

Power Expansions on the Lightcone: From Theory to Phenomenology

QED calculations at NNLO (and beyond)

Yannick Ulrich

IPPP, University of Durham

30 September 2022

Yannick Ulrich, 30.09.22 - p.1/14

non-exhaustive list of experiments as implemented in McMule

process	experiment	physics motivation
$e\mu \to e\mu$	MUonE	HVP to $(g-2)_{\mu}$
$\ell p o \ell p$	P2, Muse, Prad, QWeak,	proton radius and weak charge
$e^-e^- \to e^-e^-$	Prad 2	normalisation
	MOLLER,	$\sin heta_W^2$ at low Q^2
$e^+e^- \rightarrow e^+e^-$	any e^+e^- collider	luminosity measurement
$ee \to \ell\ell$	VEPP, BES, Daphne,	R-ratio
	Belle	au properties
$ee ightarrow \gamma\gamma$	Daphne	dark searches
	any e^+e^- collider	luminosity measurement
$\mu \rightarrow \nu \bar{\nu} e$	MEG	ALP searches
	DUNE	beam-line profiling

QCD @ LHC	\Leftrightarrow	QED @ low & medi	um energy
non-abelian	2	abelian	matrix elements somewhat easier
non-abelian	\gg	abelian	IR structure much easier (1)
massless fermions	\ll	massive fermions	loop amplitudes much harder (2)
jets	<	exclusive w.r.t.	numerics harder $\supset \log(m^2/Q^2) \equiv L$
		collinear radiation	much harder for small masses (3)

stealing from QCD

- master integrals (reduction and computation), automated tools, EFT methods
- use dimensional regularisation for IR singularities, not photon mass
- use subtraction method for phase-space integration, not slicing method
- for the future: match fixed-order result to parton shower

soft singularities exponentiate [Yennie, Frautschi, Suura 61]

• universal soft limit $\mathcal{M}_{n+1}^{(\ell)} = \mathcal{E}\mathcal{M}_n^{(\ell)} + \mathcal{O}(E_{\gamma}^{-1})$

• universal pole structure
$$e^{\hat{\mathcal{E}}}\sum_{\ell=0}^{\infty}\mathcal{M}_n^{(\ell)} = \sum_{\ell=0}^{\infty}\mathcal{M}_n^{(\ell)f} = {\rm finite}$$

use this to construct an all-order subtraction scheme FKS^ℓ

- nothing complicated needed higher than $\mathcal{O}(\epsilon^0)$
- only one universal CT: $\hat{\mathcal{E}}$

universality of collinear singularities $ightarrow\,$ calculate up to ${\cal O}(m^2/Q^2)$

- *H*: hard function $\sim \sum_{m=0}^{\infty} |_{m=0}$
- *Z*: process independent jet function
- S: simple soft function

simple process ($\mu \rightarrow e \nu \nu$ or $t \rightarrow b \ell \nu$)

- $\mathcal{A}_{\mu}(m) = \mathcal{S} \times Z \times \mathcal{A}_{\mu}(0) + \mathcal{O}(m)$
- $Z \supset \log(m)$: process indep. jet fct.
- $S \supset \log(m)$: process dep. soft fct. (easy) [Penin 06; Becher, Melnikov 07; Engel, Gnendiger, Signer, YU 18]

different process ($\mu e \rightarrow \mu e$)

• $\mathcal{A}_{\mu e}(m) = \mathcal{S}' \times Z \times Z \times \mathcal{A}_{\mu e}(0) + \mathcal{O}(m)$

real-virtual corrections trivial in principle, extremely delicate numerically

example $ee \rightarrow ee\gamma$ [Banerjee, Engel, Schalch, Signer, YU 21]

- soft limit (of collinear emission) $E_{\gamma} = \xi \sqrt{s}/2$
- arbitrary prec. calculation vs dp, qp, eikonal, NTS
- stability problem

real-virtual corrections trivial in principle, extremely delicate numerically

example $ee \rightarrow ee\gamma$

 $E_{\gamma} \rightarrow 0$

[Banerjee, Engel, Schalch, Signer, YU 21]

- soft limit (of collinear emission) $E_{\gamma} = \xi \sqrt{s}/2$
- arbitrary prec. calculation vs dp, qp, eikonal, NTS
- stability problem solved & speed-up

+ $\mathcal{O}(E_{\gamma}^0)$ + $\mathcal{O}(E_{\gamma}^0)$

test next-to-soft stabilisation vs OL4 (OpenLoops quad) for $\mu e ightarrow \mu e$ real-virtual

- same statistics, same result
- 70 days vs 4 days
- integrated results for different cuts
- ⇒ this is not an approximation but a numerical tool

NTS	OL4
-0.29268(4)	-0.29267(4)
-0.44789(6)	-0.44778(6)
-0.64662(9)	-0.64649(9)

a few more hurdles

• VP diagrams for $e/\mu/\tau/{\rm had}/...$ numerically with full mass dependence

- collinear pseudo-singularities $\lim_{\rightarrow 0} \sphericalangle(p_{\gamma},p_i) \ \Rightarrow \ L$
- phase-space tuning s.t. $\cos \sphericalangle \sim x_i$
- $\Rightarrow~$ at most one small angle $\rightarrow~$ FKS partitioning

pheno example: full NNLO for $e\mu \rightarrow e\mu$

 $E_{\text{beam}}^{\mu} = 150 \text{ GeV}, E_e > 1 \text{ GeV}, \theta_{\mu} > 0.3 \text{ mrad}$ [Broggio, Engel, Ferroglia, Mandal, Mastrolia, Passera, Rocco, Ronca, Signer, Torres Bobadilla, Zoller, YU 2?]

Ip3)~~

rich, 30.09.22 - p.11/14

$ee \to \gamma^*$ can be taken to ${\rm N}^3~{\rm LO}$

- VVV: known [Fael, Lange, Schönwald, Steinhauser 22]
- RRR: "trivial"
- RRV: OpenLoops + NTS stabilisation
- RVV: massless known (three-jet @ NNLO), massive (DiffExp?)
- \Rightarrow LBK + jettification at two-loop

jettification

Ip 3)~ Durham

• expand for small emission angles

N^3 LO workstop in Durham

MCMULE mule-tools.gitlab.io

f.l.t.r.: F.Hagelstein (Mainz), A.Coutinho (PSI), N.Schalch (Bern), L.Naterop (Zurich & PSI), S.Kollatzsch (Zurich & PSI), A.Signer (Zurich & PSI), M.Rocco (PSI), T.Engel (\rightarrow Freiburg), V.Sharkovska (Zurich & PSI), Y.Ulrich (Durham), A.Gurgone (Pavia)

Yannick Ulrich, 30.09.22 - p.14/14