Endpoint singularities in  $\mu e$  backward scattering

(and the soft-overlap form factor for exclusive *B* decays)

Philipp Böer

based on: 2205.06021 with G. Bell and T. Feldmann, and PB PhD thesis 2018

MITP program "Power Expansions on the Lightcone" Mainz, Germany

22 September 2022

JOHANNES GUTENBERG UNIVERSITÄT MAINZ



- 1. Introduction
- 2. Endpoint singularities in muon-electron backward scattering
- 3. Soft overlap form factor for non-relativistic  $B_c \rightarrow \eta_c$  transitions
- 4. Conclusion

#### 1. Introduction

#### Introduction

Aim of soft-collinear factorization:

- 1. combined expansion in  $\mu_{\rm low}/\mu_{\rm high}$  and  $\alpha_{s}$ 
  - $\rightarrow$  requires rigorous power-counting scheme
- 2. separate dynamics related to momentum regions with different virtualities and/or rapidities
  - ightarrow separation of perturbative and non-perturbative dynamics in hadronic processes
- 3. employ Renormalization Group Equations to sum large logarithms to all orders

$$\alpha_s^n \ln^m \left( \frac{\mu_{\text{low}}}{\mu_{\text{high}}} \right)$$

#### Introduction

Aim of soft-collinear factorization:

- 1. combined expansion in  $\mu_{\rm low}/\mu_{\rm high}$  and  $\alpha_{s}$ 
  - $\rightarrow$  requires rigorous power-counting scheme
- 2. separate dynamics related to momentum regions with different virtualities and/or rapidities
  - ightarrow separation of perturbative and non-perturbative dynamics in hadronic processes
- 3. employ Renormalization Group Equations to sum large logarithms to all orders

$$\alpha_s^n \ln^m \left( \frac{\mu_{\text{low}}}{\mu_{\text{high}}} \right)$$

Problem: standard procedure may lead to ill-defined convolution integrals

- they may only converge in  $d = 4 2\varepsilon$  dimensions (SCET<sub>I</sub>)
  - $\rightarrow$  standard renormalization program breaks down
- dim.-reg. insufficient to separate modes with equal virtuality but different rapidity (SCET<sub>II</sub>)
   → analytic regulators violate naive decoupling ("collinear anomaly")
   [Becher/Neubert]
- often related to soft fermions ( $\rightarrow$  n.l.p.!)

## Incomplete List of Examples

off-diagonal channels in DIS

۲

...

| eneke et al. '22] |
|-------------------|
|                   |
|                   |
|                   |
|                   |
|                   |
| [BBNS '99/00]     |
| ke,Rohrwild '11]  |
| e,Feldmann '00]   |
|                   |

• certain QED corrections in  $B_s \rightarrow \mu^+ \mu^-$ 

[Beneke,Bobeth,Szafron '19]

[Beneke et al '20]

#### Incomplete List of Examples

| off-diagonal channels in DIS                                                   | [Beneke et al '20]          |
|--------------------------------------------------------------------------------|-----------------------------|
| • bottom induced $h \rightarrow \gamma \gamma$ decay                           | [Neubert et al. '19/20]     |
| off-diagonal gluon thrust                                                      | [Beneke et al. '22]         |
| •                                                                              |                             |
|                                                                                |                             |
|                                                                                |                             |
| n <i>B</i> -meson decays:                                                      |                             |
| • power-corrections in $B \rightarrow h_1 h_2$ decays (e.g. weak annihilation) | [BBNS '99/00]               |
| • power-corrections in radiative $B \rightarrow \gamma \ell \nu$ decays        | [e.g. Beneke,Rohrwild '11]  |
| heavy-to-light form factors                                                    | [Beneke,Feldmann '00]       |
| • certain QED corrections in $B_s  ightarrow \mu^+ \mu^-$                      | [Beneke,Bobeth,Szafron '19] |
| •                                                                              |                             |

Problem seems to arise generically in SCET at subleading power! A better understanding would constitute a major step in controlling the 1/E expansion.

 $\Lambda_{QCD}/m_B \gtrsim 0.1$  is not extremely small. Very relevant in *B* physics!

I

# 2. muon-electron backward scattering: a prime example for endpoint singularities

based on arXiv:2205.06021 with G. Bell and T. Feldmann

Clean framework to study physics of endpoint singularities, because ....

#### $\checkmark~$ perturbative QED process from the textbook

 $\checkmark$  resummed double logarithms known for > 50 years

- $\checkmark$  they arise from single scalar Integral at each order in  $\alpha_{
  m em}$  (ightarrow playground for method-of-regions)
- $\checkmark$  bare factorization theorem can be reduced to a single term at the DL level
- ✓ most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. *h* → *γγ*, gluon thrust)
- mimics structure of endpoint singularities in exclusive B decays (& other hard-exclusive processes)

- :( phenomenologically not the most relevant process
- :( subleading logarithms way more complicated and unknown

Clean framework to study physics of endpoint singularities, because ....

- $\checkmark~$  perturbative QED process from the textbook
- $\checkmark$  resummed double logarithms known for > 50 years

- [Gorshkov et al. 1966]
- $\checkmark$  they arise from single scalar Integral at each order in  $lpha_{
  m cm}$  (ightarrow playground for method-of-regions)
- ✓ bare factorization theorem can be reduced to a single term at the DL level
- ✓ most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. *h* → *γγ*, gluon thrust)
- ✓ mimics structure of endpoint singularities in exclusive B decays (& other hard-exclusive processes)

- :( phenomenologically not the most relevant process
- :( subleading logarithms way more complicated and unknown

Clean framework to study physics of endpoint singularities, because ....

- $\checkmark~$  perturbative QED process from the textbook
- $\checkmark$  resummed double logarithms known for > 50 years

- $\checkmark$  they arise from single scalar Integral at each order in  $\alpha_{em}$  ( $\rightarrow$  playground for method-of-regions)
- $\checkmark$  bare factorization theorem can be reduced to a single term at the DL level
- ✓ most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. *h* → *γγ*, gluon thrust)
- ✓ mimics structure of endpoint singularities in exclusive B decays (& other hard-exclusive processes)

- :( phenomenologically not the most relevant process
- :( subleading logarithms way more complicated and unknown

Clean framework to study physics of endpoint singularities, because ....

- $\checkmark~$  perturbative QED process from the textbook
- $\checkmark$  resummed double logarithms known for > 50 years

- $\checkmark$  they arise from single scalar Integral at each order in  $\alpha_{
  m em}$  (ightarrow playground for method-of-regions)
- ✓ bare factorization theorem can be reduced to a single term at the DL level
- ✓ most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. *h* → *γγ*, gluon thrust)
- ✓ mimics structure of endpoint singularities in exclusive B decays (& other hard-exclusive processes)

- :( phenomenologically not the most relevant process
- :( subleading logarithms way more complicated and unknown

Clean framework to study physics of endpoint singularities, because ....

- $\checkmark~$  perturbative QED process from the textbook
- $\checkmark$  resummed double logarithms known for > 50 years

- $\checkmark$  they arise from single scalar Integral at each order in  $\alpha_{
  m em}$  (ightarrow playground for method-of-regions)
- ✓ bare factorization theorem can be reduced to a single term at the DL level
- ✓ most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. *h* → *γγ*, gluon thrust)
- ✓ mimics structure of endpoint singularities in exclusive B decays (& other hard-exclusive processes)

- :( phenomenologically not the most relevant process
- :( subleading logarithms way more complicated and unknown

Clean framework to study physics of endpoint singularities, because ....

- $\checkmark~$  perturbative QED process from the textbook
- $\checkmark$  resummed double logarithms known for > 50 years

- [Gorshkov et al. 1966]
- $\checkmark$  they arise from single scalar Integral at each order in  $\alpha_{
  m em}$  ( $\rightarrow$  playground for method-of-regions)
- ✓ bare factorization theorem can be reduced to a single term at the DL level
- ✓ most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. *h* → *γγ*, gluon thrust)
- ✓ mimics structure of endpoint singularities in exclusive *B* decays (& other hard-exclusive processes)

- :( phenomenologically not the most relevant process
- :( subleading logarithms way more complicated and unknown

Clean framework to study physics of endpoint singularities, because ....

- $\checkmark~$  perturbative QED process from the textbook
- $\checkmark$  resummed double logarithms known for > 50 years

[Gorshkov et al. 1966]

- $\checkmark$  they arise from single scalar Integral at each order in  $\alpha_{
  m em}$  ( $\rightarrow$  playground for method-of-regions)
- ✓ bare factorization theorem can be reduced to a single term at the DL level
- ✓ most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. *h* → *γγ*, gluon thrust)
- ✓ mimics structure of endpoint singularities in exclusive *B* decays (& other hard-exclusive processes)

#### :( phenomenologically not the most relevant process

: ( subleading logarithms way more complicated and unknown

Clean framework to study physics of endpoint singularities, because ....

- $\checkmark~$  perturbative QED process from the textbook
- $\checkmark$  resummed double logarithms known for > 50 years

- $\checkmark$  they arise from single scalar Integral at each order in  $\alpha_{em}$  ( $\rightarrow$  playground for method-of-regions)
- ✓ bare factorization theorem can be reduced to a single term at the DL level
- ✓ most general structure of endpoint singularities, already for DLs at leading power! (more complicated than e.g. *h* → *γγ*, gluon thrust)
- ✓ mimics structure of endpoint singularities in exclusive *B* decays (& other hard-exclusive processes)

- :( phenomenologically not the most relevant process
- : ( subleading logarithms way more complicated and unknown

#### **Backward Scattering**

 $2 \rightarrow 2 \text{ process:} e^-(p)\mu^-(\bar{p}) \rightarrow e^-(\bar{p})\mu^-(p) \qquad ext{at} \qquad s \approx -t \gg m_\mu^2 \sim m_e^2 \gg u$ 

consider common mass m<sub>μ</sub> ≃ m<sub>e</sub> → m for simplicity (but distinguishable flavours)
 expansion parameter: λ = m/√s, and light-cone vectors

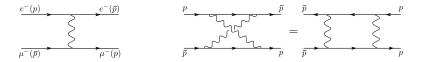
$$p^{\mu} = rac{\sqrt{s}}{2}n_{-}^{\mu} + rac{m^2}{2\sqrt{s}}n_{+}^{\mu} \qquad ar{p}^{\mu} = rac{\sqrt{s}}{2}n_{+}^{\mu} + rac{m^2}{2\sqrt{s}}n_{-}^{\mu}$$

#### **Backward Scattering**

$$2 
ightarrow 2$$
 process:  $e^-(p)\mu^-(ar p) 
ightarrow e^-(ar p)\mu^-(p)$  at  $s pprox -t \gg m_\mu^2 \sim m_e^2 \gg u$ 

consider common mass m<sub>μ</sub> ≃ m<sub>e</sub> → m for simplicity (but distinguishable flavours)
 expansion parameter: λ = m/√s, and light-cone vectors

$$p^{\mu} = rac{\sqrt{s}}{2}n^{\mu}_{-} + rac{m^2}{2\sqrt{s}}n^{\mu}_{+} \qquad ar{p}^{\mu} = rac{\sqrt{s}}{2}n^{\mu}_{+} + rac{m^2}{2\sqrt{s}}n^{\mu}_{-}$$

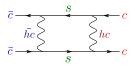


• high-energy limit:  $\mathcal{M} = F_1(\lambda)\mathcal{M}^{(0)} + F_2(\lambda)\widetilde{\mathcal{M}}$ 

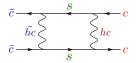
 $\rightarrow$  leading DLs in form factor  $F_1(\lambda)$  that multiplies tree amplitude  $\mathcal{M}^{(0)} \sim \alpha_{em}$ 

• DL at NLO from twisted box:  $F_1(\lambda) = 1 + \frac{\alpha_{em}}{2\pi} \frac{1}{2} \ln^2 \lambda^2 + \dots$ 

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft,  $k^{\mu} \sim \lambda$ :



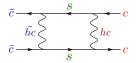
DLs arise from the kinem. configuration in which the virtual lepton propagators are soft,  $k^{\mu} \sim \lambda$ :



After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

$$F_1^{(1)}(\lambda) \sim \int \! rac{d^d k}{(2\pi)^d} rac{1}{k^2 - m^2} \; rac{1}{(k-p)^2} \; rac{1}{(k-ar{p})^2}$$

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft,  $k^{\mu} \sim \lambda$ :



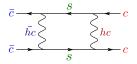
After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

$$F_1^{(1)}(\lambda) \sim \int \frac{d^d k}{(2\pi)^d} \frac{1}{k^2 - m^2} \frac{1}{(k - p)^2} \frac{1}{(k - \bar{p})^2}$$

Photon propagators become eikonal:

$$(k-p)^2 + i0 \simeq -\sqrt{s}(n_-k) + i0$$
,  $(k-\bar{p})^2 + i0 \simeq -\sqrt{s}(n_+k) + i0$ 

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft,  $k^{\mu} \sim \lambda$ :



After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

$$F_1^{(1)}(\lambda) \sim \int \frac{d^d k}{(2\pi)^d} \frac{1}{k^2 - m^2} \frac{1}{(k - p)^2} \frac{1}{(k - \bar{p})^2}$$

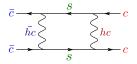
Photon propagators become eikonal:

$$(k-p)^2 + i0 \simeq -\sqrt{s}(n_-k) + i0$$
,  $(k-\bar{p})^2 + i0 \simeq -\sqrt{s}(n_+k) + i0$ 

Non-vanishing contribution from discontinuity of soft lepton propagator:

$$\int \frac{dk_{\perp}^2}{k^2 - m^2 + i0} \to -2\pi i\theta((n_+k)(n_-k) - m^2)$$

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft,  $k^{\mu} \sim \lambda$ :



After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

$$F_1^{(1)}(\lambda) \sim \int \frac{d^d k}{(2\pi)^d} \frac{1}{k^2 - m^2} \frac{1}{(k - p)^2} \frac{1}{(k - \bar{p})^2}$$

Photon propagators become eikonal:

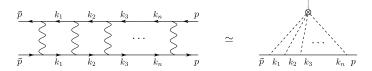
$$(k-p)^2 + i0 \simeq -\sqrt{s}(n_-k) + i0$$
,  $(k-\bar{p})^2 + i0 \simeq -\sqrt{s}(n_+k) + i0$ 

Non-vanishing contribution from discontinuity of soft lepton propagator:

$$\int \frac{dk_{\perp}^2}{k^2 - m^2 + i0} \to -2\pi i\theta((n_+k)(n_-k) - m^2)$$

Traditional approach: put hard cut-offs on longitudinal momenta ( $n_{\pm}k$ )  $\leq \sqrt{s}$ 

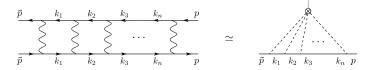
$$F_{1}^{(1)}(\lambda) \simeq \int_{\lambda^{2}}^{1} \frac{dx}{x} \int_{\lambda^{2}/x}^{1} \frac{dy}{y} = \frac{1}{2} \ln^{2} \lambda^{2} \quad \checkmark \qquad (n_{+}k = x\sqrt{s}, n_{-}k = y\sqrt{s})$$



all photon propagators eikonal:  $(k_i - k_{i-1})^2 + i0 \simeq -(n_+k_i)(n_-k_{i-1}) + i0$ 

strongly ordered longitudinal lepton momenta:

$$\frac{m^2}{\sqrt{s}} \approx n_+ \bar{p} \ll n_+ k_1 \ll \cdots \ll n_+ k_n \ll n_+ p \approx \sqrt{s}$$
$$\sqrt{s} \approx n_- \bar{p} \gg n_- k_1 \gg \cdots \gg n_- k_n \gg n_+ p \approx \frac{m^2}{\sqrt{s}}$$

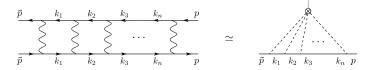


all photon propagators eikonal:  $(k_i - k_{i-1})^2 + i0 \simeq -(n_+k_i)(n_-k_{i-1}) + i0$ strongly ordered longitudinal lepton momenta:

$$\frac{m^2}{\sqrt{s}} \approx n_+ \bar{p} \ll n_+ k_1 \ll \cdots \ll n_+ k_n \ll n_+ p \approx \sqrt{s}$$
$$\sqrt{s} \approx n_- \bar{p} \gg n_- k_1 \gg \cdots \gg n_- k_n \gg n_+ p \approx \frac{m^2}{\sqrt{s}}$$

yields nested integrals:

$$F_{1}^{(n)}(\lambda) \simeq \int_{\lambda^{2}}^{1} \frac{dx_{1}}{x_{1}} \int_{x_{1}}^{1} \frac{dx_{2}}{x_{2}} \cdots \int_{x_{n-1}}^{1} \frac{dx_{n}}{x_{n}} \int_{\lambda^{2}/x_{1}}^{1} \frac{dy_{1}}{y_{1}} \int_{\lambda^{2}/x_{2}}^{y_{1}} \frac{dy_{2}}{y_{2}} \cdots \int_{\lambda^{2}/x_{n}}^{y_{n-1}} \frac{dy_{n}}{y_{n}} = \frac{\ln^{2n}\lambda^{2}}{n!(n+1)!}$$

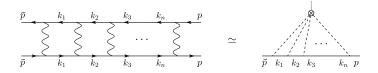


all photon propagators eikonal:  $(k_i - k_{i-1})^2 + i0 \simeq -(n_+k_i)(n_-k_{i-1}) + i0$ strongly ordered longitudinal lepton momenta:

$$\frac{m^2}{\sqrt{s}} \approx n_+ \bar{p} \ll n_+ k_1 \ll \cdots \ll n_+ k_n \ll n_+ p \approx \sqrt{s}$$
$$\sqrt{s} \approx n_- \bar{p} \gg n_- k_1 \gg \cdots \gg n_- k_n \gg n_+ p \approx \frac{m^2}{\sqrt{s}}$$

that sum up to modified Bessel function:

$$F_1(\lambda) \simeq \sum_{n=0}^{\infty} \left(\frac{\alpha_{\rm em}}{2\pi}\right)^n F_1^{(n)}(\lambda) = \frac{l_1(2\sqrt{z})}{\sqrt{z}}, \quad \text{ with } \quad z = \frac{\alpha_{\rm em}}{2\pi} \ln^2 \lambda^2$$



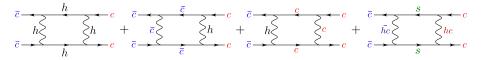
$$F_1(\lambda) \simeq \sum_{n=0}^{\infty} \left(\frac{\alpha_{\rm em}}{2\pi}\right)^n F_1^{(n)}(\lambda) = \frac{l_1(2\sqrt{z})}{\sqrt{z}}, \quad \text{ with } \quad z = \frac{\alpha_{\rm em}}{2\pi} \ln^2 \lambda^2$$

However, ...

- only the leading double-logarithms identified in this way
- scale of running coupling undetermined
- factorize non-pert. physics from short-distance dynamics (in hadronic processes)

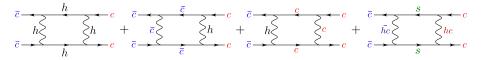
Goal: Formulate problem in SCET in terms of a renormalized factorization theorem!

... work in progress! Highly non-trivial endpoint singular convolutions!



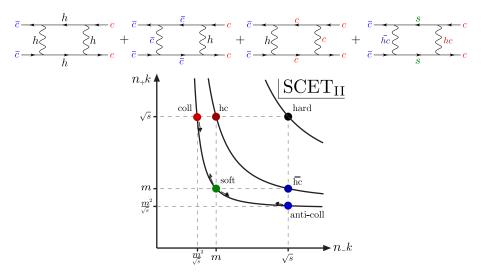
$$\mathcal{I}^{( ext{hard})} = rac{1}{arepsilon^2} + rac{1}{arepsilon} \ln rac{\mu^2}{s} + rac{1}{2} \ln^2 rac{\mu^2}{s} - rac{\pi^2}{12} + \mathcal{O}(arepsilon)$$

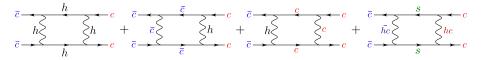
• contains Sudakov-type double-logarithms involving the hard scale  $\mu/\sqrt{s}$ 



$$\mathcal{I}^{(c)} = e^{\varepsilon \gamma_E} \Gamma(\varepsilon) \left(\frac{\mu^2}{m^2}\right)^{\varepsilon} \int_0^1 \frac{dx}{x} (1-x)^{-2\varepsilon} \left(\frac{\nu}{x\sqrt{s}}\right)^{\alpha} = -\left(\frac{1}{\alpha} + \ln\frac{\nu}{\sqrt{s}}\right) \left(\frac{1}{\varepsilon} + \ln\frac{\mu^2}{m^2}\right) + \frac{\pi^2}{3} + \mathcal{O}(\alpha,\varepsilon)$$

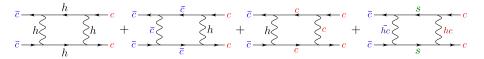
- standard UV singularity  $\Gamma(\varepsilon)$  from  $k_{\perp} \to \infty$
- Endpoint-singularity for  $n_+k = x\sqrt{s} \rightarrow 0$ 
  - $\rightarrow$  ill-defined in dim.-reg. due to lepton mass  $m \neq 0$
  - → rapidity divergence! Fermion propagator overlaps between low-energy regions
  - ightarrow No IR-singularity in the conventional sense (no mode below  $\mu \sim$  *m*)
- requires additional (analytic) rapidity regulator (e.g. [Becher/Bell,Ebert et al.,Chiu et al.,Neill et al.,...])
  - $\rightarrow$  here:  $(\nu/2k_0)^{lpha}$  preserves symmetry, so  $\mathcal{I}^{(c)} = \mathcal{I}^{(\bar{c})}$
  - $ightarrow\,$  small virtuality  $\mu\sim$  *m*, large energy  $u\sim\sqrt{s}$





$$\mathcal{I}^{(s)} = 2\left(\frac{1}{\alpha} + \ln\frac{\nu}{m}\right)\left(\frac{1}{\varepsilon} + \ln\frac{\mu^2}{m^2}\right) - \frac{1}{\varepsilon^2} - \frac{1}{\varepsilon}\ln\frac{\mu^2}{m^2} - \frac{1}{2}\ln\frac{\mu^2}{m^2} + \frac{\pi^2}{12} + \mathcal{O}(\alpha,\varepsilon)$$

- again ill-defined in dim.-reg.
  - ightarrow 1/lpha singularity from both limits  $n_+k 
    ightarrow \infty$  and  $n_-k 
    ightarrow \infty$
- symmetric regulator remains unexpanded:  $2k_0 = n_+k + n_-k = (x + y)\sqrt{s}$ 
  - ightarrow small virtuality  $\mu \sim m$ , small energy  $u \sim m$
  - $\rightarrow$  can be made scaleless by choosing an asymmetric regulator, e.g.  $(\nu/n_+k)^{lpha}$



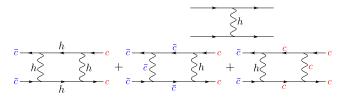
Sum of regions:

$$\mathcal{I}^{(\text{hard})} + \mathcal{I}^{(c)} + \mathcal{I}^{(\bar{c})} + \mathcal{I}^{(s)} = \frac{1}{2} \ln^2 \lambda^2 + \frac{2\pi^2}{3}$$

- ✓ dimensional and analytic regulator drop out
- $\checkmark~$  leading DL recovered
- remaining one-loop graphs standard
  - $\rightarrow$  no endpoint-singularity, no analytic regulator, DL cancels

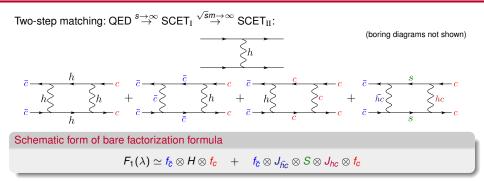
Two-step matching: QED  $\stackrel{s \to \infty}{\to} \text{SCET}_{I} \stackrel{\sqrt{s}m \to \infty}{\to} \text{SCET}_{II}$ :

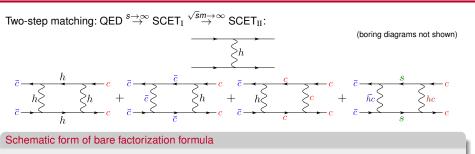
(boring diagrams not shown)



Schematic form of bare factorization formula

 $F_1(\lambda) \simeq \mathbf{f}_{\overline{\mathbf{c}}} \otimes H \otimes \mathbf{f}_{\mathbf{c}}$ 





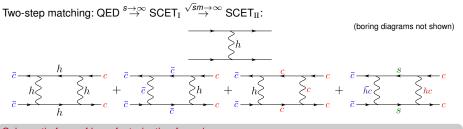
$$F_{1}(\lambda) \simeq f_{\bar{c}} \otimes H \otimes f_{c} + f_{\bar{c}} \otimes J_{\bar{h}\bar{c}} \otimes S \otimes J_{hc} \otimes f_{c}$$

● soft contribution leading power due to specific *soft-enhancement* mechanism (→ backup)

√ individual bare soft and coll. fct's defined as SCET operator matrix elements, e.g.

$$\langle \mu^{-}(p) | \, \bar{\chi}_{c}^{(\mu)}(\tau n_{+}) \frac{\not h_{+}}{2} P_{R(L)} \chi_{c}^{(e)}(0) | e^{-}(p) \rangle = \int dx e^{i \kappa \tau n_{+} p} \left\{ f_{c}(x) [\bar{u}_{\xi}^{(\mu)} \frac{\not h_{+}}{2} P_{R(L)} u_{\xi}^{(e)}] + \tilde{f}_{c}(x) [\bar{u}_{\xi}^{(\mu)} \frac{\not h_{+}}{2} P_{L(R)} u_{\xi}^{(e)}] \right\}$$

- ightarrow generalized parton distributions (forward, but flavour-non-diagonal)
- $\rightarrow$  helicity-flipping functions  $\tilde{f}_c(x)$  and  $\tilde{f}_{\bar{c}}(y)$  do not contribute to leading DLs



#### Schematic form of bare factorization formula

$$F_1(\lambda) \simeq f_{\bar{c}} \otimes H \otimes f_c \quad + \quad f_{\bar{c}} \otimes J_{\bar{h}c} \otimes S \otimes J_{hc} \otimes f_c$$

At one-loop level

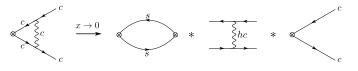
$$f_c(x) \simeq \delta(1-x) + rac{lpha_{
m em}}{2\pi} \theta(x) \theta(1-x) \left(rac{\mu^2}{m^2}
ight)^{arepsilon} \Gamma(arepsilon) \left(1 + \mathcal{O}(x)
ight)$$

 $\rightarrow$  convolution integrals  $\int \frac{dx}{x} f_c(x)$  require rapidity regulator!

?? How to renormalize functions before performing the convolutions ??

**Q**: Can we understand the  $x \to 0$  asymptotics of the bare functions  $f_c(x)$  to all orders in  $\alpha_{em}$ ? Can we isolate and subtract the divergences?

Recall: Rapidity diverences arise from the soft limit of the coll. fermion propagators!  $\rightarrow$  interpret  $f_c(x)$  for  $x \rightarrow 0$  as multi-scale object

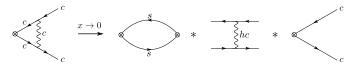


$$f_{c}(x o 0) \simeq \int rac{dx'}{x'} f_{c}(x') \int rac{d
ho}{
ho} J_{hc}(
ho x') S(
ho, x)$$

 $\checkmark$  reflects structure of the second term  $f \otimes J \otimes S \otimes J \otimes f$  as  $1/\alpha$  poles must cancel

**Q**: Can we understand the  $x \to 0$  asymptotics of the bare functions  $f_c(x)$  to all orders in  $\alpha_{em}$ ? Can we isolate and subtract the divergences?

Recall: Rapidity diverences arise from the soft limit of the coll. fermion propagators!  $\rightarrow$  interpret  $f_c(x)$  for  $x \rightarrow 0$  as multi-scale object



$$f_c(x \to 0) \simeq \int \frac{dx'}{x'} f_c(x') \int \frac{d\rho}{\rho} J_{hc}(\rho x') S(\rho, x)$$

reflects structure of the second term  $f \otimes J \otimes S \otimes J \otimes f$  as  $1/\alpha$  poles must cancel

[PB '18

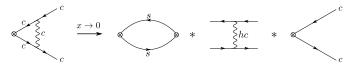
**Implications:** (*before* expansion in  $\varepsilon$ !)

- 1.) collinear functions receive positive powers of  $x^{\varepsilon}$  from  $J_{hc} \Rightarrow \langle x^{-1-n\varepsilon} \rangle_{f_c} \sim 1/\alpha, \forall n$
- 2.)  $1/\alpha$  cancel within  $f_c(x \to 0)$  and generate powers of  $\ln x$
- 3.) peculiar structure as  $f_c(x')$  arises on the RHS

- higher powers in  $1/\alpha$  $\Rightarrow$
- non-additive problem  $\Rightarrow$

**Q**: Can we understand the  $x \to 0$  asymptotics of the bare functions  $f_c(x)$  to all orders in  $\alpha_{em}$ ? Can we isolate and subtract the divergences?

Recall: Rapidity diverences arise from the soft limit of the coll. fermion propagators!  $\rightarrow$  interpret  $f_c(x)$  for  $x \rightarrow 0$  as multi-scale object



$$f_c(x \to 0) \simeq \int \frac{dx'}{x'} f_c(x') \int \frac{d\rho}{\rho} J_{hc}(\rho x') S(\rho, x)$$

 $\checkmark$  reflects structure of the second term  $f \otimes J \otimes S \otimes J \otimes f$  as  $1/\alpha$  poles must cancel

**Example**: at four-loop  $f_c(x)$  has the following asymptotic structure:

$$f_c^{(4)}(x \to 0) \simeq \left(\frac{\mu^2}{m^2}\right)^{4\varepsilon} \left\{ \frac{x^{3\varepsilon} - 15x^{2\varepsilon} + 339x^{\varepsilon} - 325}{144\varepsilon^7} - \frac{(3x^{\varepsilon} + 23)\ln x}{12\varepsilon^6} - \frac{3\ln^2 x}{4\varepsilon^5} - \frac{\ln^3 x}{6\varepsilon^4} \right\}$$

[PB '18

Despite the complexity of the problem, the DL series is completely determined by

- (i) scale separation (of bare quantities)
- (ii) **CONSISTENCY** (i.e. pole cancellation in  $1/\alpha$  and  $1/\varepsilon$ )
- (iii) refactorization

Despite the complexity of the problem, the DL series is completely determined by

- (i) scale separation (of bare quantities)
- (ii) **CONSISTENCY** (i.e. pole cancellation in  $1/\alpha$  and  $1/\varepsilon$ )
- (iii) refactorization
- 1. Use asymmetric regulator that makes soft contribution scaleless: (clear scale separation  $\checkmark$ )

$$F_{1}(\lambda) \simeq \int_{0}^{1} \frac{dx}{x} f_{c}\left(x; \frac{\mu}{m}, \frac{\nu}{\sqrt{s}}\right) \int_{0}^{1} \frac{dy}{y} f_{\overline{c}}\left(y; \frac{\mu}{m}, \frac{\nu\sqrt{s}}{m^{2}}\right) H\left(\frac{\mu^{2}}{xys}\right)$$

 $\rightarrow~$  single term that involves only leading-twist projections

Despite the complexity of the problem, the DL series is completely determined by

- (i) scale separation (of bare quantities)
- (ii) **CONSISTENCY** (i.e. pole cancellation in  $1/\alpha$  and  $1/\varepsilon$ )
- (iii) refactorization
- 1. Use asymmetric regulator that makes soft contribution scaleless: (clear scale separation  $\checkmark$ )

$$F_{1}(\lambda) \simeq \int_{0}^{1} \frac{dx}{x} f_{c}\left(x; \frac{\mu}{m}, \frac{\nu}{\sqrt{s}}\right) \int_{0}^{1} \frac{dy}{y} f_{\overline{c}}\left(y; \frac{\mu}{m}, \frac{\nu\sqrt{s}}{m^{2}}\right) H\left(\frac{\mu^{2}}{xys}\right)$$

 $\rightarrow$  single term that involves only leading-twist projections

2. Insert perturbative expansion of hard function at double-log level:

$$H\left(\frac{\mu^2}{xys}\right) \simeq \sum_{n=0}^{\infty} z_h^n h^{(n)}(xy)^{-n\varepsilon} \quad \text{with} \quad z_h = \frac{\alpha_{\text{em}}}{2\pi} \frac{1}{\varepsilon^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon}$$

Form factor expressed as infinite sum of products of divergent moments:

$$F_{1}(\lambda) = \sum_{n=0}^{\infty} z_{h}^{n} h^{(n)} \langle x^{-1-n\varepsilon} \rangle_{f_{c}} \left( \frac{\mu}{m}, \frac{\nu}{\sqrt{s}} \right) \langle y^{-1-n\varepsilon} \rangle_{f_{c}} \left( \frac{\mu}{m}, \frac{\nu\sqrt{s}}{m^{2}} \right)$$

- 3. Rapidity poles must cancel at each order in the hard-matching
  - $\rightarrow$  Collinear Anomaly: large rapidity log's exponentiate in products

[Becher,Bell,Neubert '11]

 $\rightarrow$  *F*<sub>1</sub> expressed as infinite sum of anomaly exponents *F*<sub>n</sub> and "remainder functions" *r*<sub>n</sub>

$$F_1(\lambda) = \sum_{n=0}^{\infty} z_h^n h^{(n)} r_n(\mu/m) \cdot \left(\frac{m^2}{s}\right)^{\mathcal{F}_n(\mu/m)}$$

- 3. Rapidity poles must cancel at each order in the hard-matching
  - $\rightarrow$  Collinear Anomaly: large rapidity log's exponentiate in products

[Becher,Bell,Neubert '11]

 $\rightarrow$  *F*<sub>1</sub> expressed as infinite sum of anomaly exponents *F*<sub>n</sub> and "remainder functions" *r*<sub>n</sub>

$$F_1(\lambda) = \sum_{n=0}^{\infty} z_h^n h^{(n)} r_n(\mu/m) \cdot \left(\frac{m^2}{s}\right)^{\mathcal{F}_n(\mu/m)}$$

4. Insert perturbative expansion (with constraints from refactorization)

$$r_n(\mu/m) = \sum_{k=0}^{\infty} \left(\frac{\alpha_{\rm em}}{2\pi}\right)^k \left(\frac{\mu^2}{m^2}\right)^{k\varepsilon} \frac{r_n^{(k)}}{\varepsilon^{2k}}, \qquad \mathcal{F}_n(\mu/m) = \sum_{l=n+1}^{\infty} \left(\frac{\alpha_{\rm em}}{2\pi}\right)^l \left(\frac{\mu^2}{m^2}\right)^{l\varepsilon} \frac{\mathcal{F}_n^{(l)}}{\varepsilon^{2l-1}}$$

- 3. Rapidity poles must cancel at each order in the hard-matching
  - $\rightarrow$  Collinear Anomaly: large rapidity log's exponentiate in products

[Becher,Bell,Neubert '11]

 $\rightarrow$  *F*<sub>1</sub> expressed as infinite sum of anomaly exponents *F*<sub>n</sub> and "remainder functions" *r*<sub>n</sub>

$$F_1(\lambda) = \sum_{n=0}^{\infty} z_h^n h^{(n)} r_n(\mu/m) \cdot \left(\frac{m^2}{s}\right)^{\mathcal{F}_n(\mu/m)}$$

4. Insert perturbative expansion (with constraints from refactorization)

$$r_n(\mu/m) = \sum_{k=0}^{\infty} \left(\frac{\alpha_{\rm em}}{2\pi}\right)^k \left(\frac{\mu^2}{m^2}\right)^{k\varepsilon} \frac{r_n^{(k)}}{\varepsilon^{2k}}, \qquad \mathcal{F}_n(\mu/m) = \sum_{l=n+1}^{\infty} \left(\frac{\alpha_{\rm em}}{2\pi}\right)^l \left(\frac{\mu^2}{m^2}\right)^{l\varepsilon} \frac{\mathcal{F}_n^{(l)}}{\varepsilon^{2l-1}}$$

5. Form factor finite for  $\varepsilon \to 0$  gives consistency relations between  $(h^{(n)}, r_n^{(k)}, \mathcal{F}_n^{(k)})$  $\checkmark$  reproduce known result order-by-order:

$$F_1(\lambda) \simeq rac{I_1\left(2\sqrt{h^{(1)}z}
ight)}{\sqrt{h^{(1)}z}}$$

- $\checkmark$  single unknown coefficient  $h^{(1)} = 1$  determined from one-loop calculation
- ! need infinite perturbative series of anomaly exponents

At first sight, the two processes seem to be very similar at the technical level:  $SCET_{II}$ , same modes, massive fermion propagators, analytic regulators, ... **but**:

# Comparison to $h \rightarrow \gamma \gamma$

At first sight, the two processes seem to be very similar at the technical level: SCET<sub>II</sub>, same modes, massive fermion propagators, analytic regulators, ... **but**:

Bare factorization theorem for form factor  $F_1$  takes the schematic form

 $f_{\overline{c}} \otimes H \otimes f_{c} + f_{\overline{c}} \otimes J_{\overline{hc}} \otimes S \otimes J_{hc} \otimes f_{c}$ 

- endpoint-div. cancel in products of inv. moments  $\rightarrow$  exponentiation of rapidity poles
- iterative refactorization condition:  $f_c(x \to 0) \sim f_c \otimes J_{hc} \otimes S$
- soft function does not vanish for zero argument (upper cut-off insufficient to cure endpoint)

# Comparison to $h \rightarrow \gamma \gamma$

At first sight, the two processes seem to be very similar at the technical level: SCET<sub>II</sub>, same modes, massive fermion propagators, analytic regulators, ... **but**:

Bare factorization theorem for form factor  $F_1$  takes the schematic form

 $f_{\overline{c}} \otimes H \otimes f_{c} + f_{\overline{c}} \otimes J_{\overline{hc}} \otimes S \otimes J_{hc} \otimes f_{c}$ 

- endpoint-div. cancel in products of inv. moments  $\rightarrow$  exponentiation of rapidity poles
- iterative refactorization condition:  $f_c(x \to 0) \sim f_c \otimes J_{hc} \otimes S$
- soft function does not vanish for zero argument (upper cut-off insufficient to cure endpoint)

 $h 
ightarrow \gamma \gamma$  bare factorization theorem can be written as

 $H_{1} \cdot \langle \gamma \gamma | O_{1} | h \rangle + H_{2} \otimes \langle \gamma \gamma | O_{2} | h \rangle + H_{2} \otimes \langle \gamma \gamma | \bar{O}_{2} | h \rangle + H_{3} \cdot J_{\bar{hc}} \otimes S \otimes J_{hc}$ 

- endpoint-div. cancel in sum of inv. moments  $\rightarrow$  linear rapidity pole to all orders
- refactorization condition takes simpler form:  $\langle \gamma \gamma | O_2 | h \rangle |_{x \to 0} \sim J_{hc} \otimes S$
- soft function vanishes for zero argument
- **Reason**: Collinear and soft function in  $h \rightarrow \gamma\gamma$  both helicity suppressed in  $m_b/m_H$ . But this is *not* the case in the 2  $\rightarrow$  2 scattering process  $e^-\mu^- \rightarrow e^-\mu^-$ .

# Summary: Muon-Electron Backward Scattering

- $\checkmark~$  simple 2  $\rightarrow$  2 textbook process in QED
- $\checkmark~$  leading log's resum to modified Bessel function (known for > 50 years)
- ✓ Bessel function in SCET recovered by iterative pattern of endpoint singularities
  - $\rightarrow$  infinite tower of collinear-anomaly exponents
  - ightarrow leading-power DLs already more complicated than other examples in the literature
  - 1.) "scale-separation"
  - 2.) consistency (pole-cancellation, "collinear anomaly")
  - 3.) re-factorization
- So far we did not derive a renormalized factorization theorem
  - $\rightarrow~$  need to figure out whether rearrangement (in spirit of  $h \rightarrow \gamma \gamma$  ) can be generalized
- **next**: mimics the endpoint structure in exclusive *B<sub>c</sub>* decays, but in a much simpler setup

# 3. The soft-overlap form factor in non-relativistic $B_c \rightarrow \eta_c$ transitions

based on: PB PhD thesis 2018

#### The Soft-Overlap Form Factor $\xi_{\pi}$

Form factor = non-perturbative input in exclusive semi-leptonic *B* decays, e.g.  $B \to \pi \ell \nu$ :  $\langle \pi(p) | \bar{q} \gamma^{\mu} b | B(p_B) \rangle = F_+(q^2)(p_B^{\mu} + p^{\mu}) + F_-(q^2)q^{\mu}$ 

At large pion energies (small  $q^2$ )  $\rightarrow$  use SCET to factorize hard, hc, coll., soft

• 
$$\mathbf{m}_{\mathbf{b}} \to \infty$$
: two SCET<sub>I</sub> operators  
 $h_{v} \qquad \xi \qquad h_{v} \qquad \xi$   
 $J_{A} = \bar{\chi}_{hc}h_{v}, \qquad J_{B} = \bar{\chi}_{hc}\mathcal{A}_{\perp}h_{v}$ 

•  $\sqrt{m_b \Lambda_{QCD}} \rightarrow \infty$ :  $J_B$  factorizes into convergent convolutions of LCDAs  $\phi_B^+(\omega)$  and  $\phi_\pi(u) \checkmark J_A$  does not factorize due to endpoint-divergent convolutions

However, A-type contribution spin-symmetry preserving:

[Beneke,Feldmann '00]

 $F_i(q^2) = H_i(q^2,\mu) \cdot \xi_{\pi}(q^2,\mu) + (\text{factorizable})_i$ 

with the soft-overlap form factor  $\xi_{\pi}$  defined as a SCET<sub>I</sub> hadronic matrix element

 $2E_{\pi}\xi_{\pi}=\langle \pi(m{
ho})|\,ar{\chi}_{hc}h_{V}\,|ar{B}_{c}
angle$ 

# $\xi_{\pi}$ : Tree-Level Matching

• SCET<sub>II</sub> operator basis:

see [Lange,Neubert '03] for massless quarks

$$\mathcal{O}_{1} = \left[\bar{\chi}(0)\frac{\hbar}{2}\gamma_{5}\chi(s\bar{n})\right] \left[\bar{\mathcal{Q}}_{s}(\tau n)\frac{\hbar\hbar}{4}\gamma_{5}\mathcal{H}_{v}(0)\right] \longrightarrow \phi_{g}^{*} \phi_{\kappa}$$

$$\mathcal{O}_{2} = \left[\bar{\chi}(0)\frac{\hbar}{2}\gamma_{5}i\partial_{\perp}\chi(s\bar{n})\right] \left[\bar{\mathcal{Q}}_{s}(\tau n)\frac{\hbar}{2}\gamma_{5}\mathcal{H}_{v}(0)\right] \longrightarrow \phi_{g}^{*} \left\{\frac{\phi}{2}\phi_{p},\phi_{q},\phi_{s}\right\}$$

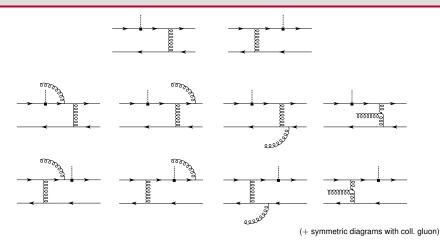
$$\mathcal{O}_{3} = \left[\bar{\chi}(0)\frac{\hbar}{2}\gamma_{5}\mathcal{A}_{o,\perp}(r\bar{n})\chi(s\bar{n})\right] \left[\bar{\mathcal{Q}}_{s}(\tau n)\frac{\hbar}{2}\gamma_{5}\mathcal{H}_{v}(0)\right] \longrightarrow \phi_{g}^{*} \phi_{g}$$

$$\mathcal{O}_{4} = \left[\bar{\chi}(0)\frac{\hbar}{2}\gamma_{5}\chi(s\bar{n})\right] \left[\bar{\mathcal{Q}}_{s}(\tau n)\mathcal{A}_{s,\perp}(\sigma n)\frac{\hbar}{2}\gamma_{5}\mathcal{H}_{v}(0)\right] \longrightarrow \mathcal{A}_{s,\nu} \phi_{\kappa}$$

$$\mathcal{O}_{m} = \left[\bar{\chi}(0)\frac{\hbar}{2}\gamma_{5}\chi(s\bar{n})\right] \left[\bar{\mathcal{Q}}_{s}(\tau n)\frac{\hbar}{2}\gamma_{5}\mathcal{H}_{v}(0)\right] \longrightarrow m \phi_{g}^{*} \phi_{g}$$

• The operator  $\mathcal{O}_m$  contributes only for non-vanishing light-quark masses

# $\xi_{\pi}$ : Tree-Level Matching



**Remark:** First non-vanishing contribution with correct quantum numbers for

 $J_A = \bar{\chi}_{hc} h_v \rightarrow \bar{\chi}_{hc}^{(5)} h_v$  in the notation of [Beneke/Feldmann 0311335].

 $\Psi_{hc}^{(5)} \sim \lambda^5$  describes splitting into one soft quark + two collinear quarks (+ soft and coll. gluons)

# $\xi_{\pi}$ : Tree-Level Matching

Tree-level bare factorization formula:

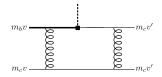
$$\begin{split} \xi_{\pi}(E_{\pi}) &\sim C_{F} \int_{0}^{\infty} \mathrm{d}\omega \int_{0}^{1} \mathrm{d}u \left[ \frac{\phi_{B}^{-}(\omega)}{\omega} \frac{1+\bar{u}}{\bar{u}^{2}} \phi_{\pi}(u) + \frac{\phi_{B}^{+}(\omega)}{\omega} \frac{u}{\bar{u}^{2}} \phi_{\pi}(u) \right. \\ &+ \frac{\phi_{B}^{+}(\omega)}{\omega^{2}} \left( - \frac{m_{q}\bar{u} + 2m_{\bar{q}}}{\bar{u}^{2}} \phi_{\pi}(u) + 3 \frac{\mu_{\pi}\phi_{P}(u)}{\bar{u}} + \frac{\tilde{\mu}_{\pi}}{6} \frac{\phi_{\sigma}'(u)}{\bar{u}} \right) \right] \\ &- 2 \left( C_{F} - C_{A}/2 \right) \frac{f_{3\pi}}{f_{\pi}} \int_{0}^{\infty} \mathrm{d}\omega \frac{\phi_{B}^{+}(\omega)}{\omega^{2}} \int \mathcal{D}\alpha \frac{\phi_{3\pi}(\{\alpha_{i}\})}{\alpha_{g}\alpha_{\bar{q}}(\alpha_{g} + \alpha_{\bar{q}})} \\ &+ 2 \left( C_{F} - C_{A}/2 \right) \int_{0}^{\infty} \mathrm{d}\omega \int_{0}^{\infty} \mathrm{d}\xi \frac{\Psi_{A-V}(\omega,\xi)}{\omega_{\xi}(\omega+\xi)} \int_{0}^{1} \mathrm{d}u \frac{\phi_{\pi}(u)}{\bar{u}^{2}} \,. \end{split}$$

- Almost all convolutions endpoint-divergent for  $\omega \to 0$  and  $\bar{u} \to 0$ !
- For example:  $\phi_B^+ \sim \omega$ ,  $\phi_B^- \sim \text{const.}$  for  $\omega \to 0$ , and  $\phi_\pi \sim \bar{u}$ ,  $\phi_P \sim \phi'_\sigma \sim \text{const.}$  for  $\bar{u} \to 0$
- They appear in products!

# Non-Relativistic Bound States

LCDAs are non-perturbative hadronic objects ... How to approach the problem?

- $\rightarrow$  consider non-relativistic bound states:  $B_c \rightarrow \eta_c$  in the limit  $m_b \gg m_c \gg \Lambda_{\rm QCD}$
- → LO in NR expansion: 2 → 2 scattering process of on-shell massive quarks (with correct spin projections) e.g. [Bell/Feldmann '05+'08, Bell '06]



$$(\mathbf{v} \cdot \mathbf{v}' \equiv \gamma \sim \mathcal{O}(m_B/m_\eta) \gg 1)$$

- $\checkmark$  quark masses provide physical IR cut-off (they mimic  $\Lambda_{QCD}$ )
- $\checkmark$  perturbative partonic calculation can be trusted down to the low scale  $m_c$ 
  - $\rightarrow$  perturbative corrections to the LCDAs

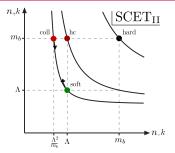
[Bell/Feldmann '08]

- $\rightarrow$  at tree-level:  $\phi_B^+(\omega) = \phi_B^-(\omega) = \delta(\omega m_c)$  and  $\phi_\pi(u) = \phi_P(u) = \delta(u 1/2)$
- :( realistic quarks massless(?). quark masses complicate the analysis
  - ightarrow endpoint-div's show up as rapidity poles in rad. corr., requires rapidity regulator

# **Momentum Regions**

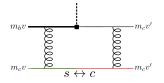
• Standard modes for analytic regulators  $(\nu/n_{\pm}k)^{\alpha}, (\nu/\nu k)^{\alpha}$ 

- $\rightarrow$  no soft-collinear messenger modes with virtuality below  $m_c$
- $\rightarrow$  bare factorization theorem gives finite form factor



Endpoint divergences arise from the soft limit of the collinear sector, and vice versa

- $\rightarrow$  they cancel between inv. moments of the *B<sub>c</sub>* and the  $\eta_c$  LCDAs
- $\rightarrow$  different hadronic matrix elements have a common overlap in the endpoint region



## Structure of Rapidity Divergences: NLO

... now start computing one-loop diagrams like



and find for the leading rapidity sing. of the soft moments (here used  $(\nu/n_+k)^{\alpha}$ , use EoM for 3-particle DA)

$$2m_{\bar{q}}\int_0^\infty \frac{d\omega}{\omega^2}\phi_B^+(\omega) \simeq \int_0^\infty \frac{d\omega}{\omega}\phi_B^-(\omega) \simeq \frac{\alpha_s C_F}{4\pi} \frac{1}{m_{\bar{q}}} \left(\frac{\mu^2}{m_{\bar{q}}^2}\right)^\varepsilon \left(\frac{\nu}{m_{\bar{q}}}\right)^\alpha \frac{4}{\alpha\varepsilon}$$

and for the collinear moments, e.g.  $(u_0 = 1/2 \text{ for } m_q = m_{\bar{q}} = m_c)$ 

$$\int_{0}^{1} \mathrm{d}u \, \frac{\phi_{\eta}^{(1)}(u)}{\bar{u}^{2}} \simeq \frac{\alpha_{s} C_{\mathsf{F}}}{4\pi} \left(-\frac{2}{\alpha \varepsilon}\right) \left(\frac{\mu^{2}}{m_{\bar{q}}^{2}}\right)^{\varepsilon} \left(\frac{\nu}{2\gamma m_{\bar{q}}}\right)^{\alpha} \frac{1 + \bar{u}_{0}}{\bar{u}_{0}^{2}}$$

 $\rightarrow$  plug into fact.-formula, add (hard, hc, cusp) to obtain finite result: ( $\checkmark$  with full-theory calculation)

$$\xi_{\eta_c}^{(1)}\sim rac{lpha_{s}\mathcal{C}_F}{4\pi}\left(rac{2\mathcal{C}_F}{ar{u}_0^2}-rac{\mathcal{C}_{F\!A}}{ar{u}_0^3}
ight)\ln^2(2\gamma)$$

# Structure of Rapidity Divergences: NNLO

... now start computing two-loop diagrams like





and find for the leading rapidity singularities of the soft moments

$$\int_{0}^{\infty} \frac{d\omega}{\omega^{2}} \phi_{B}^{+}(\omega) \simeq \frac{1}{m_{\tilde{q}}^{2}} \left(\frac{\alpha_{s}}{4\pi}\right)^{2} \left(\frac{\mu^{2}}{m_{\tilde{q}}^{2}}\right)^{2\varepsilon} \left(\frac{\nu}{m_{\tilde{q}}}\right)^{2\alpha} \frac{2C_{F}^{2}}{\alpha^{2}\varepsilon^{2}}$$
$$\int_{0}^{\infty} \frac{d\omega}{\omega} \phi_{B}^{-}(\omega) \simeq \frac{1}{m_{\tilde{q}}} \left(\frac{\alpha_{s}}{4\pi}\right)^{2} \left(\frac{\mu^{2}}{m_{\tilde{q}}^{2}}\right)^{2\varepsilon} \left(\frac{\nu}{m_{\tilde{q}}}\right)^{2\alpha} \frac{6C_{F}^{2} - C_{A}C_{F}}{\alpha^{2}\varepsilon^{2}}$$

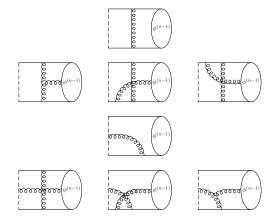
and some more complicated expressions in the coll. sector.

ightarrow again, all 1/ $lpha^2$  poles drop out in the sum *ss* + *cc* + *sc*  $\checkmark$ 

Note that the mixed soft-coll. contribution is  $\sim 1/\alpha^2!$  It contains products of divergent moments!

Q: Can we make some all order statements?

Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)



Mixing of various two- and three-particle LCDAs at endpoint!

Q: Can we make some all order statements?

Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)

• Gives exponentiation structures, e.g.

(like in µe scattering!)

$$\int_{0}^{\infty} \frac{d\omega}{\omega^{2}} \phi_{B}^{+}(\omega) \simeq \frac{1}{m_{\bar{q}}^{2}} \exp \mathcal{E}$$
$$\int_{0}^{\infty} \frac{d\omega}{\omega} \phi_{B}^{-}(\omega) \simeq \frac{1}{m_{\bar{q}}} \left\{ \exp \mathcal{E} - \frac{C_{FA}}{C_{F}} \mathcal{E} \exp \mathcal{E} + \frac{C_{A}}{2C_{F}} (\exp \mathcal{E} - 1) \right\}$$

with leading contribution to the (bare) anomaly exponent:

$$\mathcal{E} = rac{\mathcal{F}^{(1)}}{lpha} \left( rac{
u}{m_{ ilde{q}}} 
ight)^{lpha}, \qquad \qquad \mathcal{F}^{(1)} = rac{lpha_{s} C_{F}}{4\pi} rac{2}{arepsilon} \left( rac{\mu^{2}}{m_{ ilde{q}}^{2}} 
ight)^{arepsilon}$$

 $\checkmark$  With similar relations for the  $\eta_c$ , leading  $1/\alpha$  poles cancel when inserted in fact.-theorem!

Q: Can we make some all order statements?

Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)

• For example, rapidity poles cancel in the product

$$\int_0^\infty \frac{d\omega}{\omega^2} \phi_B^+(\omega) \times \int_0^1 du \, \frac{1+\bar{u}}{\bar{u}^2} \phi_{\eta_c}(u) \simeq \frac{1}{m_{\bar{q}}^2} \frac{1+\bar{u}_0}{\bar{u}_0^2} \times (2\gamma)^{\mathcal{F}^{(1)}}$$

√ large rapidity logarithms due to collinear anomaly resummed to all orders

more complicated structures for ξ<sub>ηc</sub> due to mixing

Q: Can we make some all order statements?

Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)

• For example, rapidity poles cancel in the product

$$\int_0^\infty \frac{d\omega}{\omega^2} \phi_B^+(\omega) \times \int_0^1 du \, \frac{1+\bar{u}}{\bar{u}^2} \phi_{\eta_c}(u) \simeq \frac{1}{m_{\bar{a}}^2} \frac{1+\bar{u}_0}{\bar{u}_0^2} \times (2\gamma)^{\mathcal{F}^{(1)}}$$

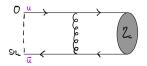
√ large rapidity logarithms due to collinear anomaly resummed to all orders

more complicated structures for ξ<sub>ηc</sub> due to mixing

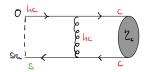
 $\begin{array}{l} \mbox{Remark: Results for inv. moments process-independent!} \\ \rightarrow \mbox{similar structure for other hard-exclusive processes!} \end{array}$ 

**Q**: What is the all-order  $\bar{u} \rightarrow 0$  asymptotics of, for example, the bare  $\eta_c$  LCDA?  $\rightarrow$  take soft (or soft-collinear) limit of overlapping propagator that carries momentum fraction  $\bar{u}$ :

$$\langle \eta_c(\boldsymbol{p}) | \, \bar{\chi}_c(0) \frac{\not n_+}{2} \gamma_5 \chi_c(sn_-) \, | 0 \rangle = -i E_{\eta_c} f_{\eta_c} \int_0^1 d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, \phi_{\eta_c}(u) \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, d\bar{u} \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, d\bar{u} \, d\bar{u} \, e^{i \bar{u} s(n_- \boldsymbol{p})} \, d\bar{u} \, d$$



**Q**: What is the all-order  $\bar{u} \rightarrow 0$  asymptotics of, for example, the bare  $\eta_c$  LCDA?  $\rightarrow$  take soft (or soft-collinear) limit of overlapping propagator that carries momentum fraction  $\bar{u}$ :



**Q**: What is the all-order  $\bar{u} \rightarrow 0$  asymptotics of, for example, the bare  $\eta_c$  LCDA?  $\rightarrow$  take soft (or soft-collinear) limit of overlapping propagator that carries momentum fraction  $\bar{u}$ :

• power-counting:  $\phi_{\eta_c}(\bar{u} \to 0)$  involves the  $\psi_{hc}^{(5)}$  splitting into a soft and two coll. quarks!

- ightarrow endpoint described by a vacuum matrix element of soft (or soft-collinear) fermion fields
- ightarrow same overlap matrix elements appear in  $\phi_{B_c}(\omega 
  ightarrow 0) \Rightarrow$  common overlap  $\checkmark$
- $\rightarrow$  **but**: again iterative non-additive structure (like soft mode in  $e^-\mu^-$  scattering)

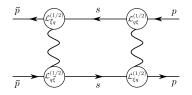
#### 4. Conclusion

Take-home messages:

- 1. Endpoint-singularities longstanding problem that prevents a systematic study of power-corrections in SCET. General treatment still an open problem. Phenomenologically relevant in *B* physics.
- Despite the recent progress, they can manifest is a more complicated non-additive way, in particular in 2 → 2 processes (or higher multiplicities).
   → exclusive charmless *B* decays
- 3. Muon-electron backward-scattering provides a well-defined perturbative playground for studying non-trivial aspects of soft-coll factorization in the presence of endpoint-div's.

**Backup-Slides** 

#### Soft-Enhancement



soft contribution leading power despite four insertions of 
 \$\mathcal{L}\_{\xi\_q q}^{(1/2)}\$:

$$\begin{aligned} \mathcal{O}_{2} &= \int d^{d}x_{1} \int d^{d}x_{2} \int d^{d}x_{3} T \left\{ [\bar{\chi}_{hc}^{(e)} \mathcal{A}_{hc}^{\perp}](0) [\mathcal{A}_{hc}^{\perp} \chi_{hc}^{(\mu)}](x_{1}) \right\} \\ &\times T \left\{ [\bar{\chi}_{hc}^{(\mu)} \mathcal{A}_{hc}^{\perp}](x_{2} + x_{3}) [\mathcal{A}_{hc}^{\perp} \chi_{hc}^{(e)}](x_{3}) \right\} \\ &\times T \left\{ \psi_{s}^{(e)}(0) \bar{\psi}_{s}^{(\mu)}(x_{1+}) \psi_{s}^{(\mu)}(x_{2-} + x_{3}) \bar{\psi}_{s}^{(e)}(x_{3}) \right\} \end{aligned}$$

• multipole expansion w.r.t. hc and  $h\bar{c}$  fields at different space-time points x = 0 and  $x = x_3$ 

- $\rightarrow$  soft fluctuations  $d^4x_3 \sim 1/\lambda^4$  compensate suppression from  $\mathcal{L}_{\epsilon a}^{(1/2)}$  insertions
- $\rightarrow$  related to special backward kinematics

In SCET<sub>II</sub> the suppression is compensated by inverse soft derivatives

#### Some Backup Formulas

Comparison of the muon-electron scattering and  $h \rightarrow \gamma \gamma$  amplitude at the DL level:

• for  $h \rightarrow \gamma \gamma$  get standard  $h \rightarrow b^* b^*$  Sudakov in integrand:

$$\mathscr{F}_b(z) = 2\int_0^1 d\xi \int_0^1 d\eta \,\theta(1-\xi-\eta)e^{-2\xi\eta z}$$

 $\bullet~$  for muon-electron backward-scattering the form factor itself appears in the integrand  $\rightarrow~$  nested structure

$$\mathscr{F}_{1}(z) = 1 + z \int_{0}^{1} d\xi \int_{0}^{1} d\eta \, \mathscr{F}_{1}(\xi^{2}z) \theta(1 - \xi - \eta) \, \mathscr{F}_{1}(\eta^{2}z)$$