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Introduction

Aim of soft-collinear factorization:

1. combined expansion in piey /tnigh and as
— requires rigorous power-counting scheme

2. separate dynamics related to momentum regions with different virtualities and/or rapidities
— separation of perturbative and non-perturbative dynamics in hadronic processes

3. employ Renormalization Group Equations to sum large logarithms to all orders

1
alIn™ (m)
Hhigh
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Aim of soft-collinear factorization:

1. combined expansion in piey /tnigh and as
— requires rigorous power-counting scheme

2. separate dynamics related to momentum regions with different virtualities and/or rapidities
— separation of perturbative and non-perturbative dynamics in hadronic processes

3. employ Renormalization Group Equations to sum large logarithms to all orders
ch In™ ( Hlow )
Hhigh

Problem: standard procedure may lead to ill-defined convolution integrals

@ they may only converge in d = 4 — 2¢ dimensions (SCET)
— standard renormalization program breaks down

@ dim.-reg. insufficient to separate modes with equal virtuality but different rapidity (SCETx)
— analytic regulators violate naive decoupling (“collinear anomaly”) [Becher/Neubert]

@ often related to soft fermions (— n.l.p.!)
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Incomplete List of Examples

@ off-diagonal channels in DIS [Beneke et al '20]
@ bottom induced h — ~~ decay [Neubert et al. '19/20]
@ off-diagonal gluon thrust [Beneke et al. 22]
o ...

In B-meson decays:

@ power-corrections in B — hy hy decays (e.g. weak annihilation) [BBNS '99/00]
@ power-corrections in radiative B — /v decays [e.g. Beneke,Rohrwild '11]
@ heavy-to-light form factors [Beneke,Feldmann '00]
@ certain QED corrections in Bs — ptu~ [Beneke,Bobeth,Szafron '19]
o ...
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Incomplete List of Examples

@ off-diagonal channels in DIS [Beneke et al '20]
@ bottom induced h — ~~ decay [Neubert et al. '19/20]
@ off-diagonal gluon thrust [Beneke et al. 22]
o ...

In B-meson decays:

@ power-corrections in B — hy hy decays (e.g. weak annihilation) [BBNS '99/00]
@ power-corrections in radiative B — /v decays [e.g. Beneke,Rohrwild '11]
@ heavy-to-light form factors [Beneke,Feldmann '00]
@ certain QED corrections in Bs — ptu~ [Beneke,Bobeth,Szafron '19]
o ...

Problem seems to arise generically in SCET at subleading power! A better understanding would
constitute a major step in controlling the 1/E expansion.

Aqgcp/mg 2 0.1 is not extremely small. Very relevant in B physics!
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2. muon-electron backward scattering:
a prime example for endpoint singularities

based on arXiv:2205.06021 with G. Bell and T. Feldmann
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Why “prime example”?

Clean framework to study physics of endpoint singularities, because ...

v perturbative QED process from the textbook
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Why “prime example”?

Clean framework to study physics of endpoint singularities, because ...

perturbative QED process from the textbook

resummed double logarithms known for > 50 years [Gorshkov et al. 1966]
they arise from single scalar Integral at each order in aem (— playground for method-of-regions)
bare factorization theorem can be reduced to a single term at the DL level

most general structure of endpoint singularities, already for DLs at leading power!
(more complicated than e.g. h — ~+y, gluon thrust)

NN NN

AN

mimics structure of endpoint singularities in exclusive B decays (& other hard-exclusive processes)

—~

phenomenologically not the most relevant process
subleading logarithms way more complicated and unknown

—~

P. Boer Endpoint singularities in p.e scattering 6/27



Backward Scattering

’ 2 — 2process: e~ (p)u~(P) — e~ ()" (p) at s —t>m~m>u

@ consider common mass m,, ~ me — m for simplicity (but distinguishable flavours)
@ expansion parameter: A = m/+/s, and light-cone vectors

2
\[qu n“ —_\/gu m- u

nwo__
P o/s
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Backward Scattering

’ 2 — 2process: e~ (p)u~(P) — e~ ()" (p) at s —t>m~m>u

@ consider common mass m,, ~ me — m for simplicity (but distinguishable flavours)
@ expansion parameter: A = m/+/s, and light-cone vectors

\f =
B " 7# wo— Voo M
p +2\[n p 2n++2\ﬁn_

) <) P poop

w(p) w(p) P

@ high-energy limit: M = F{(A)M©O + F(A)M
— leading DLs in form factor F;()) that multiplies tree amplitude M©) ~ aep,

@ DL at NLO from twisted box: Fi(d) =1+ Smlin?x2+ ..
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Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, k* ~ X:
_ S

c c
he § § he
c c
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Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, k* ~ X:
_ S

c c
he § § he
c c

S

After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

d% 1 1 1
@m)d k2 — 2 (k—p)2 (k— PP
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Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, k* ~ X:
_ S

c c
he ; § he
c c

S

After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

d%% 1 1 1
(2m) k2 —m? (k- p)? (k—Pp)
Photon propagators become eikonal:
(k—p)2 +i0 ~ —v/s(n_k) + i0, (k —P)% +i0 ~ —/s(n k) + i0
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Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, k* ~ X:
_ S

C (&
}LC; §/Lc
& S (&
After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral
d
F1(1)()‘) ~ (gﬂ.l)(d K2 1 m? (k ,1 p)2 (k j D)2
Photon propagators become eikonal:
(k—p)2 +i0 ~ —v/s(n_k) + i0, (k —P)% +i0 ~ —/s(n k) + i0

Non-vanishing contribution from discontinuity of soft lepton propagator:

e . ,
/m — —2mib((nsk)(n_k) — mP)
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Isolating the Double-Log at NLO

DLs arise from the kinem. configuration in which the virtual lepton propagators are soft, k* ~ X:
_ S

C (&
hcg ;hc
& S (&
After some Dirac algebra, it is then easy to show that the DL is contained in the scalar integral

d% 1 1 1
@m)d k2 — 2 (k—p)2 (k— PP

Photon propagators become eikonal:
(k—p)2 +i0 ~ —v/s(n_k) + i0, (k —P)% +i0 ~ —/s(n k) + i0

Non-vanishing contribution from discontinuity of soft lepton propagator:
ok? . .
- —2mif((ny+-k)(n—k) — m
[y > —2mib((nk)(n-k) — )
Traditional approach: put hard cut-offs on longitudinal momenta (n1 k) < /s

“)(A):/ / | 22 o (nek = x/5, n_k = y/8)
A2 \2/x y
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Isolating the Double-Log’s at Higher Orders

p b ke ks ky » R

P k1 ko k3 kn p P ki k2 ks kn D

all photon propagators eikonal: (ki — ki—1)? +i0 ~ —(nyk;)(n—ki_1) + i0

strongly ordered longitudinal lepton momenta:

2
m —
ﬁzn+p<<n+k1 <<--~<<n+kn<<n+pz\/§

m2
s n_p>n_k > N_kp > nipr —
Vs P>n_ki> > n_ky>ngp 7
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Isolating the Double-Log’s at Higher Orders

P bk ks ke P g\
P k1 k2 k3 kn p D ki ka k3 kn P
all photon propagators eikonal: (ki — ki—1)? +i0 ~ —(nyk;)(n—ki_1) + i0
strongly ordered longitudinal lepton momenta:
m? _
— AP Nk K - K Npkp K Nep /s
Vs
VSmnN_p>n_ki>--->n_ky>n ~
~n-p - K —Kn +P NG
yields nested integrals:
FO(x / ] dXz.../‘ @ [ %/y‘ %/ydi_ In®" A2
A Xy Jx xo_q Xn Iazyx Y1 Iazyx, Yo x2/xp Yo ni(n+1)!
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Isolating the Double-Log’s at Higher Orders

b7l

ke ks ks ke » B

p k1 ko k3 kn p P ki k2 ks kn p

all photon propagators eikonal: (ki — ki—1)? +i0 ~ —(nyk;)(n—ki_1) + i0
strongly ordered longitudinal lepton momenta:

m? _
7 NP < nyky < -+ < Npkp K nep = /s

2

VSn_p>n_ki> --->n_kn>np~
P 1 n +P 75

that sum up to modified Bessel function:

o~ [ Qem \ " h(2v2) - o
F1()\)zz<26:) Ff”)(A):T, with  z= S n? 32

n=0

P. Boer Endpoint singularities in p.e scattering 9/27



Isolating the Double-Log’s at Higher Orders

3
o~
&
ol
)
o~
&
o~
3
=

AVAYAY

AVAYAY,

AYAYAY

QVAYAY
R

However, ...
@ only the leading double-logarithms identified in this way
@ scale of running coupling undetermined
@ factorize non-pert. physics from short-distance dynamics (in hadronic processes)

Goal: Formulate problem in SCET in terms of a renormalized factorization theorem!

..work in progress! Highly non-trivial endpoint singular convolutions!
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Method-of-Regions Analysis

c c c : c c < c c c
h gh‘ + Eg §h + h§ §(‘ + }{cé ghc
c c c c c c c c
h ¢ c s
. 1 1 42 1 T
I(h‘“d):f “intE 7|27_7
€2+Ens+2n s 12+0(€)

@ contains Sudakov-type double-logarithms involving the hard scale n/+/s
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Method-of-Regions Analysis

h c ~ c . S
: c

c c c c c lé c
h gh + Eg §h + h§ g“ + h}f; %/L('
c c c c c c

h ) c c s
2\ ¢ 1 a 2 2
ax _ v 1 v 1 w s
7(©) — g=vET Ll / 1 —x)2= <7) = (7 I 7> SamE )+
e (e) ( 2> b x 1-x) NG o +In 7 \e +In— ]+ 3 +0O(a,e)

@ standard UV singularity I'(¢) from k; — oo

ol

@ Endpoint-singularity for nyk = xy/s — 0
— ill-defined in dim.-reg. due to lepton mass m # 0
— rapidity divergence! Fermion propagator overlaps between low-energy regions
— No IR-singularity in the conventional sense (no mode below p ~ m)

@ requires additional (analytic) rapidity regulator  (e.g. [Becher/Bell,Ebert et al.,Chiu et al.Neill et al... ..
— here: (v/2ko)* preserves symmetry, so Z(©) = Z(©)
— small virtuality 4 ~ m, large energy v ~ /s
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Method-of-Regions Analysis

_ h s
c c
h ghc
c c
h S
m 1
v | | Janti-coll
1 1
: I I
— v »n_k
m
som Vs
P. Boer
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Method-of-Regions Analysis

C . S

c c c . c c c c c
h gh + Eg §h + h§ gt' + }{c§ %/L('
c c c > c c c c c
h c c S
1 v 1 12 1 1 e 1 e w2
0 =2( - 4+In= In —5—-his -5+ —=+0
(a+"m)< + m2> 2 c'm 2"m +12+ (e)

@ again ill-defined in dim.-reg.
— 1/a singularity from both limits ny k — co and n_k — oo

@ symmetric regulator remains unexpanded: 2kyg = nyk + n_k = (x + y)\/s

— small virtuality u ~ m, small energy v ~ m
— can be made scaleless by choosing an asymmetric regulator, e.g. (v/n;k)*

P. Boer Endpoint singularities in p.e scattering 10/27



Method-of-Regions Analysis

c c c c c : c , c
h gh + E§ §h + }é gv + h’c; %,
c - c c : c c c

@ Sum of regions:
hard) 4 7(0) 4 7(@) 4 7(5) — > In2 X2 4 2

v dimensional and analytic regulator drop out
v leading DL recovered

@ remaining one-loop graphs standard
— no endpoint-singularity, no analytic regulator, DL cancels
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Formulation in SCET

Two-step matching: QED *=5° SCET; VMo SCETy:

3

(boring diagrams not shown)

_ h X _ C _ c
C c C C C C
hg gh + Eg gh + hg gff
c c c > c c c
h c c
Schematic form of bare factorization formula
FIAN)~2GoH® T J
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Two-step matching: QED *=5° SCET; VMo SCETy:

3

(boring diagrams not shown)

_ h - ¢ _ c _ s
C (& C (& C (& C C
hg §h + Eg gh + hg gc + he §hc
c 3 c c > c c = c c I8 c
Schematic form of bare factorization formula
FIN~hGreoH®G + (80J;0S®Ih®f J
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Formulation in SCET

Two-step matching: QED *=5° SCET; ¥ °*"5"*° SCETy:

Sc

(boring diagrams not shown)

S

_ h _ c _ C .
C (& C (& (& (& C C
h h + c h + h c + he g he
c c c > c c c c c
h C C S
hematic form of bare factorization formula
FN)>2GoH®k + (£RJ;;®0S®Jpe®f J

@ soft contribution leading power due to specific soft-enhancement mechanism (— backup)
v individual bare soft and coll. fct's defined as SCET operator matrix elements, e.g.

o # _ o Y Y
(PR () PR XE O 1 (0) = / axe™ ~+P{fc<x>[uy>gpm>u§>1+fc(x>[ug>7+a<mu§>]}

— generalized parton distributions (forward, but flavour-non-diagonal)
— helicity-flipping functions 7C(x) and ?a(y) do not contribute to leading DLs
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Formulation in SCET

Two-step matching: QED *=5° SCET; ¥ °*"5"*° SCETy:
(boring diagrams not shown)

S

_ h _ c _ C .
C (& C (& C (& C C
h h + c h + h c + he g he
c c c > c c c c c
h C C S
Schematic form of bare factorization formula
F1()\)ﬁf5®H®fc P fE®Jﬁc®s®Jhc®fC J

@ At one-loop level

fo(x) = 5(1 — x) + ‘;'r“ 0(x)0(1 — x) (ﬁ;) r(g)(1 + 0(x))

— convolution integrals | %fc(x) require rapidity regulator!

?? How to renormalize functions before performing the convolutions ??
11/27
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Endpoint-Refactorization

Q: Can we understand the x — 0 asymptotics of the bare functions f;(x) to all orders in aem?
Can we isolate and subtract the divergences?

Recall: Rapidity diverences arise from the soft limit of the coll. fermion propagators!
— interpret fc(x) for x — 0 as multi-scale object

= TE <

tx 0= [ Law) [ & el )S(0.2) |

[PB '18]

v reflects structure of the secondterm f ® J ® S® J ® f as 1/« poles must cancel

P. Boer Endpoint singularities in p.e scattering 12/27



Endpoint-Refactorization

Q: Can we understand the x — 0 asymptotics of the bare functions f;(x) to all orders in aem?
Can we isolate and subtract the divergences?

Recall: Rapidity diverences arise from the soft limit of the coll. fermion propagators!
— interpret fo(x) for x — 0 as multi-scale object

c c
S
z—0
—— * he *
g
c c

tx 0= [ Law) [ %Jm(px')S(p,x) |

v reflects structure of the secondterm f ® J ® S® J ® f as 1/« poles must cancel (PB 18]

Implications: (before expansion in e!)

1.) collinear functions receive positive powers of x¢ from J,. =
2.) 1/a cancel within fo(x — 0) and generate powers of Inx =
3.) peculiar structure as fo(x’) arises on the RHS

(x71=") ~1/a, ¥n
higher powers in 1/«
= non-additive problem
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Endpoint-Refactorization

Q: Can we understand the x — 0 asymptotics of the bare functions f;(x) to all orders in aem?
Can we isolate and subtract the divergences?

Recall: Rapidity diverences arise from the soft limit of the coll. fermion propagators!
— interpret fo(x) for x — 0 as multi-scale object

c c
S
z—0
—— * he *
g
c c

tx 0= [ Law) [ %Jm(px')smx) |

[PB '18]

v reflects structure of the secondterm f ® J ® S® J ® f as 1/« poles must cancel

Example: at four-loop f(x) has the following asymptotic structure:

19 (x s 0) ~ 12 \* [ X% —15x2° 1 339x= — 325  (3x*+23)Inx BIn?x In®x
¢ —\m? 1447 12¢6 4e5 64
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Resummation from Consistency Relations

Despite the complexity of the problem, the DL series is completely determined by
(i) scale separation (of bare quantities)
(i) consistency (i.e. pole cancellation in 1/c and 1/¢)
(iii) refactorization
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Resummation from Consistency Relations

Despite the complexity of the problem, the DL series is completely determined by
(i) scale separation (of bare quantities)
(i) consistency (i.e. pole cancellation in 1/c and 1/¢)
(ii) refactorization

1. Use asymmetric regulator that makes soft contribution scaleless: (clear scale separation v)

T dx uwov T ady uw vy/s u?
F: ~ —fe [ Xx; =,— “foly, = —% |H| —
0=, () | e ) (s

— single term that involves only leading-twist projections
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Resummation from Consistency Relations

Despite the complexity of the problem, the DL series is completely determined by
(i) scale separation (of bare quantities)
(i) consistency (i.e. pole cancellation in 1/c and 1/¢)
(ii) refactorization

1. Use asymmetric regulator that makes soft contribution scaleless: (clear scale separation v)

= et [ el ()

— single term that involves only leading-twist projections

2. Insert perturbative expansion of hard function at double-log level:

2 g
E ZPhM (xy)=" with  z, = = (e
xys 21 €2 \ s

Form factor expressed as infinite sum of products of divergent moments:

Fiy) = gzﬁm")u-‘-”ﬂfc (&2 o, (2.2

m’ m?2
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Resummation from Consistency Relations

3. Rapidity poles must cancel at each order in the hard-matching
— Collinear Anomaly: large rapidity log’s exponentiate in products [Becher,Bell,Neubert '11]
— F; expressed as infinite sum of anomaly exponents F, and “remainder functions” r

S m2 Fn(p/m)
Fi(A\) = D 2hh™ rapu/m) ( )

n=0 S
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Resummation from Consistency Relations

3. Rapidity poles must cancel at each order in the hard-matching
— Collinear Anomaly: large rapidity log’s exponentiate in products [Becher,Bell,Neubert '11]
— F; expressed as infinite sum of anomaly exponents F, and “remainder functions” r

S m2 Fn(p/m)
FiO) =D 2™ rau/m) - ( )

n=0 s
4. Insert perturbative expansion (with constraints from refactorization)

oo otem \ K Mz ke r,(7k) o) orem ! M2 le _7'—,(,/)
rn(u/m) = Z ( on ) W 6? ) ]:n(},é/m) = Z ( on ) W 62/,1

k=0 J=n+1
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Resummation from Consistency Relations

3. Rapidity poles must cancel at each order in the hard-matching
— Collinear Anomaly: large rapidity log’s exponentiate in products [Becher,Bell,Neubert '11]
— F; expressed as infinite sum of anomaly exponents F, and “remainder functions” r

S m2 Fn(p/m)
Fi(A) =D 2™ ra(pu/m) - ( )

n=0 S

4. Insert perturbative expansion (with constraints from refactorization)

o~/ Ctem \ K Mz ke r/(1k) - Qem \/ Hz * -7:1(1/)
rn(ﬂ/m)zz(zﬂ_ ) W 6?7 ]:n(u/m): Z <27T) W 62/,1
k=0 I=n+1

5. Form factor finite for ¢ — 0 gives consistency relations between (h("),rﬁk),}‘ﬁ,k))
v reproduce known result order-by-order:
I <2\/h(‘)z)
Fi(A) >~ ———=+
)z
 single unknown coefficient (1) = 1 determined from one-loop calculation
! need infinite perturbative series of anomaly exponents
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Comparison to h — v [Noubert et al. 19120

At first sight, the two processes seem to be very similar at the technical level:
SCETy, same modes, massive fermion propagators, analytic regulators, . .. but:
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Comparison to h — v

[Neubert et al. 19/20]

At first sight, the two processes seem to be very similar at the technical level:
SCETy, same modes, massive fermion propagators, analytic regulators, ... but

Bare factorization theorem for form factor F; takes the schematic form
FOH®f + {£®Jp®SQIe® Tl

@ endpoint-div. cancel in products of inv. moments — exponentiation of rapidity poles
@ iterative refactorization condition: fe(x — 0) ~ fc ® Jpc ® S

@ soft function does not vanish for zero argument (upper cut-off insufficient to cure endpoint)
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Comparison to h — v

[Neubert et al. 19/20]

At first sight, the two processes seem to be very similar at the technical level:
SCETy, same modes, massive fermion propagators, analytic regulators, . .. but:

Bare factorization theorem for form factor F; takes the schematic form
FOH®R®G + [RJp®@SQh:®fh

@ endpoint-div. cancel in products of inv. moments — exponentiation of rapidity poles
@ iterative refactorization condition: fe(x — 0) ~ fc ® Jpc ® S

@ soft function does not vanish for zero argument (upper cut-off insufficient to cure endpoint)

h — ~~ bare factorization theorem can be written as
Hi - (v O1 [h) + Ha ® (7] Oz |h) + Ha ® (7] Oz |h) + Hs - Jje ® S ® Jpe

@ endpoint-div. cancel in sum of inv. moments — linear rapidity pole to all orders
@ refactorization condition takes simpler form: (v~| O, \h>|x_)0 ~Jhe ® S
@ soft function vanishes for zero argument

Reason: Collinear and soft function in h — ~~ both helicity suppressed in my,/my.
But this is not the case in the 2 — 2 scattering process e =~ — e p .
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Summary: Muon-Electron Backward Scattering

<

simple 2 — 2 textbook process in QED
leading log’s resum to modified Bessel function (known for > 50 years)

SNEEN

Bessel function in SCET recovered by iterative pattern of endpoint singularities

— infinite tower of collinear-anomaly exponents
— leading-power DLs already more complicated than other examples in the literature

1.
2.
3.

v

“scale-separation”
consistency (pole-cancellation, “collinear anomaly”)
re-factorization

-

So far we did not derive a renormalized factorization theorem
— need to figure out whether rearrangement (in spirit of h — ~~) can be generalized

next: mimics the endpoint structure in exclusive B decays, but in a much simpler setup
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3. The soft-overlap form factor
in non-relativistic B, — . transitions

based on: PB PhD thesis 2018
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The Soft-Overlap Form Factor &,

Form factor = non-perturbative input in exclusive semi-leptonic B decays, e.g. B — nlv:
(m(p)| @ b|B(ps)) = F+(°)(Pg + P") + F-(¢°)q"
At large pion energies (small ¢?) — use SCET to factorize hard, hc, coll., soft

@ my — co: two SCET; operators hy f ¢ h, f ¢

A
Ja = Xnchv, Jg = XneALhv

@ /mpNgcp — oot Jg factorizes into convergent convolutions of LCDAs ¢ (w) and ¢ (u) v/
Ja does not factorize due to endpoint-divergent convolutions

However, A-type contribution spin-symmetry preserving: [Beneke,Feldmann '00]
Fi(q®) = Hi(@%.1) - &x(aP)  +  (factorizable);
with the soft-overlap form factor &, defined as a SCET; hadronic matrix element

2E&r = (n(p)| Xnchv |Be) J
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&:: Tree-Level Matching

@ SCETq operator basis: see [Lange,Neubert 03] for massless quarks
01 = [5(0) Dsx(sm] [strm) 2 rs71,(0)] — ¢
02 = [50) Dt x(sm)] [Sstrm Brsma0)]  — 454,4,63

03 = [x(mg%m,urmx(sm] (ot Irer(@)] — € ¢

04 = [5(0) Dsx(sm] [Ss(rmAs L (om Bosttu(0)] s %, 4
Om = [50) Psx(sm] [Ss(rm Brs1,(0)] b

@ The operator O, contributes only for non-vanishing light-quark masses
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&:: Tree-Level Matching

[oUTTTY|
[BUTTTTY|

%Q(QOOODDDD

(+ symmetric diagrams with coll. gluon)
Remark: First non-vanishing contribution with correct quantum numbers for
— —(5 . .
Ja = Xnchv — ng)hv in the notation of [Beneke/Feldmann 0311335).

\Ilﬁfc) ~ X5 describes splitting into one soft quark + two collinear quarks (+ soft and coll. gluons)
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&:: Tree-Level Matching

@ Tree-level bare factorization formula:

oo 1 Ty w
x(En) ~Cr [ dw/odu{%( VI e+ 5 8 )

L %) ( moU+2mg o g bndp(U) | fin ¢>g(u))]

w? u? u 6 U

— 2(Cr - Ca/2) f"ﬁ /Omdw ¢§(2“) /DQM

w agag(ag + ag)

“UA—V(W7§) d 71'( ) .

+2(cF_cA/2)/o dw/o ac s [y

@ Almost all convolutions endpoint-divergent for w — 0 and & — 0!
@ For example: ¢g ~ w, ¢pg ~ const. forw — 0, and ¢ ~ U, pp ~ ¢, ~ const. foru — 0
@ They appear in products!
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Non-Relativistic Bound States

LCDAs are non-perturbative hadronic objects ... How to approach the problem?

— consider non-relativistic bound states: Bc — ¢ in the limit mp > mc > Aqcp

— LOin NR expansion: 2 — 2 scattering process of on-shell massive quarks
(with correct spin projections) e.g. [Bell/Feldmann '05+'08, Bell '06]

mpv . mev’

mev mev

(v-v =~ n~ 0O(mg/my) > 1)
v quark masses provide physical IR cut-off (they mimic Aqcp)

v/ perturbative partonic calculation can be trusted down to the low scale mc

— perturbative corrections to the LCDAs [Bell/Feldmann '08]
— attree-level: ¢ (w) = ¢ (w) = §(w — me) and ¢ (u) = pp(u) = 5(u—1/2)

:( realistic quarks massless(?). quark masses complicate the analysis
— endpoint-div’'s show up as rapidity poles in rad. corr., requires rapidity regulator
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Momentum Regions

n.k 4

SCET

hard

coll
mpd

@ Standard modes for analytic regulators (v/ny k), (v/vk)®

— no soft-collinear messenger modes with virtuality
below m¢

— bare factorization theorem gives finite form factor

T T n_k
A* A mp

@ Endpoint divergences arise from the soft limit of the collinear sector, and vice versa
— they cancel between inv. moments of the B; and the . LCDAs
— different hadronic matrix elements have a common overlap in the endpoint region

mpv _ mev'

mev mev’

S cC
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Structure of Rapidity Divergences: NLO

...now start computing one-loop diagrams like

and find for the leading rapidity sing. of the soft moments (here used (v /n; k), use EoM for 3-particle DA)
> dw © dw _ asCr 1 uz " 4
2mg — ok ~ / — ~ — | = — | —
q/o w? 95(«) 0 w 9 () 4T mg <m(?7 mg ae

and for the collinear moments, e.9. (uy = 1/2for mg = mg = m)

1 «@ -
/1du gl)(u):aSCF (_3) I Ny 1+ iy
0 u? 47 ae mg 2vymy 0

— plug into fact.-formula, add (hard, hc, cusp) to obtain finite result: (v with full-theory calculation)
(1)NOésCF 2C/:_% (2
e 471'(175 z )" &)
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Structure of Rapidity Divergences: NNLO

...now start computing two-loop diagrams like

TOUTTUY|
TOUTTUY|

and find for the leading rapidity singularities of the soft moments

2
/'oo dw £ () 1 (as>2 2 <\ 2 20’2__
0 w? Pp(w) = mg 4 m2 mg a2e?

q

2
/oo oy <a5>2 12\ [ v \2¥6C2 — cacr
0 w B W= mg \ 4w m% mg a?e?

and some more complicated expressions in the coll. sector.
— again, all 1/a? poles drop out in the sum ss + c¢ + sc v/

Note that the mixed soft-coll. contribution is ~ 1/a?2! It contains products of divergent moments!
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Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?
Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)

SO0 o00Y

STOH T

r
I
" "
I
I

Mixing of various two- and three-particle LCDAs at endpoint!
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Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?
Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)

@ Gives exponentiation structures, e.g. (like in e scattering!)

dw 1
+ ~
/0 > QSB(w) ~ % exp &

* dw  _ 1 Cra Ca
— ~ — E——E¢ E+ —/— E—-1
/0 w 95 () mg {eXp cr o oP + 2CF (exp )
@ with leading contribution to the (bare) anomaly exponent:

AN sy _ asCr2 (2"
« mg ’ 4 € m%

v With similar relations for the ¢, leading 1/« poles cancel when inserted in fact.-theorem!
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Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?
Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)

@ For example, rapidity poles cancel in the product

144 ™)
|7 b / o (1) = ? 0 x (29)

0

v large rapidity logarithms due to collinear anomaly resummed to all orders

@ more complicated structures for &, due to mixing

P. Boer Endpoint singularities in p.e scattering 24/27



Structure of Rapidity Divergences: All-Orders

Q: Can we make some all order statements?

Yes! At least the leading rapidity poles are determined by recursion relations! (like a multipl. Z-factor)

@ For example, rapidity poles cancel in the product

1+ (1
|7 b / a2 () ~ ? 5 @0

0

v large rapidity logarithms due to collinear anomaly resummed to all orders

@ more complicated structures for &, due to mixing

Remark: Results for inv. moments process-independent!
— similar structure for other hard-exclusive processes!
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Endpoint-Refactorization

Q: What is the all-order & — 0 asymptotics of, for example, the bare 7 LCDA?
— take soft (or soft-collinear) limit of overlapping propagator that carries momentum fraction u:

1 —
(ne(p)| xc(O)%vst(sn_) 10) = —iEne e /0 o =) g (u)

A
CERARR

s
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Endpoint-Refactorization

Q: What is the all-order & — 0 asymptotics of, for example, the bare 7 LCDA?
— take soft (or soft-collinear) limit of overlapping propagator that carries momentum fraction u:

oop F _ L
(ne(p)| Xc(O)f“YSXc(S”—) 0) = *’Encfnc/o da &%=P ¢, (u)
+ t

l l X L X

K E X o

_

o be

I
|
(
%l

S
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Endpoint-Refactorization

Q: What is the all-order & — 0 asymptotics of, for example, the bare 7 LCDA?
— take soft (or soft-collinear) limit of overlapping propagator that carries momentum fraction u:

1 —
(ne(p)] )_(c(o)%’YSXc(Sn—) |0) = —iEnqfn. /0 du e/us(™-p) éne(U)
I }

Ko %
0 ke .

he A

7]
(4

@ power-counting: ¢, (U — 0) involves the 1/}2? splitting into a soft and two coll. quarks!

— endpoint described by a vacuum matrix element of soft (or soft-coliinear) fermion fields
— same overlap matrix elements appear in ¢g,(w — 0) = common overlap v/
— but: again iterative non-additive structure (like soft mode in e~ 1.~ scattering)
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4. Conclusion
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Conclusion

Take-home messages:

1. Endpoint-singularities longstanding problem that prevents a systematic study of
power-corrections in SCET. General treatment still an open problem. Phenomenologically
relevant in B physics.

2. Despite the recent progress, they can manifest is a more complicated non-additive way, in
particular in 2 — 2 processes (or higher multiplicities).
— exclusive charmless B decays

3. Muon-electron backward-scattering provides a well-defined perturbative playground for
studying non-trivial aspects of soft-coll factorization in the presence of endpoint-div’s.
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Backup-Slides
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Soft-Enhancement

p S @ 4
q
L({l/?)
P S \Z/ p

@ soft contribution leading power despite four insertions of qu/z):

0z = [[dx [ a%% [ a7 {IX2 A1) A1)}
x T { [ Arl O + x6) Ao (%) }
x T{u(0) 3 (1) 6 G +36) 347 (35) }

@ multipole expansion w.r.t. hc and hc fields at different space-time points x = 0 and x = x3

(1/2)

£q insertions

— soft fluctuations d*xz ~ 1/\* compensate suppression from £
— related to special backward kinematics

@ In SCETy the suppression is compensated by inverse soft derivatives
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Some Backup Formulas

Comparison of the muon-electron scattering and h — ~~ amplitude at the DL level:

@ for h — ~v get standard h — b*b* Sudakov in integrand:
1 1
Fp(2) = 2/ d§/ dno(1 — ¢ —n)e~ 22
0 0

@ for muon-electron backward-scattering the form factor itself appears in the integrand
— nested structure

1 1
Fi(2)=1+2 /0 de /O o F1(€22)0(1 — € — )71 (n2)
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