TMD factorization beyond the leading power

based on [2109.09771], [2204.03856]

Power Expansions on the Lightcone： From Theory to Phenomenology

19－30 September 2022
刺

Transverse momentum dependent factorization

$$
\frac{d \sigma}{d q_{T}} \simeq \sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(b q_{T}\right)}\left|C_{V}(Q)\right|^{2} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right)
$$

LP term is studied VERY WELL!

q is momentum of initiating EW-boson

$$
\begin{gathered}
q^{2}= \pm Q^{2} \\
q_{T}^{\mu} \text { transverse component }
\end{gathered}
$$

$$
\left\{\begin{array}{c}
Q^{2} \gg \Lambda_{Q C D}^{2} \\
Q^{2} \gg q_{T}^{2}
\end{array}\right.
$$

Leading Twist TMDs

- : Nucleon Spin - : Quark Spin

- Physics of hadron
- Multiple experiments
- Polarization
- Lattice
- ...

Transverse momentum dependent factorization

$$
\begin{aligned}
\frac{d \sigma}{d q_{T}} \simeq & \sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(b q_{T}\right)}\left\{\left|C_{V}(Q)\right|^{2} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right) \longleftarrow \mathrm{LP}\right. \\
& +\left(\frac{q_{T}}{Q} ; \frac{k_{T}}{Q} ; \frac{M}{Q}\right)\left[C_{2}(Q) \otimes F_{3}\left(x, b ; Q, Q^{2}\right) F_{4}\left(x, b ; Q, Q^{2}\right)\right]\left(x_{1}, x_{2}\right) \longleftarrow \mathrm{NLP} \\
& +\left(\frac{q_{T}^{2}}{Q^{2}} ; \frac{k_{T} q_{T}}{Q^{2}} ; \ldots\right)\left[C_{3}(Q) \otimes F_{5}\left(x, b ; Q, Q^{2}\right) F_{6}\left(x, b ; Q, Q^{2}\right)\right]\left(x_{1}, x_{2}\right) \longleftarrow \text { NNL } \\
& +\ldots
\end{aligned}
$$

Outline

- General approach to TMD factorization
- TMD factorization at NLP/NLO
- Systematics of power-suppressed TMD operators (distributions)

Disclaimer: so far, pure theory...

Motivation

- Sub-leading power observables

To describe it, one needs TMD factorization at NLP.

- JLab
- LHC
[CLAS, 2101.03544]

Motivation

- Sub-leading power observables

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{\mathbf{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z} \mathrm{~d} \cos \theta \mathrm{~d} \phi} & =\frac{3}{16 \pi} \frac{\mathrm{~d} \sigma^{U+L}}{\mathrm{~d} p_{\mathrm{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z}} \\
& \left\{\left(1+\cos ^{2} \theta\right)+\frac{1}{2} A_{0}\left(1-3 \cos ^{2} \theta\right)+A_{1} \sin 2 \theta \cos \phi\right. \\
& +\frac{1}{2} A_{2} \sin ^{2} \theta \cos 2 \phi+A_{3} \sin \theta \cos \phi+A_{4} \cos \theta \\
& \left.+A_{5} \sin ^{2} \theta \sin 2 \phi+A_{6} \sin 2 \theta \sin \phi+A_{7} \sin \theta \sin \phi\right\}
\end{aligned}
$$

To describe it, one needs TMD factorization at NNLP.

- JLab
- LHC

Motivation

- Sub-leading power observables
- Increase of applicability domain

Motivation

- Sub-leading power observables
- Increase of applicability domain

Phase space of EIC is centered directly in
the transition region

COMPASS, JLab
fixed target LHCb have large contribution of power corrections

Motivation

- Sub-leading power observables
- Increase of applicability domain
- Restoration of broken properties

LP TMD factorization breaks EM-gauge invariance

$$
\begin{array}{cc}
W^{\mu \nu}=\int d y e^{i q y}\left\langle J^{\mu}(y) J^{\nu}(0)\right\rangle & W_{\mathrm{LP}}^{\mu \nu}=g_{T}^{\mu \nu}\left|C_{V}\right|^{2} \mathcal{F}\left(F_{1} F_{2}\right) \\
q_{\mu} W^{\mu \nu}=0 & q_{\mu} W_{\mathrm{LP}}^{\mu \nu} \sim q_{T}^{\nu}
\end{array}
$$

- The violation is of the NLP
- Similar problem with frame-dependence (GTMD case)

Sources of power corrections

There are already computations of TMD factorization at NLP/NNLP

- Small-x-like
- Balitksy [1712.09389],[2012.01588],...
- Nefedov, Saleev, [1810.04061],[1906.08681]
- SCET
- Ebert, et al [1812.08189] fixed order at NNLP
- Ebert, et al [2112.07680] NLP at LO
- Inglis-Whalen, et al [2105.09277]
- Boer, Mulders, Pijlman [hep-ph/0303034]

SCET

- Modes by method of regions
- Effective action
- Overlap of modes
- Dim.reg.+rap.reg.
- ...
..
- Modes by parton model
- Background QCD
- Overlap of modes
- Dim.reg.+rap.reg.
TMD
operator
expansion

High-energy expansion
 [Balitsky, et al]

- Modes by parton model
- Background QCD
- No-overlap (?)
- Cut reg.
- ...

Background field method for parton physics (in a nutshell)

$$
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int[D \bar{q} D q D A] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] J^{\mu}(z) J^{\nu}(0) \Psi[\bar{q}, q, A]
$$

Cannot be integrated since Ψ is unknown

Background field method for parton physics (in a nutshell)

$$
\begin{array}{r}
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int[D \bar{q} D q D A] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] J^{\mu}(z) J^{\nu}(0) \Psi[\bar{q}, q, A] \\
\text { Parton model } \\
\Psi \text { contains only collinear particles } \\
\Psi[\bar{q}, q, A] \rightarrow \Psi\left[\bar{q}_{\bar{n}}, q_{\bar{n}}, A_{\bar{n}}\right] \\
\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q_{\bar{n}} \lesssim\left\{1, \lambda^{2}, \lambda\right\} q_{\bar{n}}
\end{array}
$$

Integral can be partially computed

$$
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int[D \bar{q} D q D A] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] J^{\mu}(z) J^{\nu}(0) \Psi[\bar{q}, q, A]
$$

Parton model

$$
\Psi \text { contains only collinear particles }
$$

$$
\Psi[\bar{q}, q, A] \rightarrow \Psi\left[\bar{q}_{\bar{n}}, q_{\bar{n}}, A_{\bar{n}}\right]
$$

Background technique

$$
\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q_{\bar{n}} \lesssim\left\{1, \lambda^{2}, \lambda\right\} q_{\bar{n}}
$$

$$
\begin{aligned}
q & =q_{\bar{n}}+\psi \\
A & =A_{\bar{n}}+B
\end{aligned}
$$

- $q_{\bar{n}}, A_{\bar{n}}$: background (external field)
- ψ, B : dynamical (to be integrated)

$$
\begin{gathered}
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int\left[D \bar{q}_{\bar{n}} D q_{\bar{n}} D A_{\bar{n}}\right] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] \mathcal{J}_{\mathrm{eff}}^{\mu \nu}\left[\bar{q}_{\bar{n}}, q_{\bar{n}}, A_{\bar{n}}\right](z) \Psi[\bar{q}, q, A] \\
\mathcal{J}_{\text {eff }}^{\mu \nu}=\int[D \bar{\psi} D \psi D B] e^{i S_{\mathrm{QCD}}+i S_{\mathrm{back}}[\bar{q}, q, A]} J^{\mu}[q+\psi](z) J^{\nu}[q+\psi](0) \\
\text { Generating function for operator product expansion }
\end{gathered}
$$

Background QCD with 2-component background

$$
q \rightarrow q_{n}+q_{\bar{n}}+\psi \quad A^{\mu} \rightarrow A_{n}^{\mu}+A_{\bar{n}}^{\mu}+B^{\mu}
$$

- Technical note: $S_{Q C D}$ for 2-component background has 1PI vertices!

TMD operator expansion

is conceptually similar to ordinary OPE

The only difference is counting rule for y

$$
\begin{aligned}
W_{\mathrm{DY}}^{\mu \nu} & =\int \frac{d^{4} y}{(2 \pi)^{4}} e^{-i(y q)} \sum_{X}\left\langle p_{1}, p_{2}\right| J^{\mu \dagger}(y)|X\rangle\langle X| J^{\nu}(0)\left|p_{1}, p_{2}\right\rangle \\
W_{\text {SIDIS }}^{\mu \nu} & =\int \frac{d^{4} y}{(2 \pi)^{4}} e^{i(y q)} \sum_{X}\left\langle p_{1}\right| J^{\mu \dagger}(y)\left|p_{2}, X\right\rangle\left\langle p_{2}, X\right| J^{\nu}(0)\left|p_{1}\right\rangle \\
W_{\text {SIA }}^{\mu \nu} & =\int \frac{d^{4} y}{(2 \pi)^{4}} e^{i(y q)} \sum_{X}\langle 0| J^{\mu \dagger}(y)\left|p_{1}, p_{2}, X\right\rangle\left\langle p_{1}, p_{2}, X\right| J^{\nu}(0)|0\rangle \\
(q \cdot y) \sim 1 & \Rightarrow \quad\left\{y^{+}, y^{-}, y_{T}\right\} \sim\left\{\frac{1}{q^{-}}, \frac{1}{q^{+}}, \frac{1}{q_{T}}\right\} \sim \frac{1}{Q}\left\{1,1, \lambda^{-1}\right\}
\end{aligned}
$$

To be accounted in operator expansion

$$
z_{T}^{\mu} \partial_{\mu} q \sim \mathrm{NLP}, \quad y_{T}^{\mu} \partial_{\mu} q \sim \mathrm{LP}
$$

TMD operator expansion has different geometry

TMD operator expansion has different geometry

Four
light-cone operators
\Downarrow
Two
TMD distributions
TMDPDFs \& TMDFFs

$$
\bar{q}_{i}(\lambda n+b)[\lambda n+b, \pm \infty n+b][\pm \infty n, 0] q_{j}(0)
$$

TMD operator expansion has different geometry

Four

light-cone operators
\Downarrow
Two
TMD distributions TMDPDFs \& TMDFFs

TMD operators and their divergences

Any TMD operator is the product of two semi-compact operators

$$
\mathcal{O}_{N M}\left(\left\{z_{1}, \ldots, z_{n}\right\}, b\right)=U_{N}\left(\left\{z_{1}, \ldots\right\}, b\right) U_{M}\left(\left\{\ldots, z_{n}\right\}, b\right)
$$

$\mathcal{O}_{N M}^{\text {bare }}\left(\left\{z_{1}, \ldots, z_{n}\right\}, b\right)=R\left(b^{2}\right) Z_{U_{N}}\left(\left\{z_{1}, \ldots\right\}\right) \otimes Z_{U_{M}}\left(\left\{\ldots, z_{n}\right\}\right) \otimes \mathcal{O}_{N M}(\mu, \zeta)$

- UV divergence for U_{N}
- UV divergence for U_{M}

Three independent divergences
Three renormalization constants
Three anomalous dimensions

- Rapidity divergence

TMD-twist-(1,1)

Usual TMDs
$U_{1}=[..] \xi=$ good-component of quark field (twist-1)

$$
\widetilde{\Phi}_{11}^{[\Gamma]}\left(\left\{z_{1}, z_{2}\right\}, b\right)=\langle p, s| \bar{\xi}\left(z_{1} n+b\right) . . \frac{\Gamma}{2} . . \xi\left(z_{2} n\right)|p, s\rangle
$$

$$
\begin{aligned}
\mu^{2} \frac{d}{d \mu^{2}} \widetilde{\Phi}_{11}\left(\left\{z_{1,2}\right\}, b ; \mu, \zeta\right) & =\left(\widetilde{\gamma}_{1}\left(z_{1}, \mu, \zeta\right)+\widetilde{\gamma}_{1}\left(z_{2}, \mu, \zeta\right)\right) \widetilde{\Phi}_{11}\left(\left\{z_{1,2}\right\}, b ; \mu, \zeta\right) \\
\zeta \frac{d}{d \zeta} \widetilde{\Phi}_{11}\left(\left\{z_{1,2}\right\}, b ; \mu, \zeta\right) & =-\mathcal{D}(b, \mu) \widetilde{\Phi}_{11}\left(\left\{z_{1,2}\right\}, b ; \mu, \zeta\right)
\end{aligned}
$$

- $\gamma_{1}=$ anomalous dimension of $U_{1}\left(\mathrm{~N}^{3} \mathrm{LO}\right)$
- $\mathcal{D}=\mathrm{CS}$ kernel (NP)

TMD-twist-(2,1)

Appear at NLP

$$
\begin{gathered}
U_{1}=[. .] \xi=\text { good-component of quark field (twist-1) } \\
U_{2}=[. .] F_{\mu+}[. .] \xi=\text { good-components of gluon and quark fields (twist-2) }
\end{gathered}
$$

$$
\widetilde{\Phi}_{21}^{[\Gamma]}\left(\left\{z_{1}, z_{2}, z_{3}\right\}, b\right)=\langle p, s| \bar{\xi}\left(z_{1} n+b\right) . . F_{\mu+}\left(z_{2} n+b\right) . . \frac{\Gamma}{2} . . \xi\left(z_{3} n\right)|p, s\rangle
$$

$$
\begin{aligned}
\mu^{2} \frac{d}{d \mu^{2}} \widetilde{\Phi}_{21}\left(\left\{z_{1,2,3}\right\}, b ; \mu, \zeta\right) & =\left(\widetilde{\gamma}_{2}\left(z_{1}, z_{2}, \mu, \zeta\right)+\widetilde{\gamma}_{1}\left(z_{3}, \mu, \zeta\right)\right) \widetilde{\Phi}_{21}\left(\left\{z_{1,2,3}\right\}, b ; \mu, \zeta\right) \\
\zeta \frac{d}{d \zeta} \widetilde{\Phi}_{21}\left(\left\{z_{1,2,3}\right\}, b ; \mu, \zeta\right) & =-\mathcal{D}(b, \mu) \widetilde{\Phi}_{21}\left(\left\{z_{1,2,3}\right\}, b ; \mu, \zeta\right)
\end{aligned}
$$

- $\gamma_{1}=$ anomalous dimension of $U_{1}\left(\mathrm{~N}^{3} \mathrm{LO}\right)$
- $\gamma_{2}=$ anomalous dimension of U_{2} (LO)
- $\mathcal{D}=\mathrm{CS}$ kernel (NP)

TMD operators of different TMD-twists

$(1,1)$

$$
\begin{equation*}
O_{11}(z, b)=\bar{\xi}(z n+b)[\ldots] \Gamma[\ldots] \xi(0) \tag{1,2}
\end{equation*}
$$

$$
\begin{aligned}
& \Gamma=\left\{\gamma^{+}, \gamma^{+} \gamma^{5}, \sigma^{\alpha+}\right\} \\
& \Rightarrow \text { well known } 8 \text { TMD distributions }
\end{aligned}
$$

- $\Gamma=\left\{\gamma^{+}, \gamma^{+} \gamma^{5}, \sigma^{\alpha+}\right\}$

$$
\begin{aligned}
O_{21}\left(z_{1,2}, b\right) & =\bar{\xi}\left(z_{1} n+b\right)[. .] F_{\mu+}\left(z_{2}+b\right)[\ldots] \Gamma[\ldots] \xi(0) \\
O_{12}\left(z_{1,2}, b\right) & =\bar{\xi}\left(z_{1} n+b\right)[\ldots] \Gamma[\ldots] F_{\mu+}\left(z_{2}\right)[. .] \xi(0)
\end{aligned}
$$

- 32 TMD distributions
- Related by charge-conjugation \Leftrightarrow complex/real
$(1,3) \&(3,1) \&(2,2)$

$$
\begin{aligned}
O_{31 ; 1}\left(z_{1,2,3}, b\right) & =\bar{\xi} . . F_{\mu+}+. F_{\nu+}[\ldots] \Gamma[\ldots] \xi(0) \\
O_{22}\left(z_{1,2,3}, b\right) & =\bar{\xi} . . F_{\mu+}[\ldots] \Gamma[\ldots] F_{\nu+\ldots} \xi(0) \\
O_{31 ; 2}\left(z_{1,2,3}, b\right) & =\bar{\xi} . .\left(\bar{\xi} . . \Gamma_{2} . . \xi\right)[\ldots] \Gamma[\ldots] \xi(0) \\
O_{31 ; 3}\left(z_{1,2}, b\right) & =\bar{\xi} . . F_{-+}[\ldots] \Gamma[\ldots] \xi(0)
\end{aligned}
$$

- Quasi-partonic and non-quasi-partonic

Operators with different TMD-twists do not mix

renormalization/evolution is independent
independent TMD distributions

Evolution of TMD operator with TMD-twist $=(\mathrm{N}, \mathrm{M})$

$$
O_{N M}\left(\left\{z_{1}, \ldots, z_{k}\right\}, b\right)=\bar{U}_{N}\left(\left\{z_{1}, \ldots\right\}, b\right) U_{M}\left(\left\{\ldots, z_{k}\right\}, 0_{T}\right)
$$

- Each light-cone operator U renormalizes independently (because there is a finite y_{T} between them)

$$
\mu \frac{d}{d \mu} U_{N}\left(\left\{z_{1}, \ldots\right\}, b\right)=\gamma_{N} \otimes U_{N}\left(\left\{z_{1}, \ldots\right\}, b\right)
$$

- Light-cone operators with different N do not mix (Lorentz invariance!)
- Evolution of TMD operator

$$
\mu \frac{d}{d \mu} O_{N M}\left(\left\{z_{1}, \ldots\right\}, b\right)=\left(\bar{\gamma}_{N}+\gamma_{M}\right) \otimes O_{N M}\left(\left\{z_{1}, \ldots\right\}, b\right)
$$

Anatomy of anomalous dimension

$$
\begin{aligned}
\widetilde{\gamma}_{1}(z, \mu, \zeta)= & a_{s}(\mu) C_{F}\left(\frac{3}{2}+\ln \left(\frac{\mu^{2}}{\zeta}\right)+2 \ln \left(\frac{q^{+}}{-s \partial_{z}^{+}}\right)\right)+\mathcal{O}\left(a_{s}^{2}\right) \\
\widetilde{\gamma}_{2}\left(z_{2}, z_{3}, \mu, \zeta\right)= & a_{s}(\mu)\left\{\mathbb{H}_{z_{2} z_{3}}+C_{F}\left(\frac{3}{2}+\ln \left(\frac{\mu^{2}}{\zeta}\right)\right)\right. \\
& \left.+C_{A} \ln \left(\frac{q^{+}}{-s \partial_{z_{2}}^{+}}\right)+2\left(C_{F}-\frac{C_{A}}{2}\right) \ln \left(\frac{q^{+}}{-s \partial_{z_{3}}^{+}}\right)\right\}+\mathcal{O}\left(a_{s}^{2}\right)
\end{aligned}
$$

Anatomy of anomalous dimension

$$
\begin{aligned}
& \text { quark AD + cusp } \\
& \widetilde{\gamma}_{1}(z, \mu, \zeta)= a_{s}(\mu) C_{F}\left(\frac{3}{2}+\ln \left(\frac{\mu^{2}}{\zeta}\right)+2 \ln \left(\frac{q^{+}}{-s \partial_{z}^{+}}\right)\right)+\mathcal{O}\left(a_{s}^{2}\right) \\
& \widetilde{\gamma}_{2}\left(z_{2}, z_{3}, \mu, \zeta\right)= a_{s}(\mu)\left\{\mathbb{H}_{z_{2} z_{3}}+C_{F}\left(\frac{3}{2}+\ln \left(\frac{\mu^{2}}{\zeta}\right)\right)\right. \\
&\left.+C_{A} \ln \left(\frac{q^{+}}{-s \partial_{z_{2}}^{+}}\right)+2\left(C_{F}-\frac{C_{A}}{2}\right) \ln \left(\frac{q^{+}}{-s \partial_{z_{3}}^{+}}\right)\right\}+\mathcal{O}\left(a_{s}^{2}\right)
\end{aligned}
$$

Anatomy of anomalous dimension

$$
\begin{align*}
& \begin{array}{l}
\text { quark AD }+ \text { cusp } \\
\left.\widetilde { \gamma } _ { 1 } (z , \mu , \zeta) = a _ { s } (\mu) C _ { F } \longdiv { (\frac { 3 } { 2 } + \operatorname { l n } (\frac { \mu ^ { 2 } } { \zeta }) } + 2 \operatorname { l n } (\frac { q ^ { + } } { - s \partial _ { z } ^ { + } })\right)+\mathcal{O}\left(a_{s}^{2}\right),
\end{array} \\
& \left.\widetilde{\gamma}_{1}(z, \mu, \zeta)=a_{s}(\mu) C_{F} \begin{array}{|c}
\text { quark AD }+ \text { cusp } \\
\left(\frac{3}{2}+\ln \left(\frac{\mu^{2}}{\zeta}\right)\right. \\
\\
\end{array}+2 \ln \left(\frac{q^{+}}{-s \partial_{z}^{+}}\right)\right)+\mathcal{O}\left(a_{s}^{2}\right), \\
& \begin{array}{l}
\widetilde{\gamma}_{2}\left(z_{2}, z_{3}, \mu, \zeta\right)=a_{s}(\mu)\left\{\mathbb{H}_{z_{2} z_{3}}+C_{F}\left(\frac{3}{2}+\ln \left(\frac{\mu^{2}}{\zeta}\right)\right)\right. \\
\quad \text { BFLK }
\end{array} \\
& \text { quasi-partonic-kernel } \left.+C_{A} \ln \left(\frac{q^{+}}{-s \partial_{z_{2}}^{+}}\right)+2\left(C_{F}-\frac{C_{A}}{2}\right) \ln \left(\frac{q^{+}}{-s \partial_{z_{3}}^{+}}\right)\right\}+\mathcal{O}\left(a_{s}^{2}\right), \\
& \mathbb{H}_{z_{2} z_{3}} \widetilde{\Phi}_{\mu, 12}^{[\Gamma]}\left(z_{1}, z_{2}, z_{3}\right)= \tag{2.19}\\
& C_{A} \int_{0}^{1} \frac{d \alpha}{\alpha}\left(\bar{\alpha}^{2} \widetilde{\Phi}_{\mu, 12}^{[\Gamma]}\left(z_{1}, z_{23}^{\alpha}, z_{3}\right)+\bar{\alpha} \widetilde{\Phi}_{\mu, 12}^{[\Gamma]}\left(z_{1}, z_{2}, z_{32}^{\alpha}\right)-2 \widetilde{\Phi}_{\mu, 12}^{[\Gamma]}\left(z_{1}, z_{2}, z_{3}\right)\right) \\
& +C_{A} \int_{0}^{1} d \alpha \int_{0}^{\bar{\alpha}} d \beta \bar{\alpha} \widetilde{\Phi}_{\nu, 12}^{\left[\Gamma \gamma_{\mu} \nu^{\nu}\right]}\left(z_{1}, z_{23}^{\alpha}, z_{32}^{\beta}\right)-2\left(C_{F}-\frac{C_{A}}{2}\right) \int_{0}^{1} d \alpha \int_{\bar{\alpha}}^{1} d \beta \bar{\alpha} \widetilde{\Phi}_{\nu, 12}^{\left[\Gamma \gamma_{\mu} \gamma^{\nu}\right]}\left(z_{1}, z_{23}^{\alpha}, z_{32}^{\beta}\right) \\
& +\left(C_{F}-\frac{C_{A}}{2}\right) \int_{0}^{1} d \alpha \bar{\alpha} \widetilde{\Phi}_{\nu, 12}^{\left[\gamma^{\nu} \gamma_{\mu}\right]}\left(z_{1}, z_{32}^{\alpha}, z_{2}\right),
\end{align*}
$$

Anatomy of anomalous dimension

$$
\begin{gathered}
\text { quark AD + cusp } \\
\widetilde{\gamma}_{1}(z, \mu, \zeta)=a_{s}(\mu) C_{F} \sqrt{\left(\frac{3}{2}+\ln \left(\frac{\mu^{2}}{\zeta}\right)+2 \ln \left(\frac{q^{+}}{-s \partial_{z}^{+}}\right)\right)}+\mathcal{O}\left(a_{s}^{2}\right), \\
\widetilde{\gamma}_{2}\left(z_{2}, z_{3}, \mu, \zeta\right)=a_{s}(\mu)\left\{\mathbb{H}_{z_{2} z_{3}}+C_{F}\left(\frac{3}{2}+\ln \left(\frac{\mu^{2}}{\zeta}\right)\right)\right. \\
\text { BFLK } \\
\text { quasi-partonic-kernel } \left.+C_{A} \ln \left(\frac{q^{+}}{-s \partial_{z_{2}}^{+}}\right)+2\left(C_{F}-\frac{C_{A}}{2}\right) \ln \left(\frac{q^{+}}{-s \partial_{z_{3}}^{+}}\right)\right\}+\mathcal{O}\left(a_{s}^{2}\right),
\end{gathered}
$$

Remnants of collinear divergences (canceled by SF/reg. by cut)

$$
\widetilde{R}\left(b^{2}, \frac{\delta^{+}}{\nu^{+}}\right)=1-4 a_{s} C_{F} \Gamma(-\epsilon)\left(-\frac{b^{2} \mu^{2}}{4 e^{-\gamma_{E}}}\right)^{\epsilon} \ln \left(\frac{\delta^{+}}{\nu^{+}}\right)+O\left(a_{s}^{2}\right) .
$$

Rapidity divergence arise from the interaction with the far end of neighbour Wilson line

General facts

- Multiplicatively renormalizable (for QP operators)
- Same for all QP operators (up to overall-color representation)
- Structure for non-QP operator is unknown (in progress)
- Basis of operators \checkmark
- Anomalous dimensions \checkmark
- \Rightarrow Wilson lines
- \Rightarrow Hard coefficient (NLO)

Computing hard-coefficient

Keldysh thechnique
to deal with
causality structure $\longrightarrow J^{(+) \mu}(y) J^{(-) \nu}(0)$

Details \& examples in [2109.09711]

Computing hard-coefficient

$$
\frac{J^{(+) \mu}(y) J^{(-) \nu}(0)}{1}
$$

Details \& examples in [2109.09711]
(power) Expand in background fields
sort operators by TMD-twist

$$
\begin{aligned}
& \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\bar{\psi}_{\bar{n}}(y) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
& \quad+n^{\mu} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
& \quad+y^{+} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \check{\partial}_{-} \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots
\end{aligned}
$$

Computing hard-coefficient

$$
\frac{J^{(+) \mu}(y) J^{(-) \nu}(0)}{1}
$$

Details \& examples
in [2109.09711]
(power) Expand in background fields sort operators by TMD-twist

$$
\begin{aligned}
& \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\bar{\psi}_{\bar{n}}(y) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
& +n^{\mu} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
& \quad+y^{+} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \check{\partial}_{-} \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots
\end{aligned}
$$

(loop) Integrate over fast components with 2-bcg.QCD action
at least NLO is needed to confirm factorization (WL direction, pole-cancelation)

Coincides with [Boer,Mulders,Pijlman,03]

Process dependence

The background can be taken in any gauge (since it is gauge invariant)

- Light-cone gauge kills operators with $A_{+, \bar{n}}$ and $A_{-, n}$ (~ 1 in power counting).
- Convenient choice of gauges
- Collinear field $A_{+}=0$
- Anti-Collinear field $A_{-}=0$
- Dynamical field: Feynman gauge
- However one needs to specify boundary condition. The result depends on it.

$$
\begin{array}{rll}
A_{\bar{n}}^{\mu}(z)=-g \int_{-\infty}^{0} d \sigma F_{\bar{n}}^{\mu+}(z+n \sigma) & \text { vs. } & A_{\bar{n}}^{\mu}(z)=-g \int_{+\infty}^{0} d \sigma F_{\bar{n}}^{\mu+}(z+n \sigma) \\
\bar{q}[z, z-\infty n] & \text { vs. } & \bar{q}[z, z+\infty n]
\end{array}
$$

To specify boundary and WL direction, we should go to NLO

NLO expression in position space

NLO expression in position space

NLO expression in position space

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} d z^{+} d z^{-} \frac{f_{\bar{n}}\left(z^{-}\right) f_{n}\left(z^{+}\right)}{\left[-2 z^{+} z^{-}+i 0\right]^{\alpha}}
\end{aligned}
$$

NLO expression in position space

$$
I=\int_{-\infty}^{\infty} d z^{+} d z^{-} \frac{f_{\bar{n}}\left(z^{-}\right) f_{n}\left(z^{+}\right)}{\left[-2 z^{+} z^{-}+i 0\right]^{\alpha}}
$$

$$
I=\int_{-\infty}^{0} d z^{+} \frac{f_{n}\left(z^{+}\right)}{\left(-2 z^{+}\right)^{\alpha}}\left(I_{0}+I_{1}+I_{2}+I_{\infty}\right), \quad I_{C}=\int_{C} \frac{f_{\bar{n}\left(z^{-}\right)}^{\left(z^{-}\right)^{\alpha}}}{\left(z^{2}\right.}
$$

NLO expression in position space

$$
I=\int_{-\infty}^{\infty} d z^{+} d z^{-} \frac{f_{\bar{n}}\left(z^{-}\right) f_{n}\left(z^{+}\right)}{\left[-2 z^{+} z^{-}+i 0\right]^{\alpha}}
$$

		for DY	for SIDIS	for SIA	
f 's are TMDPDFs or TMDFFs	$f_{\bar{n}}\left(z^{-}\right)$is analytical in $f_{n}\left(z^{+}\right)$is analytical in	$\begin{aligned} & \text { lower } \\ & \text { lower } \end{aligned}$	$\begin{aligned} & \text { lower } \\ & \text { upper } \end{aligned}$	$\begin{aligned} & \text { upper } \\ & \text { upper } \end{aligned}$	half-plane half-plane

NLO computation

Extra facts

- At LP and NLP one Sudakov form factor is needed (exchange diagrams are NNLP)
- Computation for Sudakov is done for LP and NLP both at NLO
- Position space
- LP is well known (up to $\mathrm{N}^{3} \mathrm{LO}$) and coincides
- Twist-(1,1) part of NLP is the same as LP ("Reparametrization invariance")
- Required by EM gauge invariance Non-trivial check
- Twist-(1,2) part is totally new
- The UV and rapidity divergences of NLP operators computed independently
- (position space) BFLK part coincide with [Braun,Manashov,09]
- (momentum space) "Coincides" with [Beneke, et al, 17] (up to missed channels)
- Checks
- Pole parts of hard coefficient and operators cancel very non-trivial check
- Some diagrams are computed in momentum space check

$$
H \otimes \underbrace{\left[Z_{U_{1}}\left(\frac{1}{\epsilon}\right) \otimes Z_{U_{2}}\left(\frac{1}{\epsilon}\right) R(b)\right]}_{\text {TMD 1 }} \otimes \underbrace{\left[Z_{U_{1}}\left(\frac{1}{\epsilon}\right) \otimes Z_{U_{2}}\left(\frac{1}{\epsilon}\right) R(b)\right]}_{\text {TMD } 2}=\text { finite }
$$

TMD factorization at NLP in the terms of operators
Momentum space

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
& \mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)\left|C_{1}\right|^{2} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \tag{6.17}\\
&+ \int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \\
& \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{1}^{*} C_{2}\left(x_{2,3}\right) \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)+\delta\left(x_{3}+\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{2}^{*}\left(x_{1,2}\right) C_{1} \mathcal{J}_{2111}^{\mu \nu}(x, \tilde{x}, b)\right) \\
&+ \int d x[d \tilde{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \\
& \times\left(C_{1}^{*} C_{2}\left(\tilde{x}_{2,3}\right) \delta\left(\tilde{x}_{1}-\frac{q^{-}}{p_{2}^{-}}\right) \mathcal{J}_{1112}^{\mu \nu}(x, \tilde{x}, b)+C_{2}^{*}\left(\tilde{x}_{1,2}\right) C_{1} \delta\left(\tilde{x}_{3}+\frac{q^{-}}{p_{2}^{-}}\right) \mathcal{J}_{1121}^{\mu \nu}(x, \tilde{x}, b)\right) \\
&\quad+\ldots\}
\end{align*}
$$

TMD factorization at NLP in the terms of operators

Momentum space

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{aligned}
& \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)=\frac{\gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\nu}}{N_{c}}\left(\mathcal{O}_{11, \bar{n}}^{l i}(x, b) \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right) \\
& +i \frac{n^{\mu} \gamma_{T, i j}^{\rho} \gamma_{T, k l}^{\nu}+n^{\nu} \gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\rho}}{q^{+} N_{c}}\left(\partial_{\rho} \mathcal{O}_{11, \bar{n}}^{l i}(x, b) \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\partial_{\rho} \overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right) \\
& +i \frac{\bar{n}^{\mu} \gamma_{T, i j}^{\rho} \gamma_{T, k l}^{\nu}+\bar{n}^{\nu} \gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\rho}}{q^{-} N_{c}}\left(\mathcal{O}_{11, \bar{n}}^{l i}(x, b) \partial_{\rho} \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \partial_{\rho} \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right),
\end{aligned}
$$

- Operators of $(1,1) \times(1,1)$ (ordinary TMDs)

$$
\mathcal{O}_{11}^{i j}(x, b)=p_{+} \int \frac{d \lambda}{2 \pi} e^{-i x \lambda p_{+}} \bar{q}_{j}[\lambda n+b, \pm \infty n+b][\pm \infty n, 0] q_{i}
$$

- Contains LP and NLP (total derivatives)
- Restores EM gauge invariance up to λ^{3}

$$
q_{\mu} J_{1111}^{\mu \nu} \quad \sim\left(p_{1}^{-} q_{T}+p_{2}^{+} q_{T}\right) J_{1111}
$$

TMD factorization at NLP in the terms of operators

Momentum space

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{aligned}
& \mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)\left|C_{1}\right|^{2} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \\
& +\int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \\
& \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{1}^{*} C_{2}\left(x_{2}, \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)-\delta\left(x_{3}+\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{2}^{*}\left(x_{1,2}\right) C_{1} \mathcal{J}_{2111}^{\mu \nu}(x, \tilde{x}, b)\right)\right. \\
& +\int d x[d \tilde{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \\
& \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)= \\
& \frac{i g}{x_{2}}\left(\frac{\bar{n}^{\nu}}{q^{-}}-\frac{n^{\nu}}{q^{+}}\right) \frac{\gamma_{T, i j}^{\mu} \delta_{k l}}{N_{c}}\left(\mathcal{O}_{12, \bar{n}}^{j k}(x, b) \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)-\overline{\mathcal{O}}_{12, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right)
\end{aligned}
$$

- Operators of $(1,2) \times(1,1)$
$\mathcal{O}_{12}^{i j}\left(x_{1,2,3}, b\right)=p_{+}^{2} \int \frac{d z_{1,2,3}}{2 \pi} e^{-i x^{i} z_{i} p_{+}} \bar{q}_{j}\left[z_{1} n+b, \pm \infty n+b\right]\left[\pm \infty n, z_{2} n\right] \gamma^{\mu} F_{\mu+}\left[z_{2} n, z_{3} n\right] q_{i}$
- EM gauge invarint only up to NNLP

$$
q_{\mu} J_{1211}^{\mu \nu} \sim\left(p_{1}^{-}+p_{2}^{+}\right) J_{1211}
$$

TMD factorization at NLP in the terms of operators
Momentum space

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
& \begin{array}{l}
\mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)\left|C_{1}\right|^{2} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \\
\quad+\int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)
\end{array} \tag{6.17}\\
& \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{1}^{C_{2}^{*} C_{2}\left(x_{2,3}\right)} \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)+\delta\left(x_{3}+\frac{q_{1}^{+}}{p_{1}^{+}}\right) \frac{C_{2}^{*}\left(x_{1,2}\right) C_{1}}{\left.q_{2111}^{\mu \nu}(x, \tilde{x}, b)\right)}\right. \\
& +\int d x[d \tilde{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \\
& C_{1}=1+a_{s} C_{F}\left(-\mathbf{L}_{Q}^{2}+3 \mathbf{L}_{Q}-8+\frac{\pi^{2}}{6}\right)+O\left(a_{s}\right), \\
& C_{2}\left(x_{1,2}\right)=1+a_{s}\left[C_{F}\left(-\mathbf{L}_{Q}^{2}+\mathbf{L}_{Q}-3+\frac{\pi^{2}}{6}\right)+C_{A} \frac{x_{1}+x_{2}}{x_{1}} \ln \left(\frac{x_{1}+x_{2}}{x_{2}}\right)\right. \\
& \left.+\left(C_{F}-\frac{C_{A}}{2}\right) \frac{x_{1}+x_{2}}{x_{2}} \ln \left(\frac{x_{1}+x_{2}}{x_{1}}\right)\left(2 \mathbf{L}_{Q}-\ln \left(\frac{x_{1}+x_{2}}{x_{1}}\right)-4\right)\right]
\end{align*}
$$

- C_{1} is know up to $\mathrm{N}^{3} \mathrm{LO}$
$\rightarrow C_{2}$ (here is only the real part of it)

To momentum-fraction space

Evolution equations in the momentum-fraction space

has involved structure

$$
\begin{gathered}
\mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 21}^{[\Gamma]}=\frac{\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{1} x_{2} x_{3}}+2 \pi i s \Theta_{x_{1} x_{2} x_{3}}\right) \Phi_{\mu, 21}^{[\Gamma]}}{+\mathbb{P}_{x_{2} x_{1}}^{A} \otimes \Phi_{\nu, 21}^{\left[\nu^{\nu} \gamma^{\mu} \Gamma\right]}+\mathbb{P}_{x_{2} x_{1}}^{B} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\mu} \gamma^{\nu} \Gamma\right]},} \\
\mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 12}^{[\Gamma]}=\frac{\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{3} x_{2} x_{1}}+2 \pi i s \Theta_{x_{3} x_{2} x_{1}}\right) \Phi_{\mu, 12}^{[\Gamma]}}{+\mathbb{P}_{x_{2} x_{3}}^{A} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\mu} \gamma^{\nu}\right]}+\mathbb{P}_{x_{2} x_{3}}^{B} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\nu} \gamma^{\mu}\right]},}
\end{gathered}
$$

Rapidity evolution is the same
$\Gamma_{\text {cusp }}$-part is the same

$$
\begin{aligned}
\zeta \frac{d}{d \zeta} \Phi_{\mu, 12}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right) & =-\mathcal{D}(b, \mu) \Phi_{\mu, 12}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right), \\
\zeta \frac{d}{d \zeta} \Phi_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right) & =-\mathcal{D}(b, \mu) \Phi_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b ; \mu, \zeta\right)
\end{aligned}
$$

Evolution equations in the momentum-fraction space

has involved structure

$$
\begin{aligned}
\mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 21}^{[\Gamma]}= & \left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{1} x_{2} x_{3}}+2 \pi i s \Theta_{x_{1} x_{2} x_{3}}\right) \\
& +\mathbb{P}_{x_{2} x_{1}}^{A} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\nu} \gamma^{\mu} \Gamma\right]}+\mathbb{P}_{x_{2} x_{1}}^{B} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\mu} \gamma^{\nu} \Gamma\right]}, \\
\mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 12}^{[\Gamma]}= & \left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{3} x_{2} x_{1}}+2 \pi i s \Theta_{x_{3} x_{2} x_{1}}\right) \\
& +\mathbb{P}_{x_{2} x_{3}}^{A} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\mu} \gamma^{\nu}\right]}+\mathbb{P}_{x_{2} x_{3}}^{B} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\nu} \gamma^{\mu}\right]},
\end{aligned}
$$

BFLK kernels in momentum space are quite cumbersome

- non-analytic
- continious
- for " $x_{i}>0$ " region agrees
- mix-sectors
- longish
with [Beneke, et al, 17]


```
    +C,CA}\mp@subsup{\int}{-~}{~
```

```
    +C,CA}\mp@subsup{\int}{-~}{~
```



```
    +O{(\mp@subsup{u}{2}{2}
```

 +O{(\mp@subsup{u}{2}{2}
 P

```
P
```


Evolution equations in the momentum-fraction space

has involved structure

$$
\begin{gathered}
\mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 21}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{\Upsilon_{x_{1} x_{2} x_{3}}}+2 \pi i s \Theta_{x_{1} x_{2} x_{3}}\right) \Phi_{\mu, 21}^{[\Gamma]} \\
+\mathbb{P}_{x_{2} x_{1}}^{A} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\prime} \mu^{\mu} \mathrm{F}\right]}+\mathbb{P}_{x_{2} x_{1}}^{B} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\mu} \gamma^{\nu} \Gamma\right]}, \\
\mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 12}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{3} x_{2} x_{1}}+2 \pi i s \Theta_{x_{3} x_{2} x_{1}}\right) \Phi_{\mu, 12}^{[\Gamma]} \\
+\mathbb{P}_{x_{2} x_{3}}^{A} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\mu} \gamma^{\top}\right]}+\mathbb{P}_{x_{2} x_{3}}^{B} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma \gamma^{\nu} \gamma^{\mu}\right]}, \\
\Upsilon_{x_{1} x_{2} x_{3}}=a_{s}\left[3 C_{F}+C_{A} \ln \left(\frac{\left|x_{3}\right|}{\left|x_{2}\right|}\right)+2\left(C_{F}-\frac{C_{A}}{2}\right) \ln \left(\frac{\left|x_{3}\right|}{\left|x_{1}\right|}\right)\right]+\mathcal{O}\left(a_{s}^{2}\right) .
\end{gathered}
$$

Real-part of collinear logarithms

- Singular at $x_{i}=0$
- Integrable
- Checked by NLP coeff.function

Evolution equations in the momentum-fraction space

has involved structure

$$
\begin{aligned}
& \mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 21}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{1} x_{2} x_{3}}+2 \pi i s \Theta_{x_{1} x_{2} x_{3}}\right) \Phi_{\mu, 21}^{[\Gamma]} \\
&+\mathbb{P}_{x_{2} x_{1}}^{A} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\nu} \gamma^{\mu} \Gamma\right]}+\mathbb{P}_{x_{2} B}^{B} \otimes \Phi_{\nu, 21}^{\left[/ \mu_{1},{ }_{2}\right]}, \\
& \mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 12}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{3} x_{2} x_{1}}+2 \pi i s \Theta_{x_{3} x_{2} x_{1}}\right) \Phi_{\mu, 12}^{[\Gamma]} \\
&+\mathbb{P}_{x_{2} x_{3}}^{A} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\mu} \gamma^{\nu}\right]}+\mathbb{P}_{x_{2} x_{3}}^{B} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\nu} \gamma^{\mu}\right]}
\end{aligned}
$$

Imaginary-part of collinear logarithms

- Discontinious
- Process dependent!

$$
\Theta_{x_{1} x_{2} x_{3}}=a_{s} \times \begin{cases}\frac{C_{A}}{2} & x_{1,2,3} \in(+,-,-), \\ -\left(C_{F}-\frac{C_{A}}{2}\right) & x_{1,2,3} \in(+,-,+), \\ 0 & x_{1,2,3} \in(-,-,+), \\ -\frac{C_{A}}{2} & x_{1,2,3} \in(-,+,+), \\ C_{F}-\frac{C_{A}}{2} & x_{1,2,3} \in(-,+,-), \\ 0 & x_{1,2,3} \in(+,+,-),\end{cases}
$$

Evolution equations in the momentum-fraction space

has involved structure

$$
\begin{aligned}
& \mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 21}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{1} x_{2} x_{3}}+2 \pi i s \Theta_{x_{1} x_{2} x_{3}}\right) \Phi_{\mu, 21}^{[\Gamma]} \\
&+\mathbb{P}_{x_{2} x_{1}}^{A} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\nu} \gamma^{\mu} \Gamma\right]}+\mathbb{P}_{x_{2} x_{1}}^{B} \otimes \Phi_{\nu, 21}^{\left[\gamma^{\mu} \gamma^{\nu} \Gamma\right]} \\
& \mu^{2} \frac{d}{d \mu^{2}} \Phi_{\mu, 12}^{[\Gamma]}=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{3} x_{2} x_{1}}+2 \pi i s \Theta_{x_{3} x_{2} x_{1}}\right) \Phi_{\mu, 12}^{[\Gamma]} \\
&+\mathbb{P}_{x_{2} x_{3}}^{A} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\mu} \gamma^{\nu}\right]}+\mathbb{P}_{x_{2} x_{3}}^{B} \otimes \Phi_{\nu, 12}^{\left[\Gamma \gamma^{\nu} \gamma^{\mu}\right]}
\end{aligned}
$$

- Complex
- Discontinious
- Singular

Live is not that bad!

Making story short: we introduce real/T-definite combination of operator and parametrize them

- 32 distributions $(\bullet=\oplus$ and \ominus)
- 16 T-odd and 16 T-even

Example

$$
\begin{aligned}
\Phi_{\bullet}^{\mu\left[\gamma^{+}\right]}\left(x_{1,2,3}, b\right)= & \epsilon^{\mu \nu} s_{T \nu} M f_{\bullet T}\left(x_{1,2,3}, b\right)+i b^{\mu} M^{2} f_{\bullet}^{\perp}\left(x_{1,2,3}, b\right) \\
& +i \lambda \epsilon^{\mu \nu} b_{\nu} M^{2} f_{\bullet L}^{\perp}\left(x_{1,2,3}, b\right)+b^{2} M^{3} \epsilon_{T}^{\mu \nu}\left(\frac{g_{T, \nu \rho}}{2}-\frac{b_{\nu} b_{\rho}}{b^{2}}\right) s_{T}^{\rho} f_{\bullet T}^{\perp}\left(x_{1,2,3}, b\right) \\
& f_{\oplus, T ; D Y}=f_{\oplus, T ; S I D I S}, \quad f_{\oplus ; D Y}^{\perp}=-f_{\oplus ; S I D I S}^{\perp}
\end{aligned}
$$

	U	L	$\mathrm{T}_{J=0}$	$\mathrm{T}_{J=1}$	$\mathrm{T}_{J=2}$
U	f_{\bullet}^{\perp}	g_{\bullet}^{\perp}		h 。	h_{\bullet}^{\perp}
L	$f \stackrel{L}{\perp}$	$g_{\bullet L}^{\perp}$	$h_{\bullet L}$		$h \stackrel{\downarrow}{\perp}$
T	$f_{\bullet T}, \quad f_{\bullet T}^{\perp}$	$g_{\bullet T}, \quad g_{\bullet}^{\perp}{ }^{\perp}$	$h_{\bullet T}^{D}$	$h_{\bullet T}^{A \perp}$	$h_{\bullet}^{S} \stackrel{\perp}{\perp}, \quad h_{\bullet}^{T} \stackrel{+}{T}$

Evolution equations split into two cases:
Evolution with kernels \mathbb{P}^{A} or \mathbb{P}^{B}

Example \mathbb{P}^{A}

$$
\begin{aligned}
& \mu^{2} \frac{d}{d \mu^{2}}\left[\begin{array}{c}
H_{\oplus}^{A} \\
H_{\ominus}^{A}
\end{array}\right]=\left(\frac{\Gamma_{\text {cusp }}}{2} \ln \left(\frac{\mu^{2}}{\zeta}\right)+\Upsilon_{x_{1} x_{2} x_{3}}\right)\left[\begin{array}{c}
H_{\oplus}^{A} \\
H_{\ominus}^{A}
\end{array}\right] \\
& +\left[\begin{array}{cc}
2 \mathbb{P}_{x_{2} x_{1}}^{A} & 2 \pi s \Theta_{x_{1} x_{2} x_{3}} \\
-2 \pi s \Theta_{x_{1} x_{2} x_{3}} & 2 \mathbb{P}_{x_{2} x_{1}}^{A}
\end{array}\right]\left[\begin{array}{c}
H_{\oplus}^{A} \\
H_{\ominus}^{A}
\end{array}\right], \\
& \binom{f_{\oplus}^{\perp}+g_{\ominus}^{\perp}}{f_{\ominus}^{\perp}-g_{\oplus}^{\perp}}, \quad\left(\begin{array}{c}
f_{\oplus}^{\perp}, L
\end{array}\right) g_{\ominus}^{\perp}, L ~\binom{\perp}{f_{\ominus, L}^{\stackrel{\rightharpoonup}{\perp}}-g_{\oplus, L}^{\perp}}, \quad\binom{f_{\oplus, T}+g_{\ominus, T}}{f_{\ominus, T}-g_{\oplus, T}}, \quad\binom{f_{\oplus, T}^{\perp}+g_{\ominus, T}^{\perp}}{f_{\ominus, T}^{\perp}-g_{\oplus, T}^{\perp}}, \\
& \binom{h_{\oplus}}{h_{\ominus}}, \quad\binom{h_{\oplus, L}}{h_{\ominus, L}}, \quad\binom{h_{\oplus}^{A \perp}, T}{h_{\ominus, T}^{A, T}}, \quad\binom{h_{\oplus}^{D+,}}{h_{\ominus, T}^{D, T}} .
\end{aligned}
$$

- Real functions $=$ real evolution
- Mixes T-odd and T-even distributions
- Mixing is proportional to s, so T-parity is preserved, and distributions are universal

TMD distributions of twist-three are generalized functions

No definite value at $x_{i}=0$, but definite integrals

A typical term in the cross-section

$$
\int[d x] \delta\left(x-x_{3}\right) \frac{\Phi_{12}\left(x_{1,2,3}, b\right)}{x_{2}-i s 0} \Phi_{11}(-\tilde{x},-b)+\int[d x] \delta\left(\tilde{x}-\tilde{x}_{1}\right) \Phi_{11}(x, b) \frac{\Phi_{21}\left(\tilde{x}_{1,2,3},-b\right)}{\tilde{x}_{2}-i s 0}
$$

- The integral is divergent since Φ_{\bullet} is discontinuous at $x_{2}=0$
- Important: integral from [-1,1], otherwise it would be just singular
- In fact, divergences cancel
- Let us redefine TMDs subtracting terms such that the cross-section is finite term-by-term

$$
\int[d x] \delta\left(x-x_{3}\right) \frac{\Phi_{12}\left(x_{1,2,3}, b\right)}{x_{2}-i s 0} \longleftrightarrow \int_{s \infty}^{y} d \sigma \Phi_{12}(\{y, \sigma, 0\}, b)
$$

- It is the rapidity divergence
- It can be computed

$$
\int \frac{\Phi_{12}}{x_{2}} \sim \ln \left(\delta^{+}\right) \partial_{\mu} \mathcal{D} \Phi_{11}
$$

Physical TMD distributions of twist-three

$$
\boldsymbol{\Phi}_{21, \mu}^{[\Gamma]}\left(x_{1,2,3}, b\right)=\Phi_{21, \mu}^{[\Gamma]}\left(x_{1,2,3}, b\right)-\left[\mathcal{R}_{21} \otimes \Phi_{11}\right]_{\mu}^{[\Gamma]}\left(x_{1,2,3}, b\right)
$$

- Obey same evolution equations
- \mathcal{R} is know at $\mathcal{O}\left(\alpha_{s}\right)$

$$
\left[\mathcal{R}_{21} \otimes \Phi_{11}\right]_{\mu}^{\left.[]^{1}\right]}\left(x_{1}, x_{2}, x_{3}, b\right)=i \partial_{\mu} \mathcal{D}(b) \Phi_{11}^{[\mid]}\left(-x_{1}, b\right)\left(\theta\left(x_{2}, x_{3}\right)-\theta\left(-x_{2},-x_{3}\right)\right)+\mathcal{O}\left(a_{k}^{2}\right),
$$

- Produce term-by-term finite cross-section
- Leaves remnant

$$
\begin{gathered}
\int[d x] \delta\left(x-x_{3}\right) \frac{\Phi_{12}\left(x_{1,2,3}, b\right)}{x_{2}-i s 0} \Phi_{11}(-\tilde{x},-b)+\int[d x] \delta\left(\tilde{x}-\tilde{x}_{1}\right) \Phi_{11}(x, b) \frac{\Phi_{21}\left(\tilde{x}_{1,2,3},-b\right)}{\tilde{x}_{2}-i s 0} \\
\rightarrow \int[d x] \delta\left(x-x_{3}\right) \frac{\boldsymbol{\Phi}_{12}\left(x_{1,2,3}, b\right)}{x_{2}-i s 0} \Phi_{11}(-\tilde{x},-b)+\int[d x] \delta\left(\tilde{x}-\tilde{x}_{1}\right) \Phi_{11}(x, b) \frac{\boldsymbol{\Phi}_{21}\left(\tilde{x}_{1,2,3},-\right.}{\tilde{x}_{2}-i s 0} \\
+\partial_{\mu} \mathcal{D}(b) \Phi_{11}(x) \Phi_{11}(-\tilde{x}) \ln \left(\frac{\zeta}{\bar{\zeta}}\right)
\end{gathered}
$$

Not important for DY, SIDIS, SIA $(\zeta=\bar{\zeta})$
Important for qTMD at lattice $(\zeta \neq \bar{\zeta})$

TMD hadron tensor at NLP/NLO - too long (all polarizations, angles, etc) unpolarized-part only

$$
\begin{aligned}
& W_{\mathrm{NLP}}^{(0) \mu \nu}= \frac{-1}{N_{c}}\left\{-\frac{i\left(n^{\mu} b^{\nu}+b^{\mu} n^{\nu}\right)}{q^{+}} M^{2}\left(\Sigma_{+}\left[f_{1}, f_{1}\right]+\frac{\grave{\mathcal{D}}}{4} \Sigma_{-}\left[f_{1}, f_{1}\right] \ln \left(\frac{\bar{\zeta}}{\zeta}\right)\right)\right. \\
&-\frac{i\left(\bar{n}^{\mu} b^{\nu}+b^{\mu} \bar{n}^{\nu}\right)}{q^{-}} M^{2}\left(\Sigma_{+}\left[f_{1}, f_{1}\right]+\frac{\mathcal{D}}{4} \Sigma_{-}\left[f_{1}, f_{1}\right] \ln \left(\frac{\bar{\zeta}}{\zeta}\right)\right) \\
&-i \frac{n^{\mu} b^{\nu}+b^{\mu} n^{\nu}}{q^{+}} 2 M^{2}\left(\Sigma_{+}\left[h_{1}^{\perp}, h_{1}^{\perp}\right]+\frac{b^{2} M^{2}}{2} \Sigma_{+}\left[h_{1}^{\perp}, h_{1}^{\perp}\right]+\frac{b^{2} M^{2}}{2} \frac{\mathcal{D}}{4} \Sigma_{-}\left[h_{1}^{\perp}, h_{1}^{\perp}\right] \ln \left(\frac{\bar{\zeta}}{\zeta}\right)\right) \\
&- \\
&\left.-\frac{n^{\mu} b^{\nu}+b^{\mu} n^{\nu}}{q^{-}} 2 M^{2}\left(\Sigma_{+}\left[h_{1}^{\perp}, h_{1}^{\perp}\right]+\frac{b^{2} M^{2}}{2} \Sigma_{+}\left[h_{1}^{\perp}, h_{1}^{\perp}\right]+\frac{b^{2} M^{2}}{2} \frac{\mathcal{D}}{4} \Sigma_{-}\left[h_{1}^{\perp}, h_{1}^{\perp}\right] \ln \left(\frac{\bar{\zeta}}{\zeta}\right)\right)\right\} . \\
& W_{\mathrm{NLP}}^{(1) \mu \nu}=\frac{-1}{N_{c}}\{ \\
&+\left(\frac{n^{\mu} b^{\nu}+b^{\mu} n^{\nu}}{q^{+}}-\frac{\bar{n}^{\mu} b^{\nu}+b^{\mu} \bar{n}^{\nu}}{q^{-}}\right) M^{2}\left(\Sigma_{-}\left[f_{\oplus}^{\perp}, f_{1}\right]+\Sigma_{-}\left[f_{1}, f_{\oplus}^{\perp}\right]\right) \\
&-i\left(\frac{n^{\mu} b^{\nu}-b^{\mu} n^{\nu}}{q^{+}}-\frac{\bar{n}^{\mu} b^{\nu}-b^{\mu} \bar{n}^{\nu}}{q^{-}}\right) M^{2}\left(\Sigma_{+}\left[f_{\ominus}^{\perp}, f_{1}\right]-\Sigma_{+}\left[f_{1}, f_{\ominus}^{\perp}\right]\right) \\
&+\left(\frac{n^{\mu} b^{\nu}+b^{\mu} n^{\nu}}{q^{+}}-\frac{\bar{n}^{\mu} b^{\nu}+b^{\mu} \bar{n}^{\nu}}{q^{-}}\right) 2 M^{2}\left(\Sigma_{-}\left[h_{\oplus}, h_{1}^{\perp}\right]+\Sigma_{-}\left[h_{1}^{\perp}, h_{\oplus}\right]\right) \\
&-i\left(\frac{n^{\mu} b^{\nu}-b^{\mu} n^{\nu}}{q^{+}}-\frac{\bar{n}^{\mu} b^{\nu}-b^{\mu} \bar{n}^{\nu}}{q^{-}}\right) 2 M^{2}\left(\Sigma_{+}\left[h_{\ominus}, h_{1}^{\perp}\right]-\Sigma_{+}\left[h_{1}^{\perp}, h_{\ominus}\right]\right) \\
&+i\left(\frac{n^{\mu} b^{\nu}-b^{\mu} n^{\nu}}{q^{+}}-\frac{\bar{n}^{\mu} b^{\nu}-b^{\mu} \bar{n}^{\nu}}{q^{-}}\right) M^{2}\left(\Sigma_{+}\left[f_{1}, g_{\oplus}^{\perp}\right]+? \Sigma_{+}\left[g_{\oplus}^{\perp}, f_{1}\right]\right) \\
&\left.+\left(\frac{n^{\mu} b^{\nu}+b^{\mu} n^{\nu}}{q^{+}}-\frac{\bar{n}^{\mu} b^{\nu}+b^{\mu} \bar{n}^{\nu}}{q^{-}}\right) M^{2}\left(\Sigma_{-}\left[f_{1}, g_{\ominus}^{\perp}\right]-? \Sigma_{-}\left[g_{\ominus}^{\perp}, f_{1}\right]\right)\right\}
\end{aligned}
$$

Conclusion

TMD factorization at NLP

- Operator expression at NLP/NLO is known
- Full classification is done
- Restoration of EM-conservation
- Also for qTMDs

TMD factorization beyond NLP

- NNLP is done! (finalizing NLO)
- Singularities at $b \rightarrow 0$
- Applications?

Conclusion

TMD factorization at NLP

- Operator expression at NLP/NLO is known
- Full classification is done
- Restoration of EM-conservation
- Also for qTMDs

TMD factorization beyond NLP

- NNLP is done! (finalizing NLO)
- Singularities at $b \rightarrow 0$
- Applications?

Thank you for attention!

