AUTOMATING CALCULATIONS IN SOFT-COLLINEAR EFFECTIVE THEORY
 [GUIDO BELL]

Introduction

SCET provides a systematic framework for precision studies of collider observables

- $\mathrm{N}^{3} \mathrm{LL} / \mathrm{N}^{4} \mathrm{LL}$ resummations for benchmark observables threshold resummation, p_{T} resummation, event shapes, \ldots
- Automated NNLL resummations for global observables
[Duhr, Mistlberger, Vita 22]

[Kardos, Larkoski, Trócsányi 20]

[Becher, Neubert, Rothen, Shao 16] non-global logarithms, super-leading logarithms, ...
- Factorisation violation

Glauber exchanges, BFKL, ...

Introduction

SCET provides a systematic framework for precision studies of collider observables

- $\mathrm{N}^{3} \mathrm{LL} / \mathrm{N}^{4} \mathrm{LL}$ resummations for benchmark observables threshold resummation, p_{T} resummation, event shapes, \ldots
- Automated NNLL resummations for global observables
[Duhr, Mistlberger, Vita 22]

[Kardos, Larkoski, Trócsányi 20]

[Becher, Neubert, Rothen, Shao 16] non-global logarithms, super-leading logarithms, ...
- Factorisation violation

Glauber exchanges, BFKL, ...

Current status

Structure of LP factorisation theorems

$$
\mathrm{d} \sigma=H(\mu) \cdot \prod_{i} B_{i / h}(\mu) \otimes \prod_{j} J_{j}(\mu) \otimes S(\mu)+\mathcal{O}(\lambda)
$$

- hard functions

QCD-SCET matching \rightarrow virtual amplitudes with full colour information

- soft functions
public code for computation of dijet soft functions
formalism has been extended for N -jet soft functions
soft functions for massive particle production under development
- jet functions
[GB, Brune, Das, Wald 21+wip]
formalism exists for computation of quark and gluon jet functions
- beam functions
[GB, Brune, Das, Wald 22+wip]
formalism for computation of beam-function matching kernels in moment space

Momentum modes

SCET-1

$$
\mu_{S} \ll \mu_{J}
$$

SCET-2

$$
\mu_{S}=\mu_{J}
$$

In SCET-2 one cannot distinguish soft from collinear modes when radiated into jet direction
\Rightarrow need additional regulator that distinguishes modes by their rapidities

$$
\int d^{4} k \delta\left(k^{2}\right) \theta\left(k^{0}\right) \Rightarrow \int d^{d} k\left(\frac{\nu}{k_{+}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right)
$$

Momentum modes

SCET-1

$$
\mu_{S} \neq \mu_{J}
$$

SCET-2

$\mu_{S}=\mu_{J}$

In SCET-2 one cannot distinguish soft from collinear modes when radiated into jet direction
\Rightarrow need additional regulator that distinguishes modes by their rapidities

$$
\int d^{4} k \delta\left(k^{2}\right) \theta\left(k^{0}\right) \Rightarrow \int d^{d} k\left(\frac{\nu}{k_{+}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right)
$$

SCET-1

Three-scale problem: $\mu_{S} \ll \mu_{J} \ll \mu_{H}$

$$
\left\{\begin{array}{l}
\mu_{H} \sim Q \\
\mu_{J} \sim m_{J} \\
\mu_{S} \sim \frac{m_{J}^{2}}{Q}
\end{array}\right.
$$

$$
\begin{aligned}
& d \sigma \simeq H(Q, \mu) J\left(m_{J}, \mu\right) \otimes S\left(m_{J}^{2} / Q, \mu\right) \\
& \ln ^{2} \frac{Q^{2}}{m_{J}^{2}}=\frac{1}{2} \ln ^{2} \frac{Q^{2}}{\mu^{2}}-\ln ^{2} \frac{m_{J}^{2}}{\mu^{2}}+\frac{1}{2} \ln ^{2} \frac{m_{J}^{4} / Q^{2}}{\mu^{2}}
\end{aligned}
$$

Sudakov resummation with standard RG techniques

$$
\frac{d H(Q, \mu)}{d \ln \mu}=\left[2 \Gamma_{\mathrm{cusp}}\left(\alpha_{S}\right) \ln \frac{Q^{2}}{\mu^{2}}+4 \gamma_{H}\left(\alpha_{S}\right)\right] H(Q, \mu)
$$

- anomalous dimensions: $\Gamma_{\text {cusp }}, \gamma_{H}, \gamma_{J}, \gamma_{S}$
- matching corrections: c_{H}, c_{J}, c_{S}

SCET-2

Two-dimensional problem: $\mu_{S} \sim \mu_{J} \ll \mu_{H}, \quad \nu_{S} \ll \nu_{J}$

$$
\begin{aligned}
& d \sigma \simeq H(Q, \mu) J\left(p_{T}, \mu, Q, \nu\right) \otimes S\left(p_{T}, \mu, p_{T}, \nu\right) \\
& \ln ^{2} \frac{Q^{2}}{p_{T}^{2}}=\ln ^{2} \frac{Q^{2}}{\mu^{2}}-2 \ln \frac{p_{T}^{2}}{\mu^{2}} \ln \frac{Q^{2}}{\nu^{2}}-\ln ^{2} \frac{p_{T}^{2}}{\mu^{2}}-2 \ln \frac{p_{T}^{2}}{\mu^{2}} \ln \frac{\nu^{2}}{p_{T}^{2}}
\end{aligned}
$$

Exponentiation of rapidity logarithms

- Collinear anomaly

$$
\mathcal{J}\left(x_{T}, \mu, Q, \nu\right) \mathcal{S}\left(x_{T}, \mu, x_{T}, \nu\right)=\left(Q^{2} x_{T}^{2}\right)^{-F\left(x_{T}, \mu\right)} W\left(x_{T}, \mu\right)
$$

- Rapidity renormalisation group

$$
\frac{d \ln \mathcal{J}\left(x_{T}, \mu, Q, \nu\right)}{d \ln \nu}=\gamma_{\nu}^{J}\left(x_{T}, \mu\right) \quad \frac{d \ln \mathcal{J}\left(x_{T}, \mu, Q, \nu\right)}{d \ln \mu}=\gamma_{\mu}^{J}\left(x_{T}, \mu, Q, \nu\right)
$$

Counting logs

Perturbative expansion

$$
\begin{aligned}
& \frac{d \sigma}{\sigma_{0}}=1+\frac{\alpha_{s}}{4 \pi}\left\{\# L^{2}+\# L+\#\right\}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left\{\# L^{4}+\# L^{3}+\# L^{2}+\# L+\#\right\}+\ldots \\
&=\exp \left\{\frac{1}{\alpha_{s}} g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\ldots\right\} \\
& \mathrm{LL} \quad \mathrm{NLL}
\end{aligned}
$$

Accuracy	$\Gamma_{\text {cusp }}$	$\gamma_{H},\left\{\begin{array}{l}\gamma_{J}, \gamma_{S} \\ F\end{array}\right.$	$c_{H},\left\{\begin{array}{l}c_{J}, c_{S} \\ W\end{array}\right.$
NLL	2-loop	1-loop	tree
NLL^{\prime}	2-loop	1-loop	1-loop
NNLL	3-loop	2-loop	1-loop
$\mathrm{NNLL}{ }^{\prime}$	3-loop	2-loop	2-loop
$\mathrm{N}^{3} \mathrm{LL}$	4-loop	3-loop	2-loop

OUTLINE

SOFT FUNCTIONS
DIJET SOFT FUNCTIONS
N-JET EXTENSION
MASSIVE PARTICLE PRODUCTION

JET FUNCTIONS

BEAM FUNCTIONS

OUTLINE

SOFT FUNCTIONS

DIJET SOFT FUNCTIONS
N-JET EXTENSION
MASSIVE PARTICLE PRODUCTION

JET FUNCTIONS

BEAM FUNCTIONS

Dijet soft functions

Definition

$$
S(\tau, \mu)=\frac{1}{N_{c}} \sum_{i \in X} \mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right) \operatorname{Tr}\langle 0| S_{\bar{n}}^{\dagger} S_{n}|X\rangle\langle X| S_{n}^{\dagger} S_{\bar{n}}|0\rangle
$$

- soft Wilson lines $S_{n}, S_{\bar{n}}$ with $n^{2}=\bar{n}^{2}=0$ and $n \cdot \bar{n}=2$
- generic measurement function $\mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right)$
- SCET-1 and SCET-2 observables
- relevant for $e^{+} e^{-} \rightarrow 2$ jets, $e^{-} p \rightarrow 1$ jet, $p p \rightarrow 0$ jets

Structure of divergences is independent of the observable
\Rightarrow isolate singularities with universal phase-space parametrisation
\Rightarrow compute observable-dependent integrations numerically

NLO calculation

NLO calculation

One gluon emission

$$
S^{(1)}(\tau, \mu) \sim \int d^{d} k\left(\frac{\nu}{k_{+}+k_{-}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right) \mathcal{M}_{1}(\tau ; k)|\mathcal{A}(k)|^{2}
$$

- $n \leftrightarrow \bar{n}$ symmetrised version of phase-space regulator
- matrix element $|\mathcal{A}(k)|^{2} \sim \frac{1}{k_{+} k_{-}}$

Phase-space parametrisation

$$
k_{T}=\sqrt{k_{+} k_{-}} \quad y_{k}=\frac{k_{+}}{k_{-}} \quad t_{k}=\frac{1-\cos \theta_{k}}{2}
$$

- k_{T} is only dimensionful variable
- measurement vector $v^{\mu} \rightarrow$ one angle in transverse plane: $\theta_{k} \varangle\left(\vec{k}_{\perp}, \vec{v}_{\perp}\right)$

Measurement function

Generic form

$$
\mathcal{M}_{1}(\tau ; k)=\exp \left(-\tau k_{T} y_{k}^{n / 2} f\left(y_{k}, t_{k}\right)\right)
$$

- assumes Laplace transform with $[\tau]=1$ /mass
- parameter n is fixed by requirement that $f\left(y_{k}, t_{k}\right)$ is finite and non-zero as $y_{k} \rightarrow 0$

Measurement function

Generic form

$$
\mathcal{M}_{1}(\tau ; k)=\exp \left(-\tau k_{T} y_{k}^{n / 2} f\left(y_{k}, t_{k}\right)\right)
$$

Observable	n	$f\left(y_{k}, t_{k}\right)$			
Thrust	1	1			
Angularities	$1-A$	1			
Recoil-free broadening	0	$1 / 2$			
Threshold Drell-Yan	-1	$1+y_{k}$			
W@large p_{T}	-1	$1+y_{k}-2 \sqrt{y_{k}} \cos \theta_{k}$	$	$	$e^{+} e^{-}$transverse thrust
:---:					
1					

NLO master formula

After performing the observable-independent integrations one finds

$$
S^{(1)}(\tau, \mu) \sim \Gamma(-2 \varepsilon-\alpha) \int_{0}^{1} d y_{k} \frac{y_{k}^{-1+n \varepsilon+\alpha / 2}}{\left(1+y_{k}\right)^{\alpha}} \int_{0}^{1} d t_{k}\left(4 t_{k} \bar{t}_{k}\right)^{-1 / 2-\varepsilon} f\left(y_{k}, t_{k}\right)^{2 \varepsilon+\alpha}
$$

- soft $\left(k_{T} \rightarrow 0\right)$ and collinear $\left(y_{k} \rightarrow 0\right)$ singularities are factorised
- additional regulator is needed only for $n=0(\rightarrow$ SCET-2 $)$

Isolate singularities with standard subtraction techniques

$$
\int_{0}^{1} d x x^{-1+n \varepsilon} f(x)=\int_{0}^{1} d x x^{-1+n \varepsilon}[\underbrace{f(x)-f(0)}_{\text {finite }}+\underbrace{f(0)}_{1 / \varepsilon}]
$$

NNLO calculation

- real-virtual contribution follows allong the same lines as the NLO calculation

NNLO calculation

Double real emission

$$
S_{R R}^{(2)}(\tau, \mu) \sim \int d^{d} k\left(\frac{\nu}{k_{+}+k_{-}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right) \int d^{d} I\left(\frac{\nu}{I_{+}+I_{-}}\right)^{\alpha} \delta\left(l^{2}\right) \theta\left(I^{0}\right) \mathcal{M}_{2}(\tau ; k, l)|\mathcal{A}(k, l)|^{2}
$$

- higher dimensional phase-space integrations
- three colour structures: $\underbrace{C_{F} C_{A}, C_{F} T_{F} n_{f}}_{\text {correlated }}, \underbrace{C_{F}^{2}}_{\text {uncorrelated }}$

Non-trivial matrix element

$$
|\mathcal{A}(k, l)|_{C_{F} T_{F} n_{f}}^{2} \sim \frac{2 k \cdot l\left(k_{-}+I_{-}\right)\left(k_{+}+I_{+}\right)-\left(k_{-} I_{+}-k_{+} I_{-}\right)^{2}}{\left(k_{-}+I_{-}\right)^{2}\left(k_{+}+I_{+}\right)^{2}(2 k \cdot l)^{2}}
$$

\Rightarrow complex singularity structure with overlapping divergences

Correlated emissions

Phase-space parametrisation

$$
p_{T}=\sqrt{\left(k_{+}+I_{+}\right)\left(k_{-}+I_{-}\right)} \quad y=\frac{k_{+}+I_{+}}{k_{-}+I_{-}} \quad a=\sqrt{\frac{k_{-} I_{+}}{k_{+} I_{-}}} \quad b=\sqrt{\frac{k_{-} k_{+}}{I_{-} I_{+}}}
$$

- p_{T} is only dimensionful variable
three angles in transverse plane: $\theta_{k} \varangle\left(\vec{k}_{\perp}, \vec{v}_{\perp}\right), \theta_{l} \varangle\left(\vec{l}_{\perp}, \vec{v}_{\perp}\right), \theta_{k l} \varangle\left(\vec{k}_{\perp}, \vec{l}_{\perp}\right)$

Correlated emissions

Phase-space parametrisation

$$
p_{T}=\sqrt{\left(k_{+}+I_{+}\right)\left(k_{-}+I_{-}\right)} \quad y=\frac{k_{+}+I_{+}}{k_{-}+I_{-}} \quad a=\sqrt{\frac{k_{-} I_{+}}{k_{+} I_{-}}} \quad b=\sqrt{\frac{k_{-} k_{+}}{I_{-} I_{+}}}
$$

- p_{T} is only dimensionful variable
three angles in transverse plane: $\theta_{k} \varangle\left(\vec{k}_{\perp}, \vec{v}_{\perp}\right), \theta_{l} \varangle\left(\vec{l}_{\perp}, \vec{v}_{\perp}\right), \theta_{k l} \varangle\left(\vec{k}_{\perp}, \vec{l}_{\perp}\right)$

Measurement function

$$
\mathcal{M}_{2}^{\text {corr }}(\tau ; k, l)=\exp \left(-\tau p_{T} y^{n / 2} F\left(a, b, y, t_{k}, t_{l}, t_{k l}\right)\right)
$$

- p_{T} dependence fixed on dimensional grounds
- $F\left(a, b, y, t_{k}, t_{l}, t_{k l}\right)$ is finite and non-zero for $y \rightarrow 0$
- constraints from infrared-collinear safety
soft limit: $F\left(a, 0, y, t_{k}, t_{l}, t_{k l}\right)=f\left(y, t_{l}\right) \quad$ collinear limit: $F\left(1, b, y, t_{l}, t_{l}, 0\right)=f\left(y, t_{l}\right)$

Uncorrelated emissions

Trivial as long as measurement function respects non-abelian exponentiation

$$
\left.\begin{array}{rl}
\left|\mathcal{A}_{R R}^{(C F)}(k, l)\right|^{2} & \sim \frac{1}{k_{+} k_{-} I_{+} I_{-}} \\
\mathcal{M}_{2}(\tau ; k, l) & =\mathcal{M}_{1}(\tau ; k) \mathcal{M}_{1}(\tau ; I)
\end{array}\right\} \quad \Rightarrow \quad S_{R R}^{\left(C_{F}\right)}(\varepsilon, \alpha)=\frac{1}{2}\left[S_{R}(\varepsilon, \alpha)\right]^{2}
$$

\Rightarrow we are interested in a more general class of observables

Uncorrelated emissions

Trivial as long as measurement function respects non-abelian exponentiation

$$
\left|\mathcal{A}_{R R}^{(C F)}(k, I)\right|^{2} \sim \frac{1}{k_{+} k_{-} I_{+} I_{-}} \quad\left\{\quad \Rightarrow \quad S_{R R}^{\left(C_{F}\right)}(\varepsilon, \alpha)=\frac{1}{2}\left[S_{R}(\varepsilon, \alpha)\right]^{2}\right.
$$

\Rightarrow we are interested in a more general class of observables

Phase-space parametrisation

$$
\begin{array}{ll}
y_{k}=\frac{k_{+}}{k_{-}} & q_{T}=\sqrt{k_{+} k_{-}}\left(\frac{\sqrt{I_{+} I_{-}}}{I_{-}+I_{+}}\right)^{-n}+\sqrt{I_{+} I_{-}}\left(\frac{\sqrt{k_{+} k_{-}}}{k_{-}+k_{+}}\right)^{-n} \\
y_{l}=\frac{I_{+}}{I_{-}} & b=\sqrt{\frac{k_{+} k_{-}}{I_{+} I_{-}}}\left(\frac{\sqrt{k_{+} k_{-}}}{k_{-}+k_{+}}\right)^{n}\left(\frac{\sqrt{I_{+} I_{-}}}{I_{-}+I_{+}}\right)^{-n}
\end{array}
$$

- q_{T} is only dimensionful variable
- again three angles in transverse plane: $\theta_{k}, \theta_{l}, \theta_{k l}$

Uncorrelated emissions

Trivial as long as measurement function respects non-abelian exponentiation

$$
\left|\mathcal{A}_{R R}^{(C F)}(k, l)\right|^{2} \sim \frac{1}{k_{+} k_{-} l_{+} I_{-}} \quad\left\{\quad \Rightarrow \quad s_{R R}^{\left(C_{F}\right)}(\varepsilon, \alpha)=\frac{1}{2}\left[S_{R}(\varepsilon, \alpha)\right]^{2}\right.
$$

\Rightarrow we are interested in a more general class of observables

Measurement function

$$
\mathcal{M}_{2}^{u n c}(\tau ; k, l)=\exp \left(-\tau q_{T} y_{k}^{n / 2} y_{l}^{n / 2} G\left(y_{k}, y_{l}, b, t_{k}, t_{l}, t_{k l}\right)\right)
$$

- q_{T} dependence fixed on dimensional grounds
- $G\left(y_{k}, y_{l}, b, t_{k}, t_{l}, t_{k l}\right)$ is finite and non-zero for $y_{k} \rightarrow 0$ and $y_{l} \rightarrow 0$
- constraints from infrared-collinear safety
soft: $G\left(y_{k}, y_{l}, 0, t_{k}, t_{l}, t_{k l}\right)=\frac{f\left(y_{l}, t_{l}\right)}{\left(1+y_{k}\right)^{n}} \quad$ collinear: $G\left(y_{l}, y_{l}, b, t_{l}, t_{l}, 0\right)=\frac{f\left(y_{l}, t_{l}\right)}{\left(1+y_{l}\right)^{n}}$

Recap

Considered class of soft functions is characterised by
\rightarrow parameter $n \quad \rightarrow$ power counting of modes
$\rightarrow f\left(y_{k}, t_{k}\right) \quad \rightarrow$ one emission
-F(a,b,y, $\left.t_{k}, t_{l}, t_{k l}\right) \rightarrow$ correlated emissions
$-G\left(y_{k}, y_{l}, b, t_{k}, t_{l}, t_{k l}\right) \rightarrow$ uncorrelated emissions (only for NAE-breaking observables)

Constraints from infrared-collinear safety

- soft:

$$
\begin{array}{ll}
F\left(a, 0, y, t_{k}, t_{l}, t_{k l}\right)=f\left(y, t_{l}\right) & G\left(y_{k}, y_{l}, 0, t_{k}, t_{l}, t_{k l}\right)=\frac{f\left(y_{l}, t_{l}\right)}{\left(1+y_{k}\right)^{n}} \\
F\left(1, b, y, t_{l}, t_{l}, 0\right)=f\left(y, t_{l}\right) & G\left(y_{l}, y_{l}, b, t_{l}, t_{l}, 0\right)=\frac{f\left(y_{l}, t_{l}\right)}{\left(1+y_{l}\right)^{n}}
\end{array}
$$

- collinear:

Customised C++ program for numerical evaluation of soft functions

- uses Divonne integrator from Cuba library
- phase-space remappings to improve numerical convergence
- supports multi-precision variables (boost, GMP / MPFR)
- bash scripts for renormalisation in Laplace and cumulant space

Soft Simulation and Evaluation of Real and Virtual Emissions Guido Bell, Rudi Rahn and Jim Talbert

SoftSERVE is a C++ program to evaluate bare soft functions for wide classes of observables in Soft-Collinear Effective Theory.

Selected results

$e^{+} e^{-}$event-shape variables

- Thrust
[Kelley et al 11; Monni et al 11]
- C-parameter
[Hoang et al 14]
- Recoil-free broadening
[Becher, GB 12]
- Angularities
[-]
- Hemisphere masses
[Kelley et al 11; Hornig al 11]
known analytically
known numerically
new result
hadron collider observables
- Threshold Drell-Yan
[Belitsky 98]
- W at large p_{T}
[Becher et al 12]
- p_{T} resummation
[Becher, Neubert 10]
- p_{T} jet veto
[Banfi et al 12; Becher et al 13; Stewart et al 13]
- Rapidity dependent jet vetoes
[Gangal et al 16]
- Soft-drop jet groomer [-]
- Transverse thrust
[Becher at al 15]

Performance

C-parameter	$c_{2}^{C_{A}}$	$c_{2}^{n_{f}}$	runtime *
standard setting	-57.893 ± 0.039	43.817 ± 0.004	25 sec
precision setting	-57.973 ± 0.004	43.818 ± 0.001	20 min
EVENT2	-58.16 ± 0.26	43.74 ± 0.06	[Hoang et al 14]

* on a single 8-core machine

Performance

C-parameter	$C_{2}^{C_{A}}$	$c_{2}^{n_{f}}$	runtime *
standard setting	-57.893 ± 0.039	43.817 ± 0.004	25 sec
precision setting	-57.973 ± 0.004	43.818 ± 0.001	20 min
analytic	-57.976	43.818	[GB et al 18]

* on a single 8-core machine

Performance

C-parameter	$c_{2}^{C_{A}}$	$c_{2}^{n_{f}}$	runtime *
standard setting	-57.893 ± 0.039	43.817 ± 0.004	25 sec
precision setting	-57.973 ± 0.004	43.818 ± 0.001	20 min
analytic	-57.976	43.818	[GB et al 18]

W at large p_{T}	$c_{2}^{C_{A}}$	$c_{2}^{n_{f}}$	runtime* *
standard setting	-2.660 ± 0.075	-25.313 ± 0.009	30 sec
precision setting	-2.651 ± 0.005	-25.307 ± 0.001	9 h
analytic	-2.650	-25.307	[Becher et al 12]

* on a single 8-core machine

Soft-drop jet mass

Jet grooming removes soft radiation from jets

- parameter β controls aggressiveness of groomer
- observable violates non-abelian exponentiation
- confirm and extend existing NNLO results

Soft-drop jet mass

Jet grooming removes soft radiation from jets

- parameter β controls aggressiveness of groomer
- observable violates non-abelian exponentiation
- confirm and extend existing NNLO results

\Rightarrow ingredients allowed for $N^{3} L L$ resummation
[Kardos, Larkoski, Trócsányi 20]

N -jet soft functions

Definition

$$
S(\tau, \mu)=\sum_{i \in X} \mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right)\langle 0|\left(S_{n_{1}} S_{n_{2}} S_{n_{3}} \ldots\right)^{\dagger}|X\rangle\langle X| S_{n_{1}} S_{n_{2}} S_{n_{3}} \ldots|0\rangle
$$

- soft Wilson lines $S_{n_{i}}$ with $n_{i}^{2}=0$, non-back-to-back
- soft function is a matrix in colour space
- generic measurement function $\mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right)$
- current working assumptions: SCET-1 and NAE

Main complications

- angular parametrisations more complicated for non-back-to-back dipoles
- 3-particle real-virtual contribution (requires at least four hard partons)
- renormalisation in colour space

N -jettiness

Definition

$$
\mathcal{T}_{N}=\sum_{m} \min _{i}\left\{n_{i} \cdot k_{m}\right\} \quad i \in\{\underbrace{1,2}_{\text {beams }}, \underbrace{3, \ldots, N+2}_{\text {jets }}\}
$$

- slicing variable for fixed-order perturbative computations
- resolution variable in Geneva Monte-Carlo framework
- jet substructure studies
[Thaler, van Tilburg 10]

Status

- 1-jettiness NNLO soft function known
- 2-jettiness NNLO soft function known for certain kinematic configurations [GB et al 18;
- general case $N \geq 3$ only known to NLO
\Rightarrow devise a method for the NNLO N-jettiness soft function for arbitrary N

1-jettiness

Kinematics

Two-loop matching correction in distribution space

- overall very good agreement
- Campbell et al do not provide correlations
\Rightarrow inflates theory uncertainties
- logarithmic growth at endpoints?

1-jettiness

Kinematics

$$
\begin{aligned}
& n_{12} \equiv n_{1} \cdot n_{2}=2 \\
& n_{13} \equiv n_{1} \cdot n_{3}=1-\cos \theta_{13} \\
& n_{23} \equiv n_{2} \cdot n_{3}=1+\cos \theta_{13}
\end{aligned}
$$

Two-loop matching correction in distribution space

2-jettiness

We sampled the phase space of the hard emitters in terms of $\sim 35,000$ points
\Rightarrow simplified kinematics for illustration

$$
\begin{aligned}
& n_{12} \equiv n_{1} \cdot n_{2}=n_{3} \cdot n_{4}=2 \\
& n_{13} \equiv n_{1} \cdot n_{3}=n_{2} \cdot n_{4}=1-\cos \theta_{13} \\
& n_{14} \equiv n_{1} \cdot n_{4}=n_{2} \cdot n_{3}=1+\cos \theta_{13}
\end{aligned}
$$

Matching corrections in Laplace space

2-jettiness

We sampled the phase space of the hard emitters in terms of $\sim 35,000$ points
\Rightarrow simplified kinematics for illustration

$$
\begin{aligned}
& n_{12} \equiv n_{1} \cdot n_{2}=n_{3} \cdot n_{4}=2 \\
& n_{13} \equiv n_{1} \cdot n_{3}=n_{2} \cdot n_{4}=1-\cos \theta_{13} \\
& n_{14} \equiv n_{1} \cdot n_{4}=n_{2} \cdot n_{3}=1+\cos \theta_{13}
\end{aligned}
$$

Tripole contribution

$$
\begin{aligned}
& \begin{array}{l}
S(\tau, \mu)=2 \pi \sum_{i \neq j \neq k} f_{A B C} T_{i}^{A} T_{j}^{B} T_{k}^{C}\left(\frac { \lambda _ { i j } \Gamma _ { 0 } } { n } \left[\frac{\Gamma_{0}}{3} L^{3}+\left(\gamma_{j k}^{(0)}+\Gamma_{0} \tilde{L}_{j k}\right) L^{2}\right.\right. \\
\\
\left.\left.\quad+\left(\Gamma_{0} \tilde{L}_{j k}^{2}+2 \gamma_{j k}^{(0)} \tilde{L}_{j k}+n c_{j k}^{(1)}\right) L\right]+c_{i j k}^{(2, \text { pheno })}\right)+\ldots
\end{array} \\
& \sum_{i \neq j \neq k} f_{A B C} T_{i}^{A} T_{j}^{B} T_{k}^{C} c_{i j k}^{(2, \text { pheno })}=f_{A B C} T_{1}^{A} T_{2}^{B} T_{3}^{C} \cdot c_{\text {tripole }}^{(2), \text { pheno }} \\
& L=\ln \mu \bar{\tau}, \tilde{L}_{j k}=\frac{n}{2} \ln \frac{n_{j k}}{2}
\end{aligned}
$$

Massive particle production

Definition

$$
S(\tau, \mu)=\sum_{i \in X} \mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right)\langle 0|\left(S_{n_{1}} S_{n_{2}} S_{v_{1}} S_{v_{2}}\right)^{\dagger}|X\rangle\langle X| S_{n_{1}} S_{n_{2}} S_{v_{1}} S_{v_{2}}|0\rangle
$$

- light-like Wilson lines $S_{n_{i}}$ with $n_{i}^{2}=0$ and time-like Wilson lines $S_{v_{i}}$ with $v_{i}^{2}=1$
- generic measurement function $\mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right)$
- soft matrix elements are more complicated but less singular
\Rightarrow numerical approach is ideally suited for this purpose

0 -jettiness soft function for $t \bar{t}$ production

OUTLINE

SOFT FUNCTIONS
DIJET SOFT FUNCTIONS
N-JET EXTENSION
MASSIVE PARTICLE PRODUCTION

JET FUNCTIONS

BEAM FUNCTIONS

Jet functions

Definitions

$$
\begin{aligned}
{\left[\frac{h}{2}\right]_{\beta \alpha} J_{q}(\tau, \mu) } & =\frac{1}{\pi} \sum_{i \in X}(2 \pi)^{d} \delta\left(Q-\sum_{i} k_{i}^{-}\right) \delta^{(d-2)}\left(\sum_{i} k_{i}^{\perp}\right)\langle 0| \chi_{\beta}|X\rangle\langle X| \bar{\chi}_{\alpha}|0\rangle \mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right) \\
-g_{\perp}^{\mu \nu} g_{s}^{2} J_{g}(\tau, \mu) & =\frac{Q}{\pi} \sum_{i \in X}(2 \pi)^{d} \delta\left(Q-\sum_{i} k_{i}^{-}\right) \delta^{(d-2)}\left(\sum_{i} k_{i}^{\perp}\right)\langle 0| \mathcal{A}_{\perp}^{\mu}|X\rangle\langle X| \mathcal{A}_{\perp}^{\nu}|0\rangle \mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right)
\end{aligned}
$$

- collinear field operators $\chi=W^{\dagger} \frac{n \hbar}{4} \psi, \mathcal{A}_{\perp}^{\mu}=W^{\dagger}\left(i D_{\perp}^{\mu} W\right)$
- phase-space constraints fix jet energy and jet axis
- generic measurement function $\mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right)$

Main challenges

- three-particle phase space
- highly non-trivial jet-axis constraint

Technical aspects

Jet functions in a nutshell

- matrix elements are given by splitting functions
NLO: $P_{q^{*} \rightarrow g q}^{(0)}$
NNLO-RV: $P_{q^{*} \rightarrow g q}^{(1)}$
NNLO-RR: $P_{q^{*} \rightarrow g g q}^{(0)}$

- ansatz for measurement function

$$
\mathcal{M}_{1}(\tau ; k)=\exp \left\{-\tau k_{T}\left(\frac{k_{T}}{z_{k} Q}\right)^{n} f\left(z_{k}, t_{k}\right)\right\} \quad z_{k}=\frac{k_{-}}{Q}
$$

- complicated singularity structure

\Rightarrow sector decomposition, selector functions, non-linear transformations
\Rightarrow calculation splits into $\mathcal{O}(100)$ contributions
- overlapping zeroes in measurement function

- two independent pySecDec implementations

Results

SCET-1

- Thrust
[Becher, Neubert 06; Becher, GB 10]
- Angularities
[GB, Hornig, Lee, Talbert 18]
- Transverse thrust
[-]

SCET-2

- winner-take-all-axis broadening $[-]$
known analytically
known numerically
new result

Results

SCET-1

- Thrust
[Becher, Neubert 06; Becher, GB 10]
- Angularities
[GB, Hornig, Lee, Talbert 18]
- Transverse thrust
[-]

SCET-2

- winner-take-all-axis broadening [-]
known analytically
known numerically
new result

Thrust: quark jet function

	$c_{2}^{n_{f}}$	$c_{2}^{C_{F}}$	$c_{2}^{C_{A}}$
this work	-10.785 ± 0.009	4.663 ± 0.120	-2.092 ± 0.135
analytic	-10.787	4.655	-2.165

Results

SCET-1

- Thrust
[Becher, Neubert 06; Becher, GB 10]
- Angularities
[GB, Hornig, Lee, Talbert 18]
- Transverse thrust
[-]

SCET-2

- winner-take-all-axis broadening [-] known analytically known numerically new result

Thrust: gluon jet function

	$c_{2}^{n_{f}^{2}}$	$c_{2}^{C_{F} n_{f}}$	$c_{2}^{C_{A} n_{f}}$	$c_{2}^{C_{A}^{2}}$
this work	2.014 ± 0.001	0.904 ± 0.050	-13.727 ± 0.069	3.195 ± 0.168
analytic	2.014	0.900	-13.725	3.197

Winner-take-all-axis broadening

Measure broadening with respect to a recoil-free jet axis

- SCET-2 observable
- jet axis is determined in a pairwise recombination algorithm
- k_{T}-type distance measure $d_{i j}=2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)$

Winner-take-all-axis broadening

Measure broadening with respect to a recoil-free jet axis

- SCET-2 observable
- jet axis is determined in a pairwise recombination algorithm
- k_{T}-type distance measure $d_{i j}=2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)$

quark jet	$c_{2}^{n_{f}}$	$c_{2}^{C_{F}}$	$c_{2}^{C_{A}}$
this work	62.958 ± 0.003	511.09 ± 0.30	-240.44 ± 0.27

gluon jet	$c_{2}^{n_{f}^{2}}$	$c_{2}^{C_{F} n_{f}}$	$c_{2}^{C_{A} n_{f}}$	$c_{2}^{C_{A}^{2}}$
this work	17.435 ± 0.001	-85.222 ± 0.058	135.97 ± 0.02	293.96 ± 0.07

OUTLINE

SOFT FUNCTIONS
DIJET SOFT FUNCTIONS
N-JET EXTENSION
MASSIVE PARTICLE PRODUCTION
JET FUNCTIONS

BEAM FUNCTIONS

Beam functions

Definitions

$$
\left.\begin{array}{rl}
{\left[\frac{n}{4}\right.}
\end{array}\right]_{\beta \alpha} \mathcal{B}_{q / h}(x, \tau, \mu)=\sum_{i \in X} \delta\left((1-x) P^{-}-\sum_{i} k_{i}^{-}\right)\langle h(P)| \bar{\chi}_{\alpha}|X\rangle\langle X| \chi_{\beta}|h(P)\rangle \mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right), \begin{aligned}
-g_{s}^{2} \mathcal{B}_{g / h}(x, \tau, \mu) & =\frac{x P^{-}}{2 \pi} \sum_{i \in X} \delta\left((1-x) P^{-}-\sum_{i} k_{i}^{-}\right)\langle h(P)| \mathcal{A}_{\perp}^{\mu}|X\rangle\langle X| \mathcal{A}_{\perp, \mu}|h(P)\rangle \mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right)
\end{aligned}
$$

- hadronic matrix elements of collinear field operators
- generic measurement function $\mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right)$

As long as $\tau \ll 1 / \Lambda_{\mathrm{QCD}}$ beam functions can be matched onto pdfs

$$
\mathcal{B}_{i / h}(x, \tau, \mu)=\sum_{k} \int_{x}^{1} \frac{d z}{z} \mathcal{I}_{i \leftarrow k}\left(\frac{x}{z}, \tau, \mu\right) f_{k / h}(z, \mu)
$$

\Rightarrow resolve convolutions by additional Mellin transform
\Rightarrow determine matching kernels $\hat{\mathcal{I}}_{i \leftarrow k}(N, \tau, \mu)$ in moment space

Technical aspects

Beam functions in a nutshell

- matrix elements are given by crossed splitting functions

$$
\text { NLO: } P_{q \rightarrow g q^{*}}^{(0)} \quad \text { NNLO-RV: } P_{q \rightarrow g q^{*}}^{(1)} \quad \text { NNLO-RR: } P_{q \rightarrow g g q^{*}}^{(0)}
$$

- ansatz for measurement function

$\mathcal{M}_{1}(\tau ; k)=\exp \left\{-\tau k_{T}\left(\frac{k_{T}}{(1-x) P^{-}}\right)^{n} f\left(t_{k}\right)\right\}$
- unconstrained two-particle phase space

\Rightarrow similar but simpler singularity structure
\Rightarrow calculation splits into $\mathcal{O}(50)$ contributions
- overlapping zeroes in measurement function

- two independent pySecDec implementations

Results

SCET-1

- N-jettiness
[Gaunt, Stahlhofen, Tackmann 14]
known analytically
known numerically
new result

SCET-2

- p_{T} resummation
[Gehrmann, Lübbert, Yang 14]
- p_{T} veto
[-]
- Transverse thrust
[-]

Two-loop matching for quark beam function

$$
\begin{aligned}
& \hat{l}_{q \leftarrow q}^{(2)}(N)=C_{F}^{2} \hat{\jmath}_{q \leftarrow q}^{\left(2, C_{F}\right)}(N)+C_{F} C_{A} \hat{\jmath}_{q \leftarrow q}^{\left(2, C_{A}\right)}(N)+C_{F} T_{F} n_{f} \hat{l}_{q \leftarrow q}^{\left(2, n_{f}\right)}(N)+C_{F} T_{F} \hat{l}_{q \leftarrow q}^{\left(2, T_{F}\right)}(N) \\
& \hat{l}_{q \leftarrow g}^{(2)}(N)=C_{F} T_{F} \hat{l}_{q \leftarrow g}^{\left(2, C_{F}\right)}(N)+C_{A} T_{F} \hat{l}_{q \leftarrow g}^{\left(2, C_{A}\right)}(N) \\
& \hat{l}_{q \leftarrow \bar{q}}^{(2)}(N)=C_{F}\left(C_{A}-2 C_{F}\right) \hat{l}_{q \leftarrow \bar{q}}^{\left(2, C_{A F}\right)}(N)+C_{F} T_{F} \hat{\imath}_{q \leftarrow q}^{\left(2, T_{F}\right)}(N) \\
& \hat{\imath}_{q \leftarrow q^{\prime}}^{(2)}(N)=\hat{l}_{q \leftarrow \bar{q}^{\prime}}^{(2)}(N)=C_{F} T_{F} \hat{l}_{q \leftarrow q}^{\left(2, T_{F}\right)}(N)
\end{aligned}
$$

\Rightarrow seven independent matching kernels

Validity checks

N -jettiness

p_{T} resummation

Jet veto

Matching kernels depend on jet radius R

- independent calculation in momentum space
[Abreu, Gaunt, Monni, Rottoli, Szafron 22]

Conclusions

Numerical framework for automated computation of SCET ingredients

- public code for dijet soft functions
- extension to higher particle multiplicities and massive partons
- first results for quark and gluon jet functions
- beam-function calculations currently limited to moment space

Outlook

- development of JetSERVE and BeamSERVE
- massive jet functions? fragmenting jet functions? NLP ingredients?
- automated resummations

Backup slides

SCET-1 soft functions

Multiplicative renormalisation in Laplace space

$$
\frac{d S(\tau, \mu)}{d \ln \mu}=-\frac{1}{n}\left[4 \Gamma_{\text {cusp }}\left(\alpha_{S}\right) \ln (\mu \bar{\tau})-2 \gamma^{S}\left(\alpha_{S}\right)\right] S(\tau, \mu)
$$

Two-loop solution with $L=\ln (\mu \bar{\tau})$

$$
\begin{aligned}
S(\tau, \mu)=1+\left(\frac{\alpha_{S}}{4 \pi}\right)\{ & \left.-\frac{2 \Gamma_{0}}{n} L^{2}+\frac{2 \gamma_{0}^{S}}{n} L+c_{1}^{S}\right\}+\left(\frac{\alpha_{S}}{4 \pi}\right)^{2}\left\{\frac{2 \Gamma_{0}^{2}}{n^{2}} L^{4}-4 \Gamma_{0}\left(\frac{\gamma_{0}^{S}}{n^{2}}+\frac{\beta_{0}}{3 n}\right) L^{3}\right. \\
& \left.-2\left(\frac{\Gamma_{1}}{n}-\frac{\left(\gamma_{0}^{S}\right)^{2}}{n^{2}}-\frac{\beta_{0} \gamma_{0}^{S}}{n}+\frac{\Gamma_{0} c_{1}^{S}}{n}\right) L^{2}+2\left(\frac{\gamma_{1}^{S}}{n}+\frac{\gamma_{0}^{S} c_{1}^{S}}{n}+\beta_{0} c_{1}^{S}\right) L+c_{2}^{S}\right\}
\end{aligned}
$$

Results will be presented in the form

$$
\begin{aligned}
& \gamma_{1}^{S}=\gamma_{1}^{C_{A}} C_{F} C_{A}+\gamma_{1}^{n_{f}} C_{F} T_{F} n_{f}+\gamma_{1}^{C_{F}} C_{F}^{2} \\
& c_{2}^{S}=c_{2}^{C_{A}} C_{F} C_{A}+c_{2}^{n_{f}} C_{F} T_{F} n_{f}+c_{2}^{C_{F}} C_{F}^{2}
\end{aligned}
$$

C-parameter

1) Derive measurement functions
$n=1 \quad F_{A}(a, b, y)=\frac{a b}{a(a+b)+(1+a b) y}+\frac{a}{a+b+a(1+a b) y} \quad F_{B}(a, b, y)=F_{A}(1 / a, b, y)$
2) To apply numerical improvement techniques, SoftSERVE needs another parameter

$$
F_{A}(a, b, y) \xrightarrow{y \rightarrow 0} c_{0}+c_{1} y^{m}+\ldots \quad \Rightarrow m=1
$$

3) Set up input files

- Input_Common.cpp
$\Rightarrow \quad n, m$
- Input_Measurement_Correlated.cpp
$\Rightarrow \quad F_{A}(a, b, y), F_{B}(a, b, y)$
- Input_Integrator.cpp
\Rightarrow Divonne settings
- Input_Parameters.h
\Rightarrow user-specified parameters

4) Compile and run ./execsftsrvNAE -o Cparameter

[^0]
C-parameter

5) Renormalise with . /laprenormNAE -o Cparameter -n 1
```
0 Terminal r - \ 人
Datei Bearbeiten Ansicht Suchen Terminal Hilfe
Result for Laplace space renormalised soft function for Cparameter (non-abelian exponentiation assumed)
Anomalous dimension, Ca part: 15.795
Error estimate for Ca part: 0.012
Anomalous dimension, Nf part: 3.910
Error estimate for Nf part: 0.001
Finite part, Ca structure: -57.893
Error estimate for Ca part: 0.039
Finite part, Nf structure: 43.817
Error estimate for Nf part: 0.004
Pole cancellation check values, these must be compatible with zero:
One loop: 0.000 +- -0.000000
CF CA, leading: 0.000 +- 0.000000
CF CA, first subleading: 0.000 +- 0.000163
CF CA, second subleading: -0.000 +- 0.000855
CF TF nf, leading: -0.000 +- -0.000006
CF TF nf, first subleading: 0.000 +- 0.000101
13,0-1 Alles
```


Angularities

$e^{+} e^{-}$event shape that interpolates between thrust $(A=0)$ and broadening ($A=1$)

\Rightarrow last missing ingredient for NNLL resummation

NNLO subtractions

Double-soft integral for nested soft-collinear subtractions

[^0]: eps^0 coefficient: $71.5982+/-0.00396634$, probability of incorrect error estimate: $9.40345^{*} 10^{\wedge}-06$

