and for the collinear moments, e.g. $\left(u_{0}=1 / 2\right.$ for $\left.m_{q}=m_{\bar{q}}=m_{c}\right)$

$$
\int_{0}^{1} \mathrm{~d} u \frac{\phi_{\eta}^{(1)}(u)}{\bar{u}^{2}} \simeq \frac{\alpha_{s} C_{F}}{4 \pi}\left(-\frac{2}{\alpha \varepsilon}\right)\left(\frac{\mu^{2}}{m_{\bar{q}}^{2}}\right)^{\varepsilon}\left(\frac{\nu}{2 \gamma m_{\bar{q}}}\right)^{\alpha} \frac{1+\bar{u}_{0}}{\bar{u}_{0}^{2}}
$$

\rightarrow plug into fact.-formula, add (hard, hc, cusp) to obtain finite result: (\checkmark with full-theory calculation)

$$
\xi_{\eta_{c}}^{(1)} \sim \frac{\alpha_{s} C_{F}}{4 \pi}\left(\frac{2 C_{F}}{\bar{u}_{0}^{2}}-\frac{C_{F A}}{\bar{u}_{0}^{3}}\right) \ln ^{2}(2 \gamma)
$$

Structure of Rapidity Divergences: NNLO

... now start computing two-loop diagrams like

\%	\%	$\psi^{(0)}$	

and find for the leading rapidity singularities of the soft moments

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{d \omega}{\omega^{2}} \phi_{B}^{+}(\omega) \simeq \frac{1}{m_{\bar{q}}^{2}}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(\frac{\mu^{2}}{m_{\bar{q}}^{2}}\right)^{2 \varepsilon}\left(\frac{\nu}{m_{\bar{q}}}\right)^{2 \alpha} \frac{2 C_{F}^{2}}{\alpha^{2} \varepsilon^{2}} \\
& \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B}^{-}(\omega) \simeq \frac{1}{m_{\bar{q}}}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(\frac{\mu^{2}}{m_{\bar{q}}^{2}}\right)^{2 \varepsilon}\left(\frac{\nu}{m_{\bar{q}}}\right)^{2 \alpha} \frac{6 C_{F}^{2}-C_{A} C_{F}}{\alpha^{2} \varepsilon^{2}}
\end{aligned}
$$

and some more complicated expressions in the coll. sector.
\rightarrow again, all $1 / \alpha^{2}$ poles drop out in the sum $s s+c c+s c \checkmark$
Note that the mixed soft-coll. contribution is $\sim 1 / \alpha^{2}$! It contains products of divergent moments!

Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?
Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)

Mixing of various two- and three-particle LCDAs at endpoint!

Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?
Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)

- Gives exponentiation structures, e.g.

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{d \omega}{\omega^{2}} \phi_{B}^{+}(\omega) \simeq \frac{1}{m_{\bar{q}}^{2}} \exp \mathcal{E} \\
& \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B}^{-}(\omega) \simeq \frac{1}{m_{\bar{q}}}\left\{\exp \mathcal{E}-\frac{C_{F A}}{C_{F}} \mathcal{E} \exp \mathcal{E}+\frac{C_{A}}{2 C_{F}}(\exp \mathcal{E}-1)\right\}
\end{aligned}
$$

- with leading contribution to the (bare) anomaly exponent:

$$
\mathcal{E}=\frac{\mathcal{F}^{(1)}}{\alpha}\left(\frac{\nu}{m_{\bar{q}}}\right)^{\alpha}, \quad \mathcal{F}^{(1)}=\frac{\alpha_{s} C_{F}}{4 \pi} \frac{2}{\varepsilon}\left(\frac{\mu^{2}}{m_{\bar{q}}^{2}}\right)^{\varepsilon}
$$

\checkmark With similar relations for the η_{c}, leading $1 / \alpha$ poles cancel when inserted in fact.-theorem!

Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?
Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)

- For example, rapidity poles cancel in the product

$$
\int_{0}^{\infty} \frac{d \omega}{\omega^{2}} \phi_{B}^{+}(\omega) \times \int_{0}^{1} d u \frac{1+\bar{u}}{\bar{u}^{2}} \phi_{\eta_{c}}(u) \simeq \frac{1}{m_{\bar{q}}^{2}} \frac{1+\bar{u}_{0}}{\bar{u}_{0}^{2}} \times(2 \gamma)^{\mathcal{F}^{(1)}}
$$

\checkmark large rapidity logarithms due to collinear anomaly resummed to all orders

- more complicated structures for $\xi_{\eta_{c}}$ due to mixing

Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?
Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)

- For example, rapidity poles cancel in the product

$$
\int_{0}^{\infty} \frac{d \omega}{\omega^{2}} \phi_{B}^{+}(\omega) \times \int_{0}^{1} d u \frac{1+\bar{u}}{\bar{u}^{2}} \phi_{\eta_{c}}(u) \simeq \frac{1}{m_{\bar{q}}^{2}} \frac{1+\bar{u}_{0}}{\bar{u}_{0}^{2}} \times(2 \gamma)^{\mathcal{F}^{(1)}}
$$

\checkmark large rapidity logarithms due to collinear anomaly resummed to all orders

- more complicated structures for $\xi_{\eta_{c}}$ due to mixing

Remark: Results for inv. moments process-independent!
\rightarrow similar structure for other hard-exclusive processes!

Endpoint-Refactorization

Q: What is the all-order $\bar{u} \rightarrow 0$ asymptotics of, for example, the bare η_{c} LCDA?
\rightarrow take soft (or soft-collinear) limit of overlapping propagator that carries momentum fraction \bar{u} :

$$
\left\langle\eta_{c}(p)\right| \bar{\chi}_{c}(0) \frac{\phi_{+}}{2} \gamma_{5} \chi_{c}\left(s n_{-}\right)|0\rangle=-i E_{\eta_{c}} f_{\eta_{c}} \int_{0}^{1} d \bar{u} e^{i \bar{u} s\left(n_{-} p\right)} \phi_{\eta_{c}}(u)
$$

Endpoint-Refactorization

Q: What is the all-order $\bar{u} \rightarrow 0$ asymptotics of, for example, the bare η_{c} LCDA?
\rightarrow take soft (or soft-collinear) limit of overlapping propagator that carries momentum fraction \bar{u} :

$$
\begin{array}{ccc}
\left\langle\eta_{c}(p)\right| & \bar{\chi}_{c}^{\lambda^{2}}(0) & \frac{\phi_{+}}{2} \gamma_{5} \chi_{c}^{\chi_{c}^{2}}\left(s n_{-}\right)|0\rangle=-i E_{\eta_{c}} f_{\eta_{c}} \int_{0}^{1} d \bar{u} e^{i \bar{u} s\left(n_{-} p\right)} \phi_{\eta_{c}}(u) \\
\downarrow & \downarrow & \lambda^{2} \\
\chi_{k_{c}} & q_{s} \sim \lambda^{3} & \sim \bar{u} \sim \lambda^{2} \\
\chi_{1}
\end{array}
$$

Endpoint-Refactorization

Q: What is the all-order $\bar{u} \rightarrow 0$ asymptotics of, for example, the bare η_{c} LCDA?
\rightarrow take soft (or soft-collinear) limit of overlapping propagator that carries momentum fraction \bar{u} :

$$
\begin{array}{cccc}
\left\langle\eta_{c}(p)\right| & \bar{\chi}_{c}^{2}(0) \frac{\phi_{+}}{2} \gamma_{5} \chi_{c}^{2}\left(s n_{-}\right)|0\rangle=-i E_{\eta_{c}} f_{\eta_{c}} \int_{0}^{1} d \bar{u} e^{i \bar{u} s\left(n_{-} p\right)} \phi_{\eta_{c}}(u) \\
\downarrow & \downarrow & \lambda^{2} & \sim \bar{u} \sim \lambda^{2} \\
\chi_{n_{c} \sim \lambda^{5}} & q_{s} \sim \lambda^{3} &
\end{array}
$$

- power-counting: $\phi_{\eta_{c}}(\bar{u} \rightarrow 0)$ involves the $\psi_{h c}^{(5)}$ splitting into a soft and two coll. quarks!
\rightarrow endpoint described by a vacuum matrix element of soft (or soft-collinear) fermion fields
\rightarrow same overlap matrix elements appear in $\phi_{B_{c}}(\omega \rightarrow 0) \Rightarrow$ common overlap \checkmark
\rightarrow but: again iterative non-additive structure (like soft mode in $e^{-} \mu^{-}$scattering)

4. Conclusion

Conclusion

Take-home messages:

1. Endpoint-singularities longstanding problem that prevents a systematic study of power-corrections in SCET. General treatment still an open problem. Phenomenologically relevant in B physics.
2. Despite the recent progress, they can manifest is a more complicated non-additive way, in particular in $2 \rightarrow 2$ processes (or higher multiplicities).
\rightarrow exclusive charmless B decays
3. Muon-electron backward-scattering provides a well-defined perturbative playground for studying non-trivial aspects of soft-coll factorization in the presence of endpoint-div's.

Backup-Slides

Soft-Enhancement

- soft contribution leading power despite four insertions of $\mathcal{L}_{\xi q}^{(1 / 2)}$:

$$
\begin{aligned}
\mathcal{O}_{2}= & \int d^{d} x_{1} \int d^{d} x_{2} \int d^{d} x_{3} T\left\{\left[\bar{x}_{\overline{h c}}^{(e)} \mathcal{A}_{\overline{h c}}^{\perp}\right](0)\left[\mathcal{A}_{\overline{h c}}^{\perp} \chi_{\overline{h c}}^{(\mu)}\right]\left(x_{1}\right)\right\} \\
& \times T\left\{\left[\bar{\chi}_{h c}^{(\mu)} \mathcal{A}_{h c}^{\perp}\right]\left(x_{2}+x_{3}\right)\left[\mathcal{A}_{h c}^{\perp} \chi_{h c}^{(e)}\right]\left(x_{3}\right)\right\} \\
& \times T\left\{\psi_{s}^{(e)}(0) \bar{\psi}_{s}^{(\mu)}\left(x_{1+}\right) \psi_{s}^{(\mu)}\left(x_{2-}+x_{3}\right) \bar{\psi}_{s}^{(e)}\left(x_{3}\right)\right\}
\end{aligned}
$$

- multipole expansion w.r.t. $h c$ and $\overline{h c}$ fields at different space-time points $x=0$ and $x=x_{3}$
\rightarrow soft fluctuations $d^{4} x_{3} \sim 1 / \lambda^{4}$ compensate suppression from $\mathcal{L}_{\xi q}^{(1 / 2)}$ insertions
\rightarrow related to special backward kinematics
- In SCET $_{\text {II }}$ the suppression is compensated by inverse soft derivatives

Some Backup Formulas

Comparison of the muon-electron scattering and $h \rightarrow \gamma \gamma$ amplitude at the DL level:

- for $h \rightarrow \gamma \gamma$ get standard $h \rightarrow b^{*} b^{*}$ Sudakov in integrand:

$$
\mathscr{F}_{b}(z)=2 \int_{0}^{1} d \xi \int_{0}^{1} d \eta \theta(1-\xi-\eta) e^{-2 \xi \eta z}
$$

- for muon-electron backward-scattering the form factor itself appears in the integrand
\rightarrow nested structure

$$
\mathscr{F}_{1}(z)=1+z \int_{0}^{1} d \xi \int_{0}^{1} d \eta \mathscr{F}_{1}\left(\xi^{2} z\right) \theta(1-\xi-\eta) \mathscr{F}_{1}\left(\eta^{2} z\right)
$$

