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Introduction

Aim of soft-collinear factorization:

1. combined expansion in µlow/µhigh and αs

→ requires rigorous power-counting scheme

2. separate dynamics related to momentum regions with different virtualities and/or rapidities
→ separation of perturbative and non-perturbative dynamics in hadronic processes

3. employ Renormalization Group Equations to sum large logarithms to all orders

αn
s ln

m
(
µlow

µhigh

)
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1. combined expansion in µlow/µhigh and αs

→ requires rigorous power-counting scheme

2. separate dynamics related to momentum regions with different virtualities and/or rapidities
→ separation of perturbative and non-perturbative dynamics in hadronic processes

3. employ Renormalization Group Equations to sum large logarithms to all orders

αn
s ln

m
(
µlow

µhigh

)

Problem: standard procedure may lead to ill-defined convolution integrals

they may only converge in d = 4 − 2ε dimensions (SCETI)
→ standard renormalization program breaks down

dim.-reg. insufficient to separate modes with equal virtuality but different rapidity (SCETII)
→ analytic regulators violate naive decoupling (“collinear anomaly”) [Becher/Neubert]

often related to soft fermions (→ n.l.p.!)
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Incomplete List of Examples

off-diagonal channels in DIS [Beneke et al ’20]

bottom induced h → γγ decay [Neubert et al. ’19/20]

off-diagonal gluon thrust [Beneke et al. ’22]

. . .

In B-meson decays:

power-corrections in B → h1h2 decays (e.g. weak annihilation) [BBNS ’99/00]

power-corrections in radiative B → γℓν decays [e.g. Beneke,Rohrwild ’11]

heavy-to-light form factors [Beneke,Feldmann ’00]

certain QED corrections in Bs → µ+µ− [Beneke,Bobeth,Szafron ’19]

. . .
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In B-meson decays:

power-corrections in B → h1h2 decays (e.g. weak annihilation) [BBNS ’99/00]

power-corrections in radiative B → γℓν decays [e.g. Beneke,Rohrwild ’11]

heavy-to-light form factors [Beneke,Feldmann ’00]

certain QED corrections in Bs → µ+µ− [Beneke,Bobeth,Szafron ’19]

. . .

Problem seems to arise generically in SCET at subleading power! A better understanding would
constitute a major step in controlling the 1/E expansion.

ΛQCD/mB ≳ 0.1 is not extremely small. Very relevant in B physics!
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2. muon-electron backward scattering:
a prime example for endpoint singularities

based on arXiv:2205.06021 with G. Bell and T. Feldmann
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Why “prime example”?

Clean framework to study physics of endpoint singularities, because . . .

✓ perturbative QED process from the textbook

✓ resummed double logarithms known for > 50 years [Gorshkov et al. 1966]

✓ they arise from single scalar Integral at each order in αem (→ playground for method-of-regions)

✓ bare factorization theorem can be reduced to a single term at the DL level

✓ most general structure of endpoint singularities, already for DLs at leading power!
(more complicated than e.g. h → γγ, gluon thrust)

✓ mimics structure of endpoint singularities in exclusive B decays (& other hard-exclusive processes)

:( phenomenologically not the most relevant process

:( subleading logarithms way more complicated and unknown
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Backward Scattering

2 → 2 process: e−(p)µ−(p̄) → e−(p̄)µ−(p) at s ≈ −t ≫ m2
µ ∼ m2

e ≫ u

consider common mass mµ ≃ me → m for simplicity (but distinguishable flavours)

expansion parameter: λ = m/
√

s, and light-cone vectors

pµ =

√
s

2
nµ
− +

m2

2
√

s
nµ
+ p̄µ =

√
s

2
nµ
+ +

m2

2
√

s
nµ
−
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µ ∼ m2

e ≫ u

consider common mass mµ ≃ me → m for simplicity (but distinguishable flavours)

expansion parameter: λ = m/
√

s, and light-cone vectors

pµ =

√
s

2
nµ
− +

m2

2
√

s
nµ
+ p̄µ =

√
s

2
nµ
+ +

m2

2
√

s
nµ
−

high-energy limit: M = F1(λ)M(0) + F2(λ)M̃

→ leading DLs in form factor F1(λ) that multiplies tree amplitude M(0) ∼ αem

DL at NLO from twisted box: F1(λ) = 1 + αem
2π

1
2 ln2 λ2 + . . .
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Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, kµ ∼ λ:
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Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, kµ ∼ λ:

After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

F (1)
1 (λ) ∼

∫
dd k
(2π)d

1
k2 − m2

1
(k − p)2

1
(k − p̄)2
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√
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Non-vanishing contribution from discontinuity of soft lepton propagator:∫ dk2
⊥

k2 − m2 + i0
→ −2πiθ((n+k)(n−k)− m2)
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DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, kµ ∼ λ:

After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

F (1)
1 (λ) ∼

∫
dd k
(2π)d

1
k2 − m2

1
(k − p)2

1
(k − p̄)2

Photon propagators become eikonal:

(k − p)2 + i0 ≃ −
√

s(n−k) + i0 , (k − p̄)2 + i0 ≃ −
√

s(n+k) + i0

Non-vanishing contribution from discontinuity of soft lepton propagator:∫ dk2
⊥

k2 − m2 + i0
→ −2πiθ((n+k)(n−k)− m2)

Traditional approach: put hard cut-offs on longitudinal momenta (n±k) ≤
√

s

F (1)
1 (λ) ≃

∫ 1

λ2

dx
x

∫ 1

λ2/x

dy
y

=
1
2
ln2 λ2 ✓ (n+k = x

√
s, n−k = y

√
s)

P. Böer Endpoint singularities in µe scattering 8 / 27



Isolating the Double-Log’s at Higher Orders

all photon propagators eikonal: (ki − ki−1)
2 + i0 ≃ −(n+ki )(n−ki−1) + i0

strongly ordered longitudinal lepton momenta:

m2
√

s
≈ n+p̄ ≪ n+k1 ≪ · · · ≪ n+kn ≪ n+p ≈

√
s

√
s ≈ n−p̄ ≫ n−k1 ≫ · · · ≫ n−kn ≫ n+p ≈

m2
√

s
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Isolating the Double-Log’s at Higher Orders

all photon propagators eikonal: (ki − ki−1)
2 + i0 ≃ −(n+ki )(n−ki−1) + i0

strongly ordered longitudinal lepton momenta:

m2
√

s
≈ n+p̄ ≪ n+k1 ≪ · · · ≪ n+kn ≪ n+p ≈

√
s

√
s ≈ n−p̄ ≫ n−k1 ≫ · · · ≫ n−kn ≫ n+p ≈

m2
√

s

yields nested integrals:

F (n)
1 (λ) ≃

∫ 1

λ2

dx1

x1

∫ 1

x1

dx2

x2
· · ·
∫ 1

xn−1

dxn

xn

∫ 1

λ2/x1

dy1

y1

∫ y1

λ2/x2

dy2

y2
· · ·
∫ yn−1

λ2/xn

dyn

yn
=

ln2n λ2

n!(n + 1)!
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Isolating the Double-Log’s at Higher Orders

all photon propagators eikonal: (ki − ki−1)
2 + i0 ≃ −(n+ki )(n−ki−1) + i0

strongly ordered longitudinal lepton momenta:

m2
√

s
≈ n+p̄ ≪ n+k1 ≪ · · · ≪ n+kn ≪ n+p ≈

√
s

√
s ≈ n−p̄ ≫ n−k1 ≫ · · · ≫ n−kn ≫ n+p ≈

m2
√

s

that sum up to modified Bessel function:

F1(λ) ≃
∞∑

n=0

(αem

2π

)n
F (n)

1 (λ) =
I1(2

√
z)

√
z

, with z =
αem

2π
ln2 λ2

P. Böer Endpoint singularities in µe scattering 9 / 27



Isolating the Double-Log’s at Higher Orders

F1(λ) ≃
∞∑

n=0

(αem

2π

)n
F (n)

1 (λ) =
I1(2

√
z)

√
z

, with z =
αem

2π
ln2 λ2

However, . . .

only the leading double-logarithms identified in this way

scale of running coupling undetermined

factorize non-pert. physics from short-distance dynamics (in hadronic processes)

Goal: Formulate problem in SCET in terms of a renormalized factorization theorem!

. . . work in progress! Highly non-trivial endpoint singular convolutions!
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Method-of-Regions Analysis

I(hard) =
1
ε2

+
1
ε
ln
µ2

s
+

1
2
ln2 µ

2

s
−
π2

12
+O(ε)

contains Sudakov-type double-logarithms involving the hard scale µ/
√

s
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Method-of-Regions Analysis

I(c)=eεγE Γ(ε)

(
µ2

m2

)ε∫ 1

0

dx
x

(1 − x)−2ε
(

ν

x
√

s

)α

= −
(

1
α

+ ln
ν
√

s

)(
1
ε
+ ln

µ2

m2

)
+
π2

3
+O(α,ε)

standard UV singularity Γ(ε) from k⊥ → ∞

Endpoint-singularity for n+k = x
√

s → 0
→ ill-defined in dim.-reg. due to lepton mass m ̸= 0
→ rapidity divergence! Fermion propagator overlaps between low-energy regions
→ No IR-singularity in the conventional sense (no mode below µ ∼ m)

requires additional (analytic) rapidity regulator (e.g. [Becher/Bell,Ebert et al.,Chiu et al.,Neill et al.,. . . ])

→ here: (ν/2k0)
α preserves symmetry, so I(c) = I(c̄)

→ small virtuality µ ∼ m, large energy ν ∼
√

s
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Method-of-Regions Analysis

I(s) = 2
(

1
α

+ ln
ν

m

)(
1
ε
+ ln

µ2

m2

)
−

1
ε2

−
1
ε
ln
µ2

m2
−

1
2
ln
µ2

m2
+
π2

12
+O(α,ε)

again ill-defined in dim.-reg.
→ 1/α singularity from both limits n+k → ∞ and n−k → ∞

symmetric regulator remains unexpanded: 2k0 = n+k + n−k = (x + y)
√

s
→ small virtuality µ ∼ m, small energy ν ∼ m
→ can be made scaleless by choosing an asymmetric regulator, e.g. (ν/n+k)α
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Method-of-Regions Analysis

Sum of regions:

I(hard) + I(c) + I(c̄) + I(s) =
1
2
ln2 λ2 +

2π2

3

✓ dimensional and analytic regulator drop out
✓ leading DL recovered

remaining one-loop graphs standard
→ no endpoint-singularity, no analytic regulator, DL cancels
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Formulation in SCET

Two-step matching: QED s→∞→ SCETI

√
sm→∞→ SCETII:

(boring diagrams not shown)

Schematic form of bare factorization formula

F1(λ) ≃ fc̄ ⊗ H ⊗ fc
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Formulation in SCET

Two-step matching: QED s→∞→ SCETI

√
sm→∞→ SCETII:

(boring diagrams not shown)

Schematic form of bare factorization formula

F1(λ) ≃ fc̄ ⊗ H ⊗ fc + fc̄ ⊗ Jh̄c ⊗ S ⊗ Jhc ⊗ fc

soft contribution leading power due to specific soft-enhancement mechanism (→ backup)

✓ individual bare soft and coll. fct’s defined as SCET operator matrix elements, e.g.

⟨µ−(p)| χ̄(µ)
c (τn+)

/n+

2
PR(L)χ

(e)
c (0) |e−(p)⟩ =

∫
dxeixτn+p

{
fc (x)[ū

(µ)
ξ

/n+

2
PR(L)u

(e)
ξ

] + f̃c (x)[ū
(µ)
ξ

/n+

2
PL(R)u

(e)
ξ

]

}

→ generalized parton distributions (forward, but flavour-non-diagonal)

→ helicity-flipping functions f̃c(x) and f̃c̄(y) do not contribute to leading DLs
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Formulation in SCET

Two-step matching: QED s→∞→ SCETI

√
sm→∞→ SCETII:

(boring diagrams not shown)

Schematic form of bare factorization formula

F1(λ) ≃ fc̄ ⊗ H ⊗ fc + fc̄ ⊗ Jh̄c ⊗ S ⊗ Jhc ⊗ fc

At one-loop level

fc(x) ≃ δ(1 − x) +
αem

2π
θ(x)θ(1 − x)

(
µ2

m2

)ε

Γ(ε)
(

1 +O(x)
)

→ convolution integrals
∫ dx

x fc(x) require rapidity regulator!

?? How to renormalize functions before performing the convolutions ??
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Endpoint-Refactorization

Q: Can we understand the x → 0 asymptotics of the bare functions fc(x) to all orders in αem?
Can we isolate and subtract the divergences?

Recall: Rapidity diverences arise from the soft limit of the coll. fermion propagators!
→ interpret fc(x) for x → 0 as multi-scale object

fc(x → 0) ≃
∫

dx ′

x ′ fc(x ′)

∫
dρ
ρ

Jhc(ρx ′)S(ρ,x)

[PB ’18]✓ reflects structure of the second term f ⊗ J ⊗ S ⊗ J ⊗ f as 1/α poles must cancel
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→ interpret fc(x) for x → 0 as multi-scale object

fc(x → 0) ≃
∫

dx ′

x ′ fc(x ′)

∫
dρ
ρ

Jhc(ρx ′)S(ρ,x)

[PB ’18]✓ reflects structure of the second term f ⊗ J ⊗ S ⊗ J ⊗ f as 1/α poles must cancel

Implications: (before expansion in ε!)

1.) collinear functions receive positive powers of xε from Jhc ⇒ ⟨x−1−nε⟩fc ∼ 1/α, ∀n

2.) 1/α cancel within fc(x → 0) and generate powers of ln x ⇒ higher powers in 1/α

3.) peculiar structure as fc(x ′) arises on the RHS ⇒ non-additive problem
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Q: Can we understand the x → 0 asymptotics of the bare functions fc(x) to all orders in αem?
Can we isolate and subtract the divergences?

Recall: Rapidity diverences arise from the soft limit of the coll. fermion propagators!
→ interpret fc(x) for x → 0 as multi-scale object

fc(x → 0) ≃
∫

dx ′

x ′ fc(x ′)

∫
dρ
ρ

Jhc(ρx ′)S(ρ,x)

[PB ’18]✓ reflects structure of the second term f ⊗ J ⊗ S ⊗ J ⊗ f as 1/α poles must cancel

Example: at four-loop fc(x) has the following asymptotic structure:

f (4)c (x → 0) ≃
(
µ2

m2

)4ε{
x3ε − 15x2ε + 339xε − 325

144ε7
−

(3xε + 23) ln x
12ε6

−
3 ln2 x

4ε5
−

ln3 x
6ε4

}
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Resummation from Consistency Relations

Despite the complexity of the problem, the DL series is completely determined by

(i) scale separation (of bare quantities)

(ii) consistency (i.e. pole cancellation in 1/α and 1/ε)

(iii) refactorization
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Resummation from Consistency Relations

Despite the complexity of the problem, the DL series is completely determined by

(i) scale separation (of bare quantities)

(ii) consistency (i.e. pole cancellation in 1/α and 1/ε)

(iii) refactorization

1. Use asymmetric regulator that makes soft contribution scaleless: (clear scale separation ✓)

F1(λ) ≃
∫ 1

0

dx
x

fc
(

x ;
µ

m
,
ν
√

s

)∫ 1

0

dy
y

fc̄

(
y ;
µ

m
,
ν
√

s
m2

)
H

(
µ2

xys

)
→ single term that involves only leading-twist projections
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1. Use asymmetric regulator that makes soft contribution scaleless: (clear scale separation ✓)

F1(λ) ≃
∫ 1

0

dx
x

fc
(

x ;
µ

m
,
ν
√

s

)∫ 1

0

dy
y

fc̄

(
y ;
µ

m
,
ν
√

s
m2

)
H

(
µ2

xys

)
→ single term that involves only leading-twist projections

2. Insert perturbative expansion of hard function at double-log level:

H

(
µ2

xys

)
≃

∞∑
n=0

zn
h h(n)(xy)−nε with zh =

αem

2π
1
ε2

(
µ2

s

)ε

Form factor expressed as infinite sum of products of divergent moments:

F1(λ) =
∞∑

n=0

zn
h h(n)⟨x−1−nε⟩fc

(
µ

m
,
ν
√

s

)
⟨y−1−nε⟩fc̄

(
µ

m
,
ν
√

s
m2

)
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Resummation from Consistency Relations

3. Rapidity poles must cancel at each order in the hard-matching
→ Collinear Anomaly: large rapidity log’s exponentiate in products [Becher,Bell,Neubert ’11]

→ F1 expressed as infinite sum of anomaly exponents Fn and “remainder functions” rn

F1(λ) =
∞∑

n=0

zn
h h(n) rn(µ/m) ·

(
m2

s

)Fn(µ/m)
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→ F1 expressed as infinite sum of anomaly exponents Fn and “remainder functions” rn

F1(λ) =
∞∑

n=0

zn
h h(n) rn(µ/m) ·

(
m2

s

)Fn(µ/m)

4. Insert perturbative expansion (with constraints from refactorization)

rn(µ/m) =
∞∑

k=0

(αem

2π

)k
(
µ2

m2

)kε
r (k)n

ε2k
, Fn(µ/m) =

∞∑
l=n+1

(αem

2π

)l
(
µ2

m2

)lε
F (l)

n

ε2l−1
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Resummation from Consistency Relations

3. Rapidity poles must cancel at each order in the hard-matching
→ Collinear Anomaly: large rapidity log’s exponentiate in products [Becher,Bell,Neubert ’11]

→ F1 expressed as infinite sum of anomaly exponents Fn and “remainder functions” rn

F1(λ) =
∞∑

n=0

zn
h h(n) rn(µ/m) ·

(
m2

s

)Fn(µ/m)

4. Insert perturbative expansion (with constraints from refactorization)

rn(µ/m) =
∞∑

k=0

(αem

2π

)k
(
µ2

m2

)kε
r (k)n

ε2k
, Fn(µ/m) =

∞∑
l=n+1

(αem

2π

)l
(
µ2

m2

)lε
F (l)

n

ε2l−1

5. Form factor finite for ε→ 0 gives consistency relations between (h(n),r (k)n ,F (k)
n )

✓ reproduce known result order-by-order:

F1(λ) ≃
I1
(

2
√

h(1)z
)

√
h(1)z

✓ single unknown coefficient h(1) = 1 determined from one-loop calculation
! need infinite perturbative series of anomaly exponents
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Comparison to h → γγ [Neubert et al. 19/20]

At first sight, the two processes seem to be very similar at the technical level:
SCETII, same modes, massive fermion propagators, analytic regulators, . . . but:
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SCETII, same modes, massive fermion propagators, analytic regulators, . . . but:

Bare factorization theorem for form factor F1 takes the schematic form

fc̄ ⊗ H ⊗ fc + fc̄ ⊗ Jh̄c ⊗ S ⊗ Jhc ⊗ fc

endpoint-div. cancel in products of inv. moments → exponentiation of rapidity poles

iterative refactorization condition: fc(x → 0) ∼ fc ⊗ Jhc ⊗ S

soft function does not vanish for zero argument (upper cut-off insufficient to cure endpoint)
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At first sight, the two processes seem to be very similar at the technical level:
SCETII, same modes, massive fermion propagators, analytic regulators, . . . but:

Bare factorization theorem for form factor F1 takes the schematic form

fc̄ ⊗ H ⊗ fc + fc̄ ⊗ Jh̄c ⊗ S ⊗ Jhc ⊗ fc

endpoint-div. cancel in products of inv. moments → exponentiation of rapidity poles

iterative refactorization condition: fc(x → 0) ∼ fc ⊗ Jhc ⊗ S

soft function does not vanish for zero argument (upper cut-off insufficient to cure endpoint)

h → γγ bare factorization theorem can be written as

H1 · ⟨γγ|O1 |h⟩+ H2 ⊗ ⟨γγ|O2 |h⟩+ H2 ⊗ ⟨γγ| Ō2 |h⟩+ H3 · Jh̄c ⊗ S ⊗ Jhc

endpoint-div. cancel in sum of inv. moments → linear rapidity pole to all orders

refactorization condition takes simpler form: ⟨γγ|O2 |h⟩
∣∣
x→0 ∼ Jhc ⊗ S

soft function vanishes for zero argument

Reason: Collinear and soft function in h → γγ both helicity suppressed in mb/mH .
But this is not the case in the 2 → 2 scattering process e−µ− → e−µ−.
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Summary: Muon-Electron Backward Scattering

✓ simple 2 → 2 textbook process in QED

✓ leading log’s resum to modified Bessel function (known for > 50 years)

✓ Bessel function in SCET recovered by iterative pattern of endpoint singularities
→ infinite tower of collinear-anomaly exponents
→ leading-power DLs already more complicated than other examples in the literature

1.) “scale-separation”
2.) consistency (pole-cancellation, “collinear anomaly”)

3.) re-factorization

So far we did not derive a renormalized factorization theorem
→ need to figure out whether rearrangement (in spirit of h → γγ) can be generalized

next: mimics the endpoint structure in exclusive Bc decays, but in a much simpler setup
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3. The soft-overlap form factor
in non-relativistic Bc → ηc transitions

based on: PB PhD thesis 2018
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The Soft-Overlap Form Factor ξπ

Form factor = non-perturbative input in exclusive semi-leptonic B decays, e.g. B → πℓν:

⟨π(p)| q̄γµb |B(pB)⟩ = F+(q2)(pµ
B + pµ) + F−(q2)qµ

At large pion energies (small q2) → use SCET to factorize hard, hc, coll., soft

mb → ∞: two SCETI operators

JA = χ̄hchv , JB = χ̄hc /A⊥hv√
mbΛQCD → ∞: JB factorizes into convergent convolutions of LCDAs ϕ+B (ω) and ϕπ(u) ✓

JA does not factorize due to endpoint-divergent convolutions

However, A-type contribution spin-symmetry preserving: [Beneke,Feldmann ’00]

Fi (q2) = Hi (q2,µ) · ξπ(q2,µ) + (factorizable)i

with the soft-overlap form factor ξπ defined as a SCETI hadronic matrix element

2Eπξπ = ⟨π(p)| χ̄hchv |B̄c⟩
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ξπ: Tree-Level Matching

SCETII operator basis: see [Lange,Neubert ’03] for massless quarks

O1 =
[
χ̄(0)

/̄n
2
γ5χ(sn̄)

] [
Q̄s(τn)

/̄n/n
4
γ5Hv (0)

]

O2 =
[
χ̄(0)

/̄n
2
γ5i/∂⊥χ(sn̄)

] [
Q̄s(τn)

/n
2
γ5Hv (0)

]

O3 =
[
χ̄(0)

/̄n
2
γ5 /Ac,⊥(r n̄)χ(sn̄)

] [
Q̄s(τn)

/n
2
γ5Hv (0)

]

O4 =
[
χ̄(0)

/̄n
2
γ5χ(sn̄)

] [
Q̄s(τn)/As,⊥(σn)

/n
2
γ5Hv (0)

]

Om =
[
χ̄(0)

/̄n
2
γ5χ(sn̄)

] [
Q̄s(τn)

/n
2
γ5Hv (0)

]
The operator Om contributes only for non-vanishing light-quark masses

definition with Ψ(5)
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ξπ: Tree-Level Matching

(+ symmetric diagrams with coll. gluon)

Remark: First non-vanishing contribution with correct quantum numbers for

JA = χ̄hchv → χ̄
(5)
hc hv in the notation of [Beneke/Feldmann 0311335].

Ψ
(5)
hc ∼ λ5 describes splitting into one soft quark + two collinear quarks (+ soft and coll. gluons)

definition with Ψ(5)
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ξπ: Tree-Level Matching

Tree-level bare factorization formula:

ξπ(Eπ) ∼CF

∫ ∞

0
dω
∫ 1

0
du

[
ϕ−B (ω)

ω

1 + ū
ū2

ϕπ(u) +
ϕ+B (ω)

ω

u
ū2

ϕπ(u)

+
ϕ+B (ω)

ω2

(
−

mq ū + 2mq̄

ū2
ϕπ(u) + 3

µπϕP(u)
ū

+
µ̃π

6
ϕ′σ(u)

ū

)]

− 2 (CF − CA/2)
f3π
fπ

∫ ∞

0
dω

ϕ+B (ω)

ω2

∫
Dα

ϕ3π({αi})
αgαq̄(αg + αq̄)

+ 2 (CF − CA/2)
∫ ∞

0
dω
∫ ∞

0
dξ

ΨA−V (ω,ξ)

ω ξ (ω + ξ)

∫ 1

0
du

ϕπ(u)
ū2

.

Almost all convolutions endpoint-divergent for ω → 0 and ū → 0!

For example: ϕ+B ∼ ω, ϕ−B ∼ const. for ω → 0, and ϕπ ∼ ū, ϕP ∼ ϕ′σ ∼ const. for ū → 0

They appear in products!

definition with Ψ(5)
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Non-Relativistic Bound States

LCDAs are non-perturbative hadronic objects . . . How to approach the problem?

→ consider non-relativistic bound states: Bc → ηc in the limit mb ≫ mc ≫ ΛQCD

→ LO in NR expansion: 2 → 2 scattering process of on-shell massive quarks
(with correct spin projections) e.g. [Bell/Feldmann ’05+’08, Bell ’06]

(v · v′ ≡ γ ∼ O(mB/mη) ≫ 1)

✓ quark masses provide physical IR cut-off (they mimic ΛQCD)

✓ perturbative partonic calculation can be trusted down to the low scale mc

→ perturbative corrections to the LCDAs [Bell/Feldmann ’08]

→ at tree-level: ϕ+B (ω) = ϕ−B (ω) = δ(ω − mc) and ϕπ(u) = ϕP(u) = δ(u − 1/2)

:( realistic quarks massless(?). quark masses complicate the analysis
→ endpoint-div’s show up as rapidity poles in rad. corr., requires rapidity regulator
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Momentum Regions

Standard modes for analytic regulators (ν/n±k)α , (ν/vk)α

→ no soft-collinear messenger modes with virtuality
below mc

→ bare factorization theorem gives finite form factor

Endpoint divergences arise from the soft limit of the collinear sector, and vice versa

→ they cancel between inv. moments of the Bc and the ηc LCDAs

→ different hadronic matrix elements have a common overlap in the endpoint region
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Structure of Rapidity Divergences: NLO

. . . now start computing one-loop diagrams like

and find for the leading rapidity sing. of the soft moments (here used (ν/n+k)α, use EoM for 3-particle DA)

2mq̄

∫ ∞

0

dω
ω2

ϕ+B (ω) ≃
∫ ∞

0

dω
ω
ϕ−B (ω) ≃

αsCF

4π
1

mq̄

(
µ2

m2
q̄

)ε(
ν

mq̄

)α
4
αε

and for the collinear moments, e.g. (u0 = 1/2 for mq = mq̄ = mc )∫ 1

0
du

ϕ
(1)
η (u)
ū2

≃
αsCF

4π

(
−

2
αε

)(
µ2

m2
q̄

)ε(
ν

2γmq̄

)α
1 + ū0

ū2
0

→ plug into fact.-formula, add (hard, hc, cusp) to obtain finite result: (✓ with full-theory calculation)

ξ
(1)
ηc ∼

αsCF

4π

(
2CF

ū2
0

−
CFA

ū3
0

)
ln2(2γ)
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Structure of Rapidity Divergences: NNLO

. . . now start computing two-loop diagrams like

and find for the leading rapidity singularities of the soft moments

∫ ∞

0

dω

ω2
ϕ
+
B (ω) ≃

1

m2
q̄

(
αs

4π

)2
 µ2

m2
q̄

2ε (
ν

mq̄

)2α 2C2
F

α2ε2

∫ ∞

0

dω

ω
ϕ
−
B (ω) ≃

1

mq̄

(
αs

4π

)2
 µ2

m2
q̄

2ε (
ν

mq̄

)2α 6C2
F − CACF

α2ε2

and some more complicated expressions in the coll. sector.

→ again, all 1/α2 poles drop out in the sum ss + cc + sc ✓

Note that the mixed soft-coll. contribution is ∼ 1/α2! It contains products of divergent moments!
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Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?

Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z -factor)

Mixing of various two- and three-particle LCDAs at endpoint!
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Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?

Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z -factor)

Gives exponentiation structures, e.g. (like in µe scattering!)∫ ∞

0

dω
ω2

ϕ+B (ω) ≃
1

m2
q̄
exp E

∫ ∞

0

dω
ω
ϕ−B (ω) ≃

1
mq̄

{
exp E −

CFA

CF
E exp E +

CA

2CF
(exp E − 1)

}

with leading contribution to the (bare) anomaly exponent:

E =
F (1)

α

(
ν

mq̄

)α

, F (1) =
αsCF

4π
2
ε

(
µ2

m2
q̄

)ε

✓ With similar relations for the ηc , leading 1/α poles cancel when inserted in fact.-theorem!
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Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?

Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z -factor)

For example, rapidity poles cancel in the product

∫ ∞

0

dω
ω2

ϕ+B (ω)×
∫ 1

0
du

1 + ū
ū2

ϕηc (u) ≃
1

m2
q̄

1 + ū0

ū2
0

× (2γ)F
(1)

✓ large rapidity logarithms due to collinear anomaly resummed to all orders

more complicated structures for ξηc due to mixing
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Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?

Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z -factor)

For example, rapidity poles cancel in the product

∫ ∞

0

dω
ω2

ϕ+B (ω)×
∫ 1

0
du

1 + ū
ū2

ϕηc (u) ≃
1

m2
q̄

1 + ū0

ū2
0

× (2γ)F
(1)

✓ large rapidity logarithms due to collinear anomaly resummed to all orders

more complicated structures for ξηc due to mixing

Remark: Results for inv. moments process-independent!
→ similar structure for other hard-exclusive processes!
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Endpoint-Refactorization

Q: What is the all-order ū → 0 asymptotics of, for example, the bare ηc LCDA?
→ take soft (or soft-collinear) limit of overlapping propagator that carries momentum fraction ū:

⟨ηc(p)| χ̄c(0)
/n+

2
γ5χc(sn−) |0⟩ = −iEηc fηc

∫ 1

0
dū ei ūs(n−p) ϕηc (u)
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Endpoint-Refactorization

Q: What is the all-order ū → 0 asymptotics of, for example, the bare ηc LCDA?
→ take soft (or soft-collinear) limit of overlapping propagator that carries momentum fraction ū:

⟨ηc(p)| χ̄c(0)
/n+

2
γ5χc(sn−) |0⟩ = −iEηc fηc

∫ 1

0
dū ei ūs(n−p) ϕηc (u)

power-counting: ϕηc (ū → 0) involves the ψ(5)
hc splitting into a soft and two coll. quarks!

→ endpoint described by a vacuum matrix element of soft (or soft-collinear) fermion fields
→ same overlap matrix elements appear in ϕBc (ω → 0) ⇒ common overlap ✓

→ but: again iterative non-additive structure (like soft mode in e−µ− scattering)

P. Böer Endpoint singularities in µe scattering 25 / 27



4. Conclusion
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Conclusion

Take-home messages:

1. Endpoint-singularities longstanding problem that prevents a systematic study of
power-corrections in SCET. General treatment still an open problem. Phenomenologically
relevant in B physics.

2. Despite the recent progress, they can manifest is a more complicated non-additive way, in
particular in 2 → 2 processes (or higher multiplicities).
→ exclusive charmless B decays

3. Muon-electron backward-scattering provides a well-defined perturbative playground for
studying non-trivial aspects of soft-coll factorization in the presence of endpoint-div’s.
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Backup-Slides
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Soft-Enhancement

soft contribution leading power despite four insertions of L(1/2)
ξq :

O2 =

∫
dd x1

∫
dd x2

∫
dd x3 T

{
[χ̄

(e)
h̄c
/A⊥

h̄c ](0) [/A
⊥
h̄cχ

(µ)

h̄c
](x1)

}
× T

{
[χ̄

(µ)
hc /A⊥

hc ](x2 + x3) [/A
⊥
hcχ

(e)
hc ](x3)

}
× T

{
ψ
(e)
s (0) ψ̄(µ)

s (x1+)ψ
(µ)
s (x2− + x3) ψ̄

(e)
s (x3)

}
multipole expansion w.r.t. hc and h̄c fields at different space-time points x = 0 and x = x3

→ soft fluctuations d4x3 ∼ 1/λ4 compensate suppression from L(1/2)
ξq insertions

→ related to special backward kinematics

In SCETII the suppression is compensated by inverse soft derivatives
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Some Backup Formulas

Comparison of the muon-electron scattering and h → γγ amplitude at the DL level:

for h → γγ get standard h → b∗b∗ Sudakov in integrand:

Fb(z) = 2
∫ 1

0
dξ
∫ 1

0
dη θ(1 − ξ − η)e−2ξηz

for muon-electron backward-scattering the form factor itself appears in the integrand
→ nested structure

F1(z) = 1 + z
∫ 1

0
dξ
∫ 1

0
dηF1(ξ

2z)θ(1 − ξ − η)F1(η
2z)
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