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Power expansion, NLP
Double expansion in αs and powers.
Two kinds of problems

F(Q,Λ;αs) = f0(αs) +
Λ

Q
f1(αs) + . . .

Q� Λ, “higher-twist”, λ =
√

Λ/Q

F(Q,Es,Λ;αs) =

[
f0(αs, ln

Es

Q
) +

Es

Q
f1(αs, ln

Es

Q
) + . . .

]
+O

(
Λ

Q

)
Q� Es � Λ, “perturbative resummation problem”, λ =

√
Es/Q

SCET is the natural framework to address the expansion in powers of scale ratios
beyond LP.

• Built-in power counting and gauge invariance

• Rules don’t change beyond LP
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Examples

DIS DY e+e− event shapes

• Kinematic thresholds of 2→ 1 / 1→ 2 processes
SCETI processes, no LP rapidity divergences

I Leading power IR logs αn
s

[
lnm τ

τ

]
+

, m ≤ 2m− 1 by now standard: LL, NLL,

NNLL, N3LL, [Moch, Vermaseren, Vogt; 2005; Becher, Neubert, Xu 2006; Becher, Schwartz, 2008],
EEC at N4LL [Duhr, Mistlberger, Vita, 2022]

I Where there are logs, there are powers, and powers times logs→ next-to-leading
power (NLP) resummation

I Structure of NLP Logs [αn
s lnm τ ] ,m ≤ 2n− 1 not well known

• Many other situations at amplitude or cross section level
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All-order NLP-LL series [gg→ H] [MB, Garny, Jaskiewicz, Szafron, Vernazza, Wang, 1910.12685]

∆LL
NLP(z, µ) =

[
β
(
αs(µ)

)
α2

s (µ)

α2
s (µt)

β
(
αs(µt)

)]2

C2
t (mt, µt)

× exp
[
4SLL(µh, µ)− 4SLL(µs, µ)

] −8CA

β0
ln
αs(µ)

αs(µs)
θ(1− z)

µt, µh ∼ mH , µs ∼ mH(1− z)

∆
LL
NLP(z, µ) = − θ(1− z)

{
4CA

αs

π

[
ln(1− z)− Lµ

]
+ 8C2

A

(
αs

π

)2 [
ln3

(1− z)− 3Lµ ln2
(1− z) + 2L2

µ ln(1− z)
]

+ 8C3
A

(
αs

π

)3 [
ln5

(1− z)− 5Lµ ln4
(1− z) + 8L2

µ ln3
(1− z)− 4L3

µ ln2
(1− z)

]
+

16

3
C4

A

(
αs

π

)4 [
ln7

(1− z)− 7Lµ ln6
(1− z) + 18L2

µ ln5
(1− z)− 20L3

µ ln4
(1− z)

+ 8L4
µ ln3

(1− z)
]

+
8

3
C5

A

(
αs

π

)5 [
ln9

(1− z)− 9Lµ ln8
(1− z) + 32L2

µ ln7
(1− z)− 56L3

µ ln6
(1− z)

+ 48L4
µ ln5

(1− z)− 16L5
µ ln4

(1− z)
]}

+ O(α
6
s × (log)11

)

(Lµ = ln
µ

mH
)

O(α
3
s ) agrees with

expansion of N3LO FO

calculation, O(α
4
s ) with

[de Florian et al., 2014]

based on “physical kernel

conjecture” of Vogt.

SCET result confirmed

by diagrammatic method

[Bahjat-Abbas et al.,

1905.13710]

M. Beneke (TU München), NLP Mainz, 19 September 2022 4



All-order NLP-LL series [gg→ H] [MB, Garny, Jaskiewicz, Szafron, Vernazza, Wang, 1910.12685]

∆LL
NLP(z, µ) =

[
β
(
αs(µ)

)
α2

s (µ)

α2
s (µt)

β
(
αs(µt)

)]2

C2
t (mt, µt)

× exp
[
4SLL(µh, µ)− 4SLL(µs, µ)

] −8CA

β0
ln
αs(µ)

αs(µs)
θ(1− z)

µt, µh ∼ mH , µs ∼ mH(1− z)

∆
LL
NLP(z, µ) = − θ(1− z)

{
4CA

αs

π

[
ln(1− z)− Lµ

]
+ 8C2

A

(
αs

π

)2 [
ln3

(1− z)− 3Lµ ln2
(1− z) + 2L2

µ ln(1− z)
]

+ 8C3
A

(
αs

π

)3 [
ln5

(1− z)− 5Lµ ln4
(1− z) + 8L2

µ ln3
(1− z)− 4L3

µ ln2
(1− z)

]
+

16

3
C4

A

(
αs

π

)4 [
ln7

(1− z)− 7Lµ ln6
(1− z) + 18L2

µ ln5
(1− z)− 20L3

µ ln4
(1− z)

+ 8L4
µ ln3

(1− z)
]

+
8

3
C5

A

(
αs

π

)5 [
ln9

(1− z)− 9Lµ ln8
(1− z) + 32L2

µ ln7
(1− z)− 56L3

µ ln6
(1− z)

+ 48L4
µ ln5

(1− z)− 16L5
µ ln4

(1− z)
]}

+ O(α
6
s × (log)11

)

(Lµ = ln
µ

mH
)

O(α
3
s ) agrees with

expansion of N3LO FO

calculation, O(α
4
s ) with

[de Florian et al., 2014]

based on “physical kernel

conjecture” of Vogt.

SCET result confirmed

by diagrammatic method

[Bahjat-Abbas et al.,

1905.13710]

M. Beneke (TU München), NLP Mainz, 19 September 2022 4



NLP numerics for Higgs production

Fixed-order vs threshold resummation at LP-NNLL +
NLP-LL

µ
dyn
s =

Q

s̄1(τ)
= 38 GeV, s̄1(τ) ≡ −eγE

d lnL(y, µ)

d ln y

∣∣∣∣
y=τ

[Sterman, Zeng, 2013]
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LP

LP+NLP

28.04

15.68

43.72

45.52
• Threshold approximation gives a reasonable

approximation – once NLP terms are included.

• Still don’t know how to do NLP NLL
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Basics of SCET beyond LP
[Simplest case only: SCETI]
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Power counting, modes and fields – SCETI

Mathematically, the EFT constructs the expansion of an observable in powers and logarithms of the
ratio of the IR over the UV scales, e.g.

λ =
√

ΛQCD/Q or
M
Q

Every object (fields, derivatives, momenta, ...) in the EFT should have a unique scaling with λ.

collinear mode momentum

pc ∼ Q(1, λ, λ2), p2
c ∼ Q2λ2

soft mode momentum

ps ∼ Q(λ2, λ2, λ2), p2
s ∼ Q2λ4

Light-like reference vectors n±, n2
± = 0,

n+ · n− = 2

pµ = (n+p)
nµ−
2

+ pµ⊥ + (n−p)
nµ+
2

= (n+p, p⊥, n−p)

Need separate fields for collinear and soft modes

QCD[A, ψ] −→ SCET[Ac,As, ξc, qs]

Several collinear directions ni±→ several copies of collinear fields.
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SCET Lagrangian at leading power
[Bauer, Fleming, Pirjol, Stewart (2000); in the given “position-space” form MB, Chapovsky, Diehl, Feldmann (2002)]

L(0)
SCET =

N∑
i=1

L(0)
ci + Lsoft

L(0)
c (x) = ξ̄

(
in−Dc + gsn−As(x−) + iD/⊥c

1
in+Dc

iD/⊥c

)
n/+

2
ξ + L(0)

c,YM

iDc = i∂ + gsAc, xµ− =
1

2
n+ · x nµ−

• Non-local, expected since n+pc ∼ Q.

• Only n−As appears, with eikonal vertex igsn
µ
−.

• In soft-collinear interactions, soft fields must be multipole-expanded around the classical
trajectory xm

−u to achieve homogeneous λ-scaling [BCDF, 2002]

φ
2
c(x)φs(x) = φ

2
c(x)

[
φs(x−) +

[
x⊥∂φus

]
(x−) +

n−x

2

[
n+∂ φus

]
(x−) +

1

2

[
xµ⊥xν⊥∂

µ
∂
ν
φus

]
(x−) + . . .

]

Drops small momentum components at vertex and leads to
eikonal propagator 1/(pi + k)2 → 1/(p2

i + n+pin−k)
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Soft background field and gauge invariance

I Split field Aµ = Aµc + Aµs and treat soft field as a background field. Given standard
background field gauge invariance of collinear fields.

I Not homogeneous in λ. Solution [MB, Feldmann, 2002]: pull back soft gauge trafo to the
light-cone xµ− with a redfinition of collinear fields:

ξ = Rξ̂ Aµc = R†ÂcR R(x) = P exp

(
ig
∫ x

x−
dyµAµs (y)

)
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Soft background field and gauge invariance

I The new fields transform under

I Homogeneous in λ.
Collinear fields “see” only the background field n−As(x−).
Emergent soft gauge symmetry of collinear modes on their classical trajectory. [Key concept for

gravity – see Patrick Hager’s talk.]

I Gives exact Lagrangian to all orders in λ.
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Wilson lines, gauge invariance and soft decoupling

Wc(x) = P exp
(

ig
∫ 0

−∞
ds n+Ac(x + sn+)

)
Y(x) = P exp

(
ig
∫ 0

−∞
ds n−As(x + sn−)

)
W†c in+Dc Wc = in+∂ Y†in−Ds Y = in−∂

• Introduce collinear-gauge invariant (background field gauge with n−As(x−) background
field) collinear fields

χ ≡ W†c ξ, Aµc⊥ ≡ W†c [iDµc⊥Wc], n−Ac ≡ W†c [in−Dc+sWc]− gsn−As

• Soft-decoupling transformation [Bauer, Pirjol, Stewart, 2001]

ξ(x)→ Y(x−)ξ(x) Aµc (x)→ Y(x−)Aµc (x)Y†(x−)

L(0)
c (x) = χ̄

(
in−∂ + n−Ac + (i∂/⊥ +A/c⊥)

1
in+∂

(i∂/⊥ +A/c⊥)

)
n/+

2
χ+ L(0)

c,YM

Collinear and soft interactions decoupled at leading power.
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SCET Lagrangian, sub-leading power [MB, Feldmann, 2002]

Lc = L(0)
c + L(1)

c + L(2)
c + . . .

L(1)
ξ = ξ̄

(
xµ⊥nν−Wc gFs

µν(x−)W†c
) n/+

2
ξ

L(1)
ξq = q̄s(x−) W†c iD/⊥c ξ − ξ̄ i

←−
D/⊥cWc qs(x−)

L(2)
ξ =

1
2
ξ̄
(

(n−x) nµ+nν−Wc gFs
µνW†c + xµ⊥x⊥ρnν−Wc

[
Dρus, gFus

µν

]
W†c
) n/+

2
ξ

+
1
2
ξ̄

(
iD/⊥c

1
in+Dc

xµ⊥γ
ν
⊥Wc gFus

µνW†c + xµ⊥γ
ν
⊥Wc gFus

µνW†c
1

in+Dc
iD/⊥c

)
n/+

2
ξ

• Soft gauge field appears only in manifestly covariant field strength.

• No purely collinear subleading interactions. At least one soft field in every vertex.

• Can express in terms of gauge-invariant collinear fields χc,Ac⊥ and gauge-invariant soft
fields after the decoupling transformation, q = Y†qs, Bµ = Y†[iDµs Y]

• NLP needsO(λ2), i.e. L(1)
ξ and L(2)

ξ but only L(1)
ξq .

• Compendium of Feynman rules in [MB, Garny, Szafron, Wang, 1808.04742]
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(No-) Renormalization of the SCET Lagrangian [BCDF, 2002]

Integrating out hard modes (“matching”) usually renormalizes the interactions of the effective La-
grangian:

Lc = L(0)
c + L(1)

c + L(2)
c + . . .

= Ltree ≡
∑

i

Oi
matching−→ L =

∑
i′

Ci′Oi′

Hard loops

µ2ε
∫

dd` I(`; pci, ksj) =

(
HI
µ2

)−ε
× J(ε) +. . .

scaleless
= 0

since HI = (n+pi)
nµ−
2
· (n+pi′ )

n−µ
2

= 0 so the integrals
are scaleless.

↪→ No renormalization, tree Lagrangian is exact
[background field + field redefs] not renormalized
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Hard sources

Hard sub-processes are represented by N-jet light-ray operators of gauge-invariant quark and
gluon “jet” fields, which scaleO(λ).

• Soft covariant derivatives on collinear fields can be eliminated, e.g. [in−Ds,Aµ⊥]
No soft fields in NLP operators.

• Collinear building blocks for Ji:

χi(tini+) ≡ W†i ξi, Aµ⊥i(tini+) ≡ W†i [iDµ⊥iWi]

• Operate with i∂µ⊥i on collinear building block or take products of several collinear building
blocks in the same collinear sector
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General form of the operator:

O(0) =

∫ N∏
i=1

ni∏
ki=1

dtiki C({tiki})

×Js(0)×
N∏

i=1

Ji(ti1 , ti2 , . . . tini
)

I Every element collinear gauge invariant and soft gauge covariant.

I Notation: JAn, JBn, JCn, ...

– A,B,C, . . . refers to 1,2,3, ... fields in a given collinear direction

– n meansO(λn) in a given collinear sector relative to A0

I AtO(λ2) up to two ∂⊥ or up to three fields in one sector. Examples:

i∂⊥ii∂⊥iχi (A2), χ(ti1 )∂⊥iA⊥ii(ti2 ) (B2), χ(ti1 )χ(ti2 )χ(ti3 ) (C2)

I O(λ2) 3-jet operators could then be J(A0)J(A0)J(B2), J(B1)J(A0)J(A1), . . .
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Automatic (naive) all-order factorization

• Expand process in hard sources + time-ordered products with Lagrangian interactions.

• Strict expansion in λ ∼ p⊥/n+p ≡
√

1− x,
√

1− z,
√
τ . NLP isO(λ2)

• Factorize into single scale (“homogeneous”) objects, which have gauge-invariant
operator definitions: hard, jet/collinear and soft functions

• IR logs in QCD are UV logs in SCET. Resummation is an operator renormalization /
mixing + renormalization group problem

Too naive – rapidity divergences at leading power, virtuality endpoint diver-
gences at sub-leading power, KSZ theorem violation in renormalization, Glauber
modes, . . . ???
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Renormalization of SCETI operators
[MB, Garny, Szafron, Wang, 1712.04416, 1808.04742, 1907.05463]
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Multi-light-cone operators

O(x) =
N∏

i=1

[ ni∏
k=1

∫
dtikψi(x + tik n+i)

]

N non-collinear directions defined by momenta
Overall colour-singlet, but not the separate collinear
sectors.

Log structure determined by the UV divergences of
collinear and soft loops in SCET [Becher, Neubert, 2009]

ZO
N∏

i=1

√
Zi〈0|O(0)|M({pi})〉|LSCET

!
= finite

SCETI anomalous dimension determined by UV diver-
gences of collinear and soft loops.
Use small off-shellness to regulate IR divs.
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General structure of the NLP ADM (at one-loop)

ΓPQ(x, y) = δPQδ(x− y)

−γcusp(αs)
∑
i<j

∑
l,k

Tik · Tjl ln
(
−sijxik xjl

µ2

)
+
∑

i

∑
k

γik (αs)


+2
∑

i

δ[i](x− y)γi
PQ(x, y) + 2

∑
i<j

δ(x− y)γij
PQ

I Operators [O(λ2)]

P = J(A0,A2), J(A1,A1), J(A1,B1), J(A0,B2), J(A0,C2), J(B1,B1),

T(J(A0,A0),L(1),L(1)), T(J(A0,A0),L(2)), T(J(A0,A1),L(1)), T(J(A0,B1),L(1))

I Collinear contribution depends only on single sectors, but within each sector on xik .
complicated expressions hidden in collinear term γi

PQ(x, y).

I Soft contributions connect two sectors i, j and have dipole form. Loops with LP soft
interaction contribute (only) to the first line. The NLP soft contribution γij

PQ arises only
from mixing of time-ordered products into currents.

γi =

(
γi

PQ 0
0 γi

P′Q′

)
, γij =

(
0 0

γij
T(P′)Q 0

)
.
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Soft time-ordered product mixing

s

til

tjk

1

s

til

tjk

2

s
til

tjk

1

1

I Single insertions of L(1) and L(2) vanish, in particular noO(λ) mixing. Double L(1)

insertion is non-zero.

I Inconsistent with Lorentz-invariance.

Take i, j directions non-back-to-back (p⊥i 6= 0 but p⊥j = 0), QCD cusp logs must be

expanded as sij = s(0)
ij + nj+ · pjnj− · p⊥i +O(λ2)

Γ = −γcusp(αs)
∑
i<j

Ti ·Tj

ln
s(0)
ij

µ2
+

nj+ · pjnj− · p⊥i

s(0)
ij

+ . . .

 ⇒ γ
ij
PQ = −

αs

π
Ti ·Tj

nµj−
(ni−nj−)Pi

There must beO(λ) mixing into (A1,A0).

I The counterterm related to this AD is required to reproduce the IR poles of the on-shell
QCD amplitude.
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Soft time-ordered product mixing at O(λ) revisited

I Only possibility is the soft loop with one insertion of L(1).

L(1)
ξ = ξ̄

(
xµ⊥nν− gsFs

µν

) n/+

2
ξ

L̃(1)
ξ = ξ̄

(
iD/⊥c

1
in+Dc

gA/⊥us + gA/⊥s
1

in+Dc
iD/⊥c + [(x⊥∂) (gn−As)]

)
n/+

2
ξ

The 2nd Lagrangian arises in the direct expansion of the quark Lagrangian. The 1st form is
obtained from the 2ndby the field redefinition

ξ′ = (1 + gsx⊥ · As)ξ

I Alternatively,
L̃(1)
ξ = L(1)

ξ + ∆L(1)
eom

∆L(1)
eom = ξ̄

[
igsx⊥As, in−D + iD/⊥c

1
in+Dc

iD/⊥c

]
n/+

2
ξ.

[To avoid dealing with the YM part of the Lagrangian, we assume abelian gauge fields for simplicity.]
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Soft time-ordered product mixing at O(λ) revisited

s

til

tjk

1
I Calculate the soft mixing graph with L̃(1)

ξ

I Relevant integral is (off-shell IR regularization)

−iµ̃2ε
∫

ddl
(2π)d

nj+pj

l2(p2
i − ni+pini−l)2(p2

j − nj+pjnj−l)

×
(
− [nj−p⊥i n+ipi n−il− n+ipi ni−nj− p⊥il]︸ ︷︷ ︸

fromL(1)
ξ

[gives 0]

+ nj−p⊥i p2
i︸ ︷︷ ︸

from ∆L(1)
eom

)

=
1

4π2

nj− p⊥i

ni−nj− ni+pi

µ2s(0)
ij

p2
i p2

j

ε 1
ε
6= 0

I Off-shell term contributes due to p2
i /p2

i .
Introduce a counterterm for mixing of eom operator into a “physical” transverse derivative
operator

T(J(A0),∆L(1)
eom)→ J(A1)

M. Beneke (TU München), NLP Mainz, 19 September 2022 22



Does off-shell Lagrangian mixing into currents make sense?

(1) Does ∆L(1)
eom contribute to on-shell amplitudes? – No.

On-shell soft integrals are scaleless and vanish.
Using LSZ:

lim
p2→0

(p2)−ε ×
i

p2
× p2 = 0

Must take p2 → 0 before ε→ 0.

(2) Violates the KSZ theorem [Kluberg-Stern, Zuber, 1975] that eom operators do not mix into “physical
operators” (i.e. that don’t vanish by eom), i.e. the block-triangular structure of ADM matrix.

True, but the assumptions of the theorem do not hold, because the field redef involves xµ, not
only ∂µ.

(3) Uniqueness. We could use L(1)
ξ + const.×∆L(1)

eom and get an arbitrary coefficient for the
mixing counterterm

The SCET Lagrangian is not renormalized (Lorentz invariance). Coefficient is uniquely fixed
by matching to QCD off-shell.
There is a preferred set of fields for the calculation of the anomalous dimension.
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Extra collinear emission and endpoint divergence

s

til

tjk

1
I Case-I on-shell amplitude

• ∆L(1)
eom does not contribute

• The counterterm from T(J(A0),∆L(1)
eom)→ J(A1) mixing

is needed to renormalize the amplitude.

• IR divergences of the QCD amplitude are correctly reproduced
and include a purely collinear contribution from the matrix
element of a B1 operator. This includes the pole part of a
divergent convolution.

I Case-II off-shell Green function

• In the sum of all soft contributions a non-local pole term
1
ε
×

1
(p1 + p2)2

is left over.

• This cancels with the endpoint-divergent collinear contribution from B1 operators.

• Similar cancellations in the presence of an extra collinear emission already occur at
leading power, but the dependence on p2 is logarithmic
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Divergent convolutions

I The collinear contribution to the amplitude includes the term

∫ 1

0
dx C(A0,B1)(x)|tree 〈q̄(q)q(p1)g(p2)|[χ̄jA⊥iχi](x)|0〉|1-loop

⊃
1
ε

∫ 1

0
dx

c
x
γi

JµB1(x),JνB1(y) = ill-defined

I If the convolution of coefficient function and bare matrix element is done in d dimensions
obtain the non-local pole

1
ε

1
(p1 + p2)2

,

which cancels with the non-local pole in the soft mixing.

• Divergence arises when collinear gluon becomes soft (momentum fraction x→ 0).

• Violation of soft-collinear factorization already in renormalization

• Cannot consistently define an anomalous dimension matrix for JA1µ, JB1µ and JT1
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Renormalizing divergent convolutions

JA1µ, JB1µ, JT1 → JA1µ, JB1µ
reg , J̌ ≡ JT1 +

2nµj−
nj−ni−

JB1s
µ

I Singular operator includes the 1/x factor in the operator definition, its renormaliztion implies
the convolution in d dimensions.

JB1sµ(ti, tj) = χ̄j(tjnj+)Γ

[
1

ini+∂
Aµ⊥i(tini+)

]
χi(tini+) .

Related by reparameterization invariance to JT1 and JA0.

I Regular operator defined by +-type prescription, which removes the 1/x part of the coefficient
function in convolutions, making them well-defined.

JB1µ
reg (x) = lim

η→0+

[
θ(x− η)JB1µ(x)− ηδ(x− η)

∫ 1

η
dz

JB1µ(z)
z

]
.

I Consistency requires

C(A0,B1)(x) =
c(αs)

x
+ less singular terms

Checked. ADM can be re-
constructed from RPI
[J. Strohm, Master thesis (2020)]
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NLP factorization and resummation
– DY threshold
[MB, Broggio, Garny, Jaskiewicz, Szafron, Vernazza, Wang, 2018/19]
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NLP resummations

Soft gluons

Thrust distribution [Moult, Stewart, Vita, Zhu,

2018]

Back-to-back EEC in N = 4 SYM
Moult, Vita, Yan, 2019

Drell-Yan threshold [MB, Broggio, Garny, Jaskie-

wicz, Szafron, Vernazza, Wang, 2018; Bahjat-Abbas et

al., 2019]

All leading log, often only double log

All log order claim for diagonal qq̄ channel in large-x DIS

and DY [Ajjath, Mukherjee, Ravindran, 2020; Ajjath et

al. 2021]

Soft fermions

Off-diagonal qg channel in large-x DIS and
for DY threshold [MB, Garny, Jaskiewicz, Szafron,

Vernazza, Wang, 2020; van Beekveld, Vernazza, White,

2021]

"Gluon” thrust [Moult et al., 2019; MB, Garny, Jas-

kiewicz, Szafron, Strohm, Vernazza, Wang, 2022]

Amplitudes:

H → γγ through light quark loops [Liu,

Penin, 2017/18; Liu, Neubert, 2019; Wang, 2019; and

NLL Liu, Mecaj, Neubert, Wang, 2020; Anastasiou, Pe-

nin, 2020]

µe backscattering [Bell, Böer, Feldmann, 2022]

• Note: soft gluon/quark refers to subleading power interactions. What is
resummed to all orders is always gluons.
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Drell-Yan production near threshold (̂s→ Q2)

LP resummation [Sterman, 1987; Catani, Trentadue 1989; Korchemsky, Marchesini, 1993; SCET: Idilbi et al. (2005/06);

Becher, Neubert, Xi, 2007]

• Hard and soft only. No hard-collinear
functions.

• Soft function consists only of Wilson lines –
general feature of LP factorization.

Its RGE sums the large logs of 1− z = Q2/ŝ.
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Drell-Yan production near threshold – NLP

NLP LL resummation [1809.10631] and NLP factorization [1912.01585]

• No subleading power A1, B1, . . . SCET currents. Same hard function as at LP.

Because no energetic radiation into final state.

• New feature: Hard-collinear functions at amplitude level.

Soft gluons in sub-leading Lagrangian do not decouple. hard-collinear loops no longer scale less, but depend on n+pn−k

• Matching equation:
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• Generalized soft functions with soft field
strength insertion [MB, Campanario, Mannel, Pecjak,

2004]

• Convolutions J(ω)⊗ S(ω)

Validation: One-loop collinear fns [1912.01585] and two-loop soft [Broggio, Jaskieiwcz, Vernazza, 2021] reproduce diagramma-

tic NNLO results and beyond [Bonocore et al., 2016]
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Generalized soft fn RGE

NLP factorization formula (leading-log accurate)

σ̂NLP
qq̄ (z) = HLP(Q2) Q J(ω)⊗ω S2ξ(Q(1− z);ω) + h.c.

Generalized soft function

S2ξ(Ω, ω) = FT{x0,z−}
1

Nc
Tr 〈0|T

[
Y†+(x0

)Y−(x)
]

T

[
Y†−(0)Y+(0)

i∂ν⊥
in−∂

B+
⊥ν(z−)

]
)|0〉

=
αsCF

2π

{
θ(Ω)δ(ω)

(
−

1

ε
+ ln

Ω2

µ2

)
+

[ 1

ω

]
+
θ(ω)θ(Ω− ω)

}

Renormalization group equation involves mixing with

Sx0 (Ω) =

∫ dx0

4π
eix0Ω/2 −2i

x0 − iε

1

Nc
Tr 〈0|T

[
Y†+(x0

)Y−(x0
)
]

T
[

Y†−(0)Y+(0)
]
|0〉

d

d lnµ

(
S2ξ (Ω, ω)

Sx0 (Ω)

)
=
αs

π

 4CF ln
µ

µs
−CFδ(ω)

0 4CF ln
µ

µs

( S2ξ (Ω, ω)

Sx0 (Ω)

)

↪→ leading log resummation
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Beyond NLP-LL: divergent convolutions

I LL at NLP in diagonal channel seem to be simple: no double log in collinear function /
no colour charge change of collinear particle

No LL in diagonal DGLAP kernels for x→ 1

Recall: no endpoint divergence in renormalization at for back-to- back particles atO(λ).

I At NLL a convolution in J ⊗ S appears, that exists in d dimensions, but does not for
ε→ 0.

I Do not have a renormalized factorization theorem for the partonic cross section. Have to
refactorize the parton distributions for x→ 1 as well from NLP.

For the off-diagonal parton channels [→ soft fermions] the pro-
blem appears already at NLP LL, while LP is zero→ study soft
fermion emission
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Next-to-leading power – soft fermions
[MB, Garny, Jaskiewicz, Szafron, Vernazza, Wang, 2020;
MB, Garny, Jaskiewicz, Strohm, Szafron, Vernazza, Wang, 2022]
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Soft fermion exchange - a curious flavour physics example

Bs → µ+µ− [MB, Bobeth, Szafron, 1708.09152]

C10 vs. Ceff
7
αem

π

mB

ΛQCD
ln2 mBΛQCD

m2
µ

↪→ soft fermion exchange dominates in a
hypothetical world with larger αem and mB.

Soft fermion exhange leads to a transfer of charge (lepton flavour, electric, colour, ...)
and particle identity in the collinear directions.

Causes a new type of Sudakov double logs proportional to the transfer of charge.
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“Off-diagonal” channels and soft quarks

• Soft fermion coupling to collinear modes is power-suppressed. Leading interaction

L(1)
ξq = q̄s W†c iD/⊥c ξc − ξ̄c i

←−
D/⊥cWc qs +O(λ2)

• 1→ 2 / 2→ 1 off-diagonal high-energy scattering (threshold)

• Two intriguing observations:

I Off-diagonal parton splitting kernel [Vogt et al., 2010] is a two-scale object

PLL
gq (N) =

1
N
αsCF

π
B0(a), a =

αs

π
(CF − CA) ln2 N ,

I Quark Sudakov exponentiation conjecture for the γ∗ → g + (qq̄) amplitude for
sqq̄ � Q2 [Moult et al. 2019] contains

αs

4π
ln N exp

(
−αsCF/π ln2 N

)
×

e−a − 1

a
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q + φ∗ → X DIS for M2
X � Q2

Virtual correction to the structure function

Endpoint divergent, gives NLP LL atO(αs).

One-loop correction, double pole part (↔ NLP LL)

q(p1)

1/z

z

(1− z)

φ∗(q)
g(p2)

q(p)

(2) (3) (4) (5)(1)

(6) (7) (8) (9)

• Expansion in ε before integration gives wrong−1/ε3 . No leading pole for soft gluon emission.

• Resummation of terms singular as z→ 0 is required to all orders, zε counts asO(1)

• zQ2 as an emergent new intermediate scale
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z-SCET interpretation and refactorization

For z � 1 the CB1 matching coefficient is a two-scale object and must be resummed. Construct
an “auxiliary” z-SCET containing z-soft and z-anti-softcollinear modes.

z�1−→

• DB1 appears as a universal coefficient that renormalizes soft quark emission. Its double
logarithms are proportional to the change of colour charge of the collinear particles.

• The same coefficient appears in the endpoint factorization theorem for H → gg through
light-quark loops [Liu, Neubert, Schnubel, Wang, 2022]
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Renormalization of the soft-quark emission coefficient

JCB1
1 (Q2, r)K = CA0(Q2)×

DB1(rQ2)

r

The soft-quark limit can be obtained from the limit r→ 0 of the full NLP B1 operator and its RGE:

DB1(p2) = 1 +
αs

4π

(
CF − CA

)( 2
ε2
− 1−

π2

6

)(
µ2

−p2 − iε

)ε
+O(α2

s ).

d
d lnµ

DB1(p2) =

∫ ∞
0

dp̂2 γD(p̂2, p2)DB1(p̂2) ,

with the asymptotic anomalous dimension

γD(p̂2, p2) =
αs(CF − CA)

π
δ(p̂2 − p2) ln

(
µ2

−p2 − iε

)

+
αs

π

(
CA

2
− CF

)
p2
[
θ(p̂2 − p2)

p̂2(p̂2 − p2)
+

θ(p2 − p̂2)

p2(p2 − p̂2)

]
+︸ ︷︷ ︸

relevant to NLL only
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Off-diagonal DIS for x→ 1

pdfc

φ∗
hc

pdfc

φ∗

B1 B1

hc

pdfc

φ∗

hc

pdfc

φ∗

A0 A0

pdfsc
L1 L1

pdfc pdfc

Consistency relations: Each region contribution different dependence on N,Q and ε. Impose pole
cancellation on the general Ansatz.

WNLP
φ,q ULP

qq + WLP
φ,gUNLP

gq = WNLP
φ,q exp

[
−
αsCF

πε2

(
µ2

Λ2

)ε
(Nε − 1)

]
+ exp

[
αsCA

πε2

(
µ2

Q2

)ε
(Nε − 1)

]
UNLP

gq

!
=

1

N

∑
n=1

(
αs

4π

)n 1

ε2n−1

n∑
k=0

n∑
j=0

c(n)
kj

(
µ2nNj

Q2kΛ2(n−k)

)ε

c(n)
n1 =

1

2
(−4)n CF

CF − CA

Cn
F − Cn

A

n!
=

(−4)n

2n!
CF

(
Cn−1

F + Cn−2
F CA + · · · + Cn−1

A

)
.

All c(n)
kj can be obtained from the all-hard loop region, c(n)

n1 , or the DB1(p2) coefficient from
consistency. Booststrap the full solution algebraically from the soft quark Sudakov factor.
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Off-diagonal DIS – LL DGLAP kernel and coefficient function

ZNLP,LL
gq =

1
2N ln N

CF

CF − CA
exp
[
αsCF

π

ln N
ε

]
Fpole(w, a)γNLP,LL

gq (N) =
1
N
αsCF

π

[
Fpole(w, a)− w

d
da

Fpole(w, a)

]
= −

1
N
αsCF

π
B0(a)

Fpole(w, a) =
∑
k≥1

1
wk

∑
n≥0

Bn

n!(n + k)!
an+k , B0(x) =

∞∑
n=0

Bn

(n!)2
xn and a =

αs

π
(CF − CA)

C̃NLP,LL
φ,q

∣∣∣
ε→0

=
1

2N ln N
CF

CF − CA

(
B0(a) exp

[
CA
αs

π

(
1
2

ln2 N + ln N ln
µ2

Q2

)]

− exp
[
αsCF

π

(
1
2

ln2 N + ln N ln
µ2

Q2

)])

The Bernoulli function arises as a consequence of MS factorization. Proves Vogt’s conjecture for
the all-order series.
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Extensions and remarks

• Used factorization in d dimensions. To apply standard 4D RGE techniques, must perform
subtractions and rearrangements between the B1 and T(A0,L(1)) term.

−→ J. Strohm’s talk on “gluon thrust”

• Same framework applies to thrust in the 2-jet region.
No Bernoulli numbers, since no PDF factorization but final state jets.

• By crossing and reinterpetation of modes, one obtains a result for the NLP LLs in the
off-diagonal DY cross section near threshold. Here the soft-quark Sudakov factor applies
to the collinear function in the refactorized convolution J ⊗ S of the collinear and soft
function.

• Provides insight into why for the off-diagonal channel even the splitting function
contains double logs. Soft gluon emission does not cause this effect, because the collinear
particle before and after emission has the same colour charge.

γ∗
hc

γ∗
B1 B1

hc

hc

γ∗

s
γ∗

A0 A0

hc

hc

L1 L1
hchc
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