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Dark Matter Evidence
• Rotation Curves of Galaxies 
• Gravitational Lensing 
• Large Scale Structure 
• CMB anisotropies, …

All confirmed evidence comes  
from gravitational interaction 
!
CDM:  negligible velocity, WIMP 
WDM: keV sterile neutrino 
HDM: active neutrino

GR Lensing at Work 

SDSS J1004+4112  
HST AFT/WFC!

10"!

Abel 2218c Galaxy cluster 
gravitational lens"

M. Lindner MPIK ITEP Winter School 2014 11 

Allows to determine the 
total mass of lenses from 
observed lensing effects  
" missing mass  
" dark 

More dynamical Evidence: Large Scale Structure 

ITEP Winter School 2014 

Simulations of structure 
of the Universe. 
 

Input: 
- initial fluctuations 
- laws of gravity 
 
calculate the evolution of 
- structures 
- their power spectrum 
 
Compare to measures power spectrum:  
- only visible matter " mismatch  
- inclusion of dark matter " OK  

Millenium simulation"

M. Lindner MPIK 9 
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Merger History of Dark Halo

• standard picture 
• DM halo grow 

hierarchically 
• first small scale 

structures form  
• then merge into 

larger halo

1.2 Basic Elements of Galaxy Formation 11

t1

t2

t3

t4

Fig. 1.3. A schematic merger tree, illustrating the merger history of a dark matter halo. It shows, at three
different epochs, the progenitor halos that at time t4 have merged to form a single halo. The size of each
circle represents the mass of the halo. Merger histories of dark matter halos play an important role in
hierarchical theories of galaxy formation.

have larger amplitudes on smaller scales. Consequently, dark matter halos grow hierarchically, in
the sense that larger halos are formed by the coalescence (merging) of smaller progenitors. Such
a formation process is usually called a hierarchical or ‘bottom-up’ scenario.

The formation history of a dark matter halo can be described by a ‘merger tree’ that traces
all its progenitors, as illustrated in Fig. 1.3. Such merger trees play an important role in modern
galaxy formation theory. Note, however, that illustrations such as Fig. 1.3 can be misleading. In
CDM models part of the growth of a massive halo is due to merging with a large number of much
smaller halos, and to a good approximation, such mergers can be thought of as smooth accretion.
When two similar mass dark matter halos merge, violent relaxation rapidly transforms the orbital
energy of the progenitors into the internal binding energy of the quasi-equilibrium remnant. Any
hot gas associated with the progenitors is shock-heated during the merger and settles back into
hydrostatic equilibrium in the new halo. If the progenitor halos contained central galaxies, the
galaxies also merge as part of the violent relaxation process, producing a new central galaxy in
the final system. Such a merger may be accompanied by strong star formation or AGN activity if
the merging galaxies contained significant amounts of cold gas. If two merging halos have very
different mass, the dynamical processes are less violent. The smaller system orbits within the
main halo for an extended period of time during which two processes compete to determine its
eventual fate. Dynamical friction transfers energy from its orbit to the main halo, causing it to
spiral inwards, while tidal effects remove mass from its outer regions and may eventually dissolve
it completely (see Chapter 12). Dynamical friction is more effective for more massive satellites,
but if the mass ratio of the initial halos is large enough, the smaller object (and any galaxy
associated with it) can maintain its identity for a long time. This is the process for the build-up of
clusters of galaxies: a cluster may be considered as a massive dark matter halo hosting a relatively
massive galaxy near its center and many satellites that have not yet dissolved or merged with the
central galaxy.
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Matter Distribution

Hlozek et al. 2012

Agrees with Double Dark Theory!

Sunday, September 9, 12

ΛCDM: successful on large scales
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CDM Controversies on small scales?

• Cusp-vs-Core problem 
• Missing satellites problem 
• To-big-to-fail problem

Weinberg, Bullock, Governato, de Naray, Peter, 1306.0913

Be cautious!  
No consensus, simulations are very 
complicated when including baryon effects. 
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Figure 1: DM profiles and the corresponding parameters to be plugged in the functional forms
of eq. (1). The dashed lines represent the smoothed functions adopted for some of the computations
in Sec. 4.1.3. Notice that we here provide 2 (3) decimal significant digits for the value of r

s

(⇢
s

):
this precision is su�cient for most computations, but more would be needed for specific cases, such
as to precisely reproduce the J factors (discussed in Sec.5) for small angular regions around the
Galactic Center.

Next, we need to determine the parameters r
s

(a typical scale radius) and ⇢
s

(a typical
scale density) that enter in each of these forms. Instead of taking them from the individual
simulations, we fix them by imposing that the resulting profiles satisfy the findings of
astrophysical observations of the Milky Way. Namely, we require:

- The density of Dark Matter at the location of the Sun r� = 8.33 kpc (as determined
in [48]; see also [49] 3) to be ⇢� = 0.3 GeV/cm3. This is the canonical value routinely
adopted in the literature (see e.g. [1, 2, 51]), with a typical associated error bar of
±0.1 GeV/cm3 and a possible spread up to 0.2 ! 0.8 GeV/cm3 (sometimes refereed
to as ‘a factor of 2’). Recent computations have found a higher central value and
possibly a smaller associated error, still subject to debate [52, 53, 54, 55].

- The total Dark Matter mass contained in 60 kpc (i.e. a bit larger than the distance to
the Large Magellanic Cloud, 50 kpc) to be M60 ⌘ 4.7⇥ 1011M�. This number is based
on the recent kinematical surveys of stars in SDSS [56]. We adopt the upper edge of
their 95% C.L. interval to conservatively take into account that previous studies had
found somewhat larger values (see e.g. [57, 58]).

The parameters that we adopt and the profiles are thus given explicitly in fig. 1. Notice that
they do not di↵er much (at most 20%) from the parameter often conventionally adopted in
the literature (see e.g. [2]), so that our results presented below can be quite safely adopted
for those cases.

of spherical symmetry, in absence of better determinations, seems to be still well justified. Moreover, it is
the current standard assumption in the literature and we therefore prefer to stick to it in order to allow
comparisons. In the future, the proper motion measurements of a huge number of galactic stars by the
planned GAIA space mission will most probably change the situation and give good constraints on the
shape of our Galaxy’s DM halo, e.g. [46], making it worth to reconsider the assumption. For what concerns
the impact of non-spherical halos on DM signals, charged particles signals are not expected to be a↵ected,
as they are sensistive to the local galactic environment. For an early analysis of DM gamma rays al large
latitudes see [47].

3The commonly adopted value used to be 8.5 kpc on the basis of [50].

6

reader with ready-to-use final products, as opposed to the generating code. We make an
e↵ort to extend our results to large, multi-TeV DM masses (recently of interest because
of possible multi-TeV charged cosmic ray anomalies) and small, few-GeV DM masses (re-
cently discussed because of hints from DM direct detection experiments), at the edge of the
typical WIMP window. Above all, our aim is to provide a self-consistent, independently
computed, comprehensive set of results for DM indirect detection. Whenever possible, we
have compared with existing codes, finding good agreement or improvements.

2 Dark Matter distribution in the Galaxy

For the galactic distribution of Dark Matter in the Milky Way we consider several possi-
bilities. The Navarro, Frenk and White (NFW) [35] profile (peaked as r�1 at the Galactic
Center (GC)) is a traditional benchmark choice motivated by N-body simulations. The
Einasto [36, 37] profile (not converging to a power law at the GC and somewhat more
chubby than NFW at kpc scales) is emerging as a better fit to more recent numerical sim-
ulations; the shape parameter ↵ varies from simulation to simulation, but 0.17 seem to
emerge as a central, fiducial value, that we adopt. Cored profiles, such as the truncated
Isothermal profile [38, 39] or the Burkert profile [40], might be instead more motivated by
the observations of galactic rotation curves, but seem to run into conflict with the results of
numerical simulations. On the other hand, profiles steeper that NFW had been previously
found by Moore and collaborators [41].

As long as a convergent determination of the actual DM profile is not reached, it is
useful to have at disposal the whole range of these possible choices when computing Dark
Matter signals in the Milky Way. The functional forms of these profiles read:
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s
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(1)

Numerical DM simulations that try to include the e↵ects of the existence of baryons have
consistently found modified profiles that are steeper in the center with respect to the DM-
only simulations [42]. Most recently, [43] has found such a trend re-simulating the haloes
of [36, 37]: steeper Einasto profiles (smaller ↵) are obtained when baryons are added.
To account for this possibility we include a modified Einasto profile (that we denote as
EinastoB, EiB in short in the following) with an ↵ parameter of 0.11. All profiles assume
spherical symmetry 2 and r is the coordinate centered in the Galactic Center.

2Numerical simulations show that in general halos can deviate from this simplest form, and the isodensity
surfaces are often better approximated as triaxial ellipsoids instead (e.g. [44]). For the case of the Milky
Way, however, it is fair to say that at the moment we do not have good observational determinations of its
shape, despite the e↵orts already made studying the stellar tidal streams, see [45]. Thus the assumption

5

Cusp profiles, such as NFW, are predicted by N-body simulation of CDM

DM density profiles

PPPC4DM

Cusp vs. Core
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Cusp vs. Core

Fig. 1. The cusp-core problem. (Left) An optical image of the galaxy F568-3 (small inset, from the Sloan Digital Sky Survey) is superposed on the the dark matter
distribution from the “Via Lactea” cosmological simulation of a Milky Way-mass cold dark matter halo (Diemand et al. 2007). In the simulation image, intensity encodes the
square of the dark matter density, which is proportional to annihilation rate and highlights low mass substructure. (Right) The measured rotation curve of F568-3 (points)
compared to model fits assuming a cored dark matter halo (blue solid curve) or a cuspy dark matter halo with an NFW profile (red dashed curve, concentration c = 9.2,
V200 = 110 km s�1). The dotted green curve shows the contribution of baryons (stars+gas) to the rotation curve, which is included in both model fits. An NFW halo
profile overpredicts the rotation speed in the inner few kpc. Note that the rotation curve is measured over roughly the scale of the 40 kpc inset in the left panel.

typical for galaxy mass halos. When normalized to match the
observed rotation at large radii, the NFW halo overpredicts
the rotation speed in the inner few kpc, by a factor of two or
more.

Early theoretical discussions of the cusp-core problem de-
voted considerable attention to the predicted central slope of
the density profiles and to the e↵ects of finite numerical reso-
lution and cosmological parameter choices on the simulation
predictions (see Ludlow et al. 2013 for a recent, state-of-the-
art discussion). However, the details of the profile shape are
not essential to the conflict; the basic problem is that CDM
predicts too much dark matter in the central few kpc of typical
galaxies, and the tension is evident at scales where vc(r) has
risen to ⇠ 1/2 of its asymptotic value (see, e.g., Alam, Bul-
lock, & Weinberg 2002; Kuzio de Naray & Spekkens 2011).
On the observational side, the most severe discrepancies be-
tween predicted and observed rotation curves arise for fairly
small galaxies, and early discussions focused on whether beam
smearing or non-circular motions could artificially suppress
the measured vc(r) at small radii. However, despite uncer-
tainties in individual cases, improvements in the observations,
sample sizes, and modeling have led to a clear overall picture:
a majority of galaxy rotation curves are better fit with cored
dark matter profiles than with NFW-like dark matter profiles,
and some well observed galaxies cannot be fit with NFW-like
profiles, even when one allows halo concentrations at the low
end of the theoretically predicted distribution and accounts for
uncertainties in modeling the baryon component (e.g., Kuzio
de Naray et al. 2008). Resolving the cusp-core problem there-
fore requires modifying the halo profiles of typical spiral galax-
ies away from the profiles that N-body simulations predict for
collisionless CDM.

Figure 2 illustrates the “missing satellite” problem. The
left panel shows the projected dark matter density distribu-
tion of a 1012M

�

CDM halo formed in a cosmological N-body
simulation. Because CDM preserves primordial fluctuations
down to very small scales, halos today are filled with enormous
numbers of subhalos that collapse at early times and preserve
their identities after falling into larger systems. Prior to 2000,
there were only nine dwarf satellite galaxies known within the

⇠ 250 kpc virial radius of the Milky Way halo (illustrated
in the right panel), with the smallest having stellar velocity
dispersions ⇠ 10 km s�1. Klypin et al. (1999) and Moore et
al. (1999b) predicted a factor ⇠ 5 � 20 more subhalos above
a corresponding velocity threshold in their simulated Milky
Way halos. Establishing the “correspondence” between satel-
lite stellar dynamics and subhalo properties is a key technical
point (Stoehr et al. 2002), which we will return to below, but
a prima facie comparison suggests that the predicted satellite
population far exceeds the observed one.

Fortunately (or perhaps unfortunately), the missing satel-
lite problem seems like it could be solved fairly easily by
baryonic physics. In particular, the velocity threshold at
which subhalo and dwarf satellite counts diverge is close to
the ⇠ 30 km s�1 value at which heating of intergalactic gas
by the ultraviolet photoionizing background should suppress
gas accretion onto halos, which could plausibly cause these
halos to remain dark (Bullock, Kravtsov, & Weinberg 2000;
Benson et al. 2002; Somerville 2002). Alternatively, super-
novae and stellar winds from the first generation of stars could
drive remaining gas out of the shallow potential wells of these
low mass halos. Complicating the situation, searches using
the Sloan Digital Sky Survey have discovered another ⇠ 15
“ultra-faint” satellites with luminosities of only 103 � 105L

�

(e.g., Willman et al. 2005; Belokurov et al. 2007). The high-
latitude SDSS imaging covered only ⇠ 20% of the sky, and
many of the newly discovered dwarfs are so faint that they
could only be seen to 50-100 kpc (Koposov et al. 2008; Walsh
et al. 2009), so extrapolating to the full volume within the
Milky Way virial radius suggests a population of several hun-
dred faint dwarf satellites (Tollerud et al. 2008). Estimates
from stellar dynamics imply that the mass of dark matter in
the central 0.3 kpc of the host subhalos is M0.3 ⇡ 107M

�

across an enormous range of luminosities, L ⇠ 103 � 107L
�

(encompassing the “classical” dwarf spheroidals as well as the
SDSS dwarfs), which suggests that the mapping between halo
mass and luminosity becomes highly stochastic near this mass
threshold (Strigari et al. 2008). The luminosity function of
the faint and ultra-faint dwarfs can be explained by semi-
analytic models invoking photoionization and stellar feedback
(e.g., Koposov et al. 2009; Macciò et al. 2009), though the e�-

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

galaxy F568-3
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“missing satellites” problem

• Projected dark matter 
distribution of a 
simulated CDM halo. 

• The numerous small 
subhalos far exceed the 
number of known Milky 
Way satellites. 

• Circles mark the nine 
most massive subhalos.

Fig. 2. The missing satellite and “too big to fail” problems. (Left) Projected dark matter distribution (600 kpc on a side) of a simulated, 1012M
�

CDM halo
(Garrison-Kimmel, Boylan-Kolchin, & Bullock, in preparation). As in Figure 1, the numerous small subhalos far exceed the number of known Milky Way satellites. Circles mark
the nine most massive subhalos. (Right) Spatial distribution of the “classical” satellites of the Milky Way. The central densities of the subhalos in the left panel are too high
to host the dwarf satellites in the right panel, predicting stellar velocity dispersions higher than observed. The diameter of the outer sphere in the right panel is 300 kpc; relative
to the simulation prediction (and to the Andromeda galaxy) the Milky Way’s satellite system is unusually centrally concentrated (Yniguez et al. 2013).

ciency of converting baryons to stars remains surprisingly low
(⇠ 0.1%� 1%) well above the photoionization threshold, and
it is unclear which if any of the ultra-faint dwarfs are “fossils”
from before the epoch of reionization (Bovill & Ricotti 2009).
Despite the gaps in understanding, it seems reasonable for now
to regard the relation between low mass subhalos and ultra-
faint dwarfs as a puzzle of galaxy formation physics rather
than a contradiction of CDM.

Instead, attention has focused recently on the most lumi-
nous satellites. Circles in Figure 2 mark the nine most mas-
sive subhalos in the simulation, which one would expect to
host galaxies like the Milky Way’s “classical” dwarf satellites.
However, the mass in the central regions of these subhalos
exceeds the mass inferred from stellar dynamics of observed
dwarfs, by a factor ⇠ 5 (Boylan-Kolchin et al. 2011, 2012;
Springel et al. 2008; Parry et al. 2012). While it is pos-
sible in principle that these massive subhalos are dark and
that the observed dwarfs reside in less massive hosts, this
outcome seems physically unlikely; in the spirit of the times,
Boylan-Kolchin et al. (2011) titled this conflict “too big to
fail.” The degree of discrepancy varies with the particular re-
alization of halo substructure and with the mass of the main
halo, but even for a halo mass at the low end of estimates
for the Milky Way the discrepancy appears too large to be a
statistical fluke, and a similar conflict is found in the satellite
system of the Andromeda galaxy (Tollerud et al. 2012). While
“missing satellites” in low mass subhalos may be explained by
baryonic e↵ects, the “too big to fail” problem arises in more
massive systems whose gravitational potential is dominated
by dark matter. In its present form, therefore, the satellite
puzzle looks much like the cusp-core problem: numerical sim-
ulations of CDM structure formation predict too much mass
in the central regions of halos and subhalos. Indeed, Walker
& Peñarrubia (2011), Amorisco et al. (2013), and others have
reported evidence that the Milky Way satellites Fornax and
Sculptor have cored density profiles.

Solutions in Baryonic Physics?
When the cusp-core problem was first identified, the conven-
tional lore was that including baryonic physics would only
exacerbate the problem by adiabatically contracting the dark
matter density distribution (Blumenthal et al. 1986; Flores
& Primack 1994). Navarro, Eke, & Frenk (1996) proposed
a scenario, which seemed extreme at the time, for producing
a cored dark matter distribution: dissipative baryons draw
in the dark matter orbits adiabatically by slowly deepening
the gravitational potential, then release them suddenly when
the supernova feedback of a vigorous starburst blows out a
substantial fraction of the baryonic material, leaving the dark
matter halo less concentrated than the one that would have
formed in the absence of baryons. Since then, hydrodynamic
simulations have greatly improved in numerical resolution and
in the sophistication with which they model star formation
and supernova feedback. With the combination of a high gas
density threshold for star formation and e�cient feedback,
simulations successfully reproduce the observed stellar and
cold gas fractions of field galaxies. The ejection of low angular
momentum gas by feedback plays a critical role in suppressing
the formation of stellar bulges in dwarf galaxies (Governato et
al. 2010), another long-standing problem in early simulations
of galaxy formation. The episodic gas outflows also produce
rapid fluctuations of the gravitational potential, in contrast to
the steady growth assumed in adiabatic contraction models.

Figure 3, based on Governato et al. (2012), illustrates the
impact of this episodic feedback on the dark matter density
profile. In the left panel, the upper dot-dashed curve shows
the final halo profile of an N-body simulation run with grav-
ity and dark matter only. Other curves show the evolution of
the dark matter density profile in a hydrodynamic simulation
with star formation and feedback, from the same initial con-
ditions. Over time, the central dark matter density drops,
and the cuspy profile is transformed to one with a nearly
constant density core (lower solid curve). Pontzen & Gov-
ernato (2012) present an analytic model that accurately de-
scribes this transformation (and its dependence on simulation
assumptions); essentially, the rapid fluctuations in the central
potential pump energy into the dark matter particle orbits, so

Footline Author PNAS Issue Date Volume Issue Number 3
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 “too-big-to-fail” problem

The central densities of the subhalos in the left panel are too high to host the dwarf satellites in   
the right panel, predicting stellar velocity dispersions higher than observed.	


Fig. 2. The missing satellite and “too big to fail” problems. (Left) Projected dark matter distribution (600 kpc on a side) of a simulated, 1012M
�

CDM halo
(Garrison-Kimmel, Boylan-Kolchin, & Bullock, in preparation). As in Figure 1, the numerous small subhalos far exceed the number of known Milky Way satellites. Circles mark
the nine most massive subhalos. (Right) Spatial distribution of the “classical” satellites of the Milky Way. The central densities of the subhalos in the left panel are too high
to host the dwarf satellites in the right panel, predicting stellar velocity dispersions higher than observed. The diameter of the outer sphere in the right panel is 300 kpc; relative
to the simulation prediction (and to the Andromeda galaxy) the Milky Way’s satellite system is unusually centrally concentrated (Yniguez et al. 2013).

ciency of converting baryons to stars remains surprisingly low
(⇠ 0.1%� 1%) well above the photoionization threshold, and
it is unclear which if any of the ultra-faint dwarfs are “fossils”
from before the epoch of reionization (Bovill & Ricotti 2009).
Despite the gaps in understanding, it seems reasonable for now
to regard the relation between low mass subhalos and ultra-
faint dwarfs as a puzzle of galaxy formation physics rather
than a contradiction of CDM.

Instead, attention has focused recently on the most lumi-
nous satellites. Circles in Figure 2 mark the nine most mas-
sive subhalos in the simulation, which one would expect to
host galaxies like the Milky Way’s “classical” dwarf satellites.
However, the mass in the central regions of these subhalos
exceeds the mass inferred from stellar dynamics of observed
dwarfs, by a factor ⇠ 5 (Boylan-Kolchin et al. 2011, 2012;
Springel et al. 2008; Parry et al. 2012). While it is pos-
sible in principle that these massive subhalos are dark and
that the observed dwarfs reside in less massive hosts, this
outcome seems physically unlikely; in the spirit of the times,
Boylan-Kolchin et al. (2011) titled this conflict “too big to
fail.” The degree of discrepancy varies with the particular re-
alization of halo substructure and with the mass of the main
halo, but even for a halo mass at the low end of estimates
for the Milky Way the discrepancy appears too large to be a
statistical fluke, and a similar conflict is found in the satellite
system of the Andromeda galaxy (Tollerud et al. 2012). While
“missing satellites” in low mass subhalos may be explained by
baryonic e↵ects, the “too big to fail” problem arises in more
massive systems whose gravitational potential is dominated
by dark matter. In its present form, therefore, the satellite
puzzle looks much like the cusp-core problem: numerical sim-
ulations of CDM structure formation predict too much mass
in the central regions of halos and subhalos. Indeed, Walker
& Peñarrubia (2011), Amorisco et al. (2013), and others have
reported evidence that the Milky Way satellites Fornax and
Sculptor have cored density profiles.

Solutions in Baryonic Physics?
When the cusp-core problem was first identified, the conven-
tional lore was that including baryonic physics would only
exacerbate the problem by adiabatically contracting the dark
matter density distribution (Blumenthal et al. 1986; Flores
& Primack 1994). Navarro, Eke, & Frenk (1996) proposed
a scenario, which seemed extreme at the time, for producing
a cored dark matter distribution: dissipative baryons draw
in the dark matter orbits adiabatically by slowly deepening
the gravitational potential, then release them suddenly when
the supernova feedback of a vigorous starburst blows out a
substantial fraction of the baryonic material, leaving the dark
matter halo less concentrated than the one that would have
formed in the absence of baryons. Since then, hydrodynamic
simulations have greatly improved in numerical resolution and
in the sophistication with which they model star formation
and supernova feedback. With the combination of a high gas
density threshold for star formation and e�cient feedback,
simulations successfully reproduce the observed stellar and
cold gas fractions of field galaxies. The ejection of low angular
momentum gas by feedback plays a critical role in suppressing
the formation of stellar bulges in dwarf galaxies (Governato et
al. 2010), another long-standing problem in early simulations
of galaxy formation. The episodic gas outflows also produce
rapid fluctuations of the gravitational potential, in contrast to
the steady growth assumed in adiabatic contraction models.

Figure 3, based on Governato et al. (2012), illustrates the
impact of this episodic feedback on the dark matter density
profile. In the left panel, the upper dot-dashed curve shows
the final halo profile of an N-body simulation run with grav-
ity and dark matter only. Other curves show the evolution of
the dark matter density profile in a hydrodynamic simulation
with star formation and feedback, from the same initial con-
ditions. Over time, the central dark matter density drops,
and the cuspy profile is transformed to one with a nearly
constant density core (lower solid curve). Pontzen & Gov-
ernato (2012) present an analytic model that accurately de-
scribes this transformation (and its dependence on simulation
assumptions); essentially, the rapid fluctuations in the central
potential pump energy into the dark matter particle orbits, so

Footline Author PNAS Issue Date Volume Issue Number 3
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 “too-big-to-fail” problem

• Right Panel: Observed circular velocity of the nine bright dSphs, along with rotation curves 
corresponding to NFW subhalo.

4 M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat

spherical Jeans equation, Thomas et al. (2011) have shown
that this mass estimator accurately reflects the mass as de-
rived from axisymmetric orbit superposition models as well.
This result suggests that Eqns. (1) and (2) are also applica-
ble in the absence of spherical symmetry, a conclusion that
is also supported by an analysis of Via Lactea II subhalos
(Rashkov et al. 2012).

We focus on the bright MW dSphs – those with LV >
105 L� – for several reasons. Primary among them is that
these systems have the highest quality kinematic data and
the largest samples of spectroscopically confirmed member
stars to resolve the dynamics at r

1/2. The census of these
bright dwarfs is also likely complete to the virial radius of
the Milky Way (⇠ 300 kpc), with the possible exception of
yet-undiscovered systems in the plane of the Galactic disk;
the same can not be said for fainter systems (Koposov et al.
2008; Tollerud et al. 2008). Finally, these systems all have
half-light radii that can be accurately resolved with the high-
est resolution N -body simulations presently available.

The Milky Way contains 10 known dwarf spheroidals
satisfying our luminosity cut of LV > 105 L�: the 9 clas-
sical (pre-SDSS) dSphs plus Canes Venatici I, which has a
V -band luminosity comparable to Draco (though it is sig-
nificantly more spatially extended). As in BBK, we remove
the Sagittarius dwarf from our sample, as it is in the pro-
cess of interacting (strongly) with the Galactic disk and is
likely not an equilibrium system in the same sense as the
other dSphs. Our final sample therefore contains 9 dwarf
spheroidals: Fornax, Leo I, Sculptor, Leo II, Sextans, Ca-
rina, Ursa Minor, Canes Venatici I, and Draco. All of these
galaxies are known to be dark matter dominated at r

1/2

(Mateo 1998): Wolf et al. (2010) find that their dynamical
mass-to-light ratios at r

1/2 range from ⇠ 10� 300.
The Large and Small Magellanic Clouds are dwarf ir-

regular galaxies that are more than an order of magnitude
brighter than the dwarf spheroidals. The internal dynamics
of these galaxies indicate that they are also much more mas-
sive than the dwarf spheroidals: V

circ

(SMC) = 50�60 km s�1

(Stanimirović et al. 2004; Harris & Zaritsky 2006) and
V
circ

(LMC) = 87 ± 5 km s�1 (Olsen et al. 2011). Abun-
dance matching indicates that galaxies with luminosities
equal to those of the Magellanic Clouds should have V

infall

⇡
80 � 100 km s�1 (BBK); this is strongly supported by the
analysis of Tollerud et al. (2011). A conservative estimate
of subhalos that could host Magellanic Cloud-like galaxies
is therefore V

infall

> 60 km s�1 and V
max

> 40 km s�1. As in
BBK, subhalos obeying these two criteria will be considered
Magellanic Cloud analogs for the rest of this work.

3 COMPARING ⇤CDM SUBHALOS TO
MILKY WAY SATELLITES

3.1 A preliminary comparison

Density and circular velocity profiles of isolated dark mat-
ter halos are well-described (on average) by Navarro et al.
(1997, hereafter, NFW) profiles, which are specified by two
parameters – i.e., virial mass and concentration, or V

max

and r
max

. Average dark matter subhalos are also well-fitted
by NFW profiles inside of their tidal radii, though recent
work has shown that the 3-parameter Einasto (1965) profile

Figure 1. Observed V
circ

values of the nine bright dSphs
(symbols, with sizes proportional to log LV ), along with ro-
tation curves corresponding to NFW subhalos with V

max

=
(12, 18, 24, 40) km s�1. The shading indicates the 1� scatter in
r
max

at fixed V
max

taken from the Aquarius simulations. All of
the bright dSphs are consistent with subhalos having V

max


24 km s�1, and most require V

max

. 18 km s�1. Only Draco, the
least luminous dSph in our sample, is consistent (within 2�) with
a massive CDM subhalo of ⇡ 40 km s�1 at z = 0.

provides a somewhat better match to the profiles of both
simulated halos (Navarro et al. 2004; Merritt et al. 2006;
Gao et al. 2008; Ludlow et al. 2011) and subhalos (Springel
et al. 2008) even when fixing the Einasto shape parameter
(thereby comparing models with two free parameters each).
To connect this work to the analysis of BBK, Figure 1 com-
pares the measured values of V

circ

(r
1/2) for the nine bright

MW dSphs to a set of dark matter subhalo rotation curves
based on NFW fits to the Aquarius subhalos; the shaded
bands show the 1� scatter from the simulations in r

max

at
fixed V

max

. More detailed modeling of subhalos’ density pro-
files will be presented in subsequent sections.

It is immediately apparent that all of the bright dSphs
are consistent with NFW subhalos of V

max

= 12�24 km s�1,
and only one dwarf (Draco) is consistent with V

max

>
24 km s�1. Note that the size of the data points is pro-
portional to galaxy luminosity, and no obvious trend exists
between L and V

circ

(r
1/2) or V

max

(see also Strigari et al.
2008). Two of the three least luminous dwarfs, Draco and
Ursa Minor, are consistent with the most massive hosts,
while the three most luminous dwarfs (Fornax, Leo I, and
Sculptor) are consistent with hosts of intermediate mass
(V

max

⇡ 18 � 20 km s�1). Each of the Aquarius simulations
contains between 10 and 24 subhalos with V

max

> 25 km s�1,
almost all of which are insu�ciently massive to qualify as
Magellanic Cloud analogs, indicating that models populat-
ing the most massive redshift zero subhalos with the bright-
est MW dwarfs will fail.

c� 2012 RAS, MNRAS 000, 1–17

Fig. 2. The missing satellite and “too big to fail” problems. (Left) Projected dark matter distribution (600 kpc on a side) of a simulated, 1012M
�

CDM halo
(Garrison-Kimmel, Boylan-Kolchin, & Bullock, in preparation). As in Figure 1, the numerous small subhalos far exceed the number of known Milky Way satellites. Circles mark
the nine most massive subhalos. (Right) Spatial distribution of the “classical” satellites of the Milky Way. The central densities of the subhalos in the left panel are too high
to host the dwarf satellites in the right panel, predicting stellar velocity dispersions higher than observed. The diameter of the outer sphere in the right panel is 300 kpc; relative
to the simulation prediction (and to the Andromeda galaxy) the Milky Way’s satellite system is unusually centrally concentrated (Yniguez et al. 2013).

ciency of converting baryons to stars remains surprisingly low
(⇠ 0.1%� 1%) well above the photoionization threshold, and
it is unclear which if any of the ultra-faint dwarfs are “fossils”
from before the epoch of reionization (Bovill & Ricotti 2009).
Despite the gaps in understanding, it seems reasonable for now
to regard the relation between low mass subhalos and ultra-
faint dwarfs as a puzzle of galaxy formation physics rather
than a contradiction of CDM.

Instead, attention has focused recently on the most lumi-
nous satellites. Circles in Figure 2 mark the nine most mas-
sive subhalos in the simulation, which one would expect to
host galaxies like the Milky Way’s “classical” dwarf satellites.
However, the mass in the central regions of these subhalos
exceeds the mass inferred from stellar dynamics of observed
dwarfs, by a factor ⇠ 5 (Boylan-Kolchin et al. 2011, 2012;
Springel et al. 2008; Parry et al. 2012). While it is pos-
sible in principle that these massive subhalos are dark and
that the observed dwarfs reside in less massive hosts, this
outcome seems physically unlikely; in the spirit of the times,
Boylan-Kolchin et al. (2011) titled this conflict “too big to
fail.” The degree of discrepancy varies with the particular re-
alization of halo substructure and with the mass of the main
halo, but even for a halo mass at the low end of estimates
for the Milky Way the discrepancy appears too large to be a
statistical fluke, and a similar conflict is found in the satellite
system of the Andromeda galaxy (Tollerud et al. 2012). While
“missing satellites” in low mass subhalos may be explained by
baryonic e↵ects, the “too big to fail” problem arises in more
massive systems whose gravitational potential is dominated
by dark matter. In its present form, therefore, the satellite
puzzle looks much like the cusp-core problem: numerical sim-
ulations of CDM structure formation predict too much mass
in the central regions of halos and subhalos. Indeed, Walker
& Peñarrubia (2011), Amorisco et al. (2013), and others have
reported evidence that the Milky Way satellites Fornax and
Sculptor have cored density profiles.

Solutions in Baryonic Physics?
When the cusp-core problem was first identified, the conven-
tional lore was that including baryonic physics would only
exacerbate the problem by adiabatically contracting the dark
matter density distribution (Blumenthal et al. 1986; Flores
& Primack 1994). Navarro, Eke, & Frenk (1996) proposed
a scenario, which seemed extreme at the time, for producing
a cored dark matter distribution: dissipative baryons draw
in the dark matter orbits adiabatically by slowly deepening
the gravitational potential, then release them suddenly when
the supernova feedback of a vigorous starburst blows out a
substantial fraction of the baryonic material, leaving the dark
matter halo less concentrated than the one that would have
formed in the absence of baryons. Since then, hydrodynamic
simulations have greatly improved in numerical resolution and
in the sophistication with which they model star formation
and supernova feedback. With the combination of a high gas
density threshold for star formation and e�cient feedback,
simulations successfully reproduce the observed stellar and
cold gas fractions of field galaxies. The ejection of low angular
momentum gas by feedback plays a critical role in suppressing
the formation of stellar bulges in dwarf galaxies (Governato et
al. 2010), another long-standing problem in early simulations
of galaxy formation. The episodic gas outflows also produce
rapid fluctuations of the gravitational potential, in contrast to
the steady growth assumed in adiabatic contraction models.

Figure 3, based on Governato et al. (2012), illustrates the
impact of this episodic feedback on the dark matter density
profile. In the left panel, the upper dot-dashed curve shows
the final halo profile of an N-body simulation run with grav-
ity and dark matter only. Other curves show the evolution of
the dark matter density profile in a hydrodynamic simulation
with star formation and feedback, from the same initial con-
ditions. Over time, the central dark matter density drops,
and the cuspy profile is transformed to one with a nearly
constant density core (lower solid curve). Pontzen & Gov-
ernato (2012) present an analytic model that accurately de-
scribes this transformation (and its dependence on simulation
assumptions); essentially, the rapid fluctuations in the central
potential pump energy into the dark matter particle orbits, so
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Possible solutions

• Baryonic physics:  
   gas cooling, star formation,  
   supernova feedback,… 
!
• Dark Matter: 
   warm dark matter 
   Decaying DM 
   Self-Interacting DM

Spergel et al, Sigurdson et al, 
Boehm et al, Kaplinghat et al, 
Loeb et al, Tulin et al,  
van de Aarseen et al, 
….
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What is SIDM?
• DM-DM scattering cross section is around 
!
• It can still be the usual WIMP 

�

MX
⇠ cm2/g ⇠ barn/GeV

X

X

X

X

�

DM self-interactions

¯X

X

�

�

DM annihilation

f

X

f

X

�

Direct detection

FIG. 1: Feynman diagrams arising from DM particle X coupled to a dark force mediator �. Self-interactions
modify DM halos, while annihilation can give the observed DM relic density. Direct detection experiments
are highly sensitive to potential couplings of � to SM fermions f , which allow decays � ! f ¯f before BBN.

� particles in the early Universe must decay, otherwise they over-produce dominate DM. Unless
additional states are introduced, � must decay to SM particles. These decay products — typically
electrons, positrons, photons, and neutrinos — must not spoil the light element abundances pre-
dicted by Big Bang Nucleosynthesis (BBN) and or produce too much entropy. This requires a �
lifetime less than ⇠ 1 second, although this can be relaxed slightly as we discuss later.

In this paper, we study the reach for DM direct detection experiments to probe SIDM. We
consider different scenarios for how � might couple to SM fermions by mixing with the photon,
Z or Higgs bosons, depending on the spin of �. Since BBN constraints give a lower bound on
� couplings to the SM, this defines a minimum value for the direct detection cross section. As
we show, the predicted SIDM direct detection range lies within the sensitivity reach of upcoming
experiments such as XENON1T [50], LUX [51], and SuperCDMS [52], although the quantitative
details are model dependent. The essential physics is summarized in Fig. 1. Both self-interactions
and direct detection arise through the same light mediator �, which can also provide an annihilation
channel for setting the DM relic density.

Direct detection searches for SIDM are highly complementary to other astrophysical probes.
For nuclear recoils, direct detection experiments are sensitive to DM masses mX & 10 GeV due
to threshold limitations. In this mass range, the self-interaction cross section tends to be more
velocity-dependent, becoming suppressed at higher velocity (like Rutherford scattering) [17]. In
this case, DM can become effectively collisionless within larger DM halos, which have larger
characteristic velocities. Tests for self-interactions within large DM halos, such as in merging
clusters [53, 54] or halo shape observables [55], are most sensitive to DM masses mX . 10 GeV
where the self-interaction cross section tends to be more velocity-independent. We also note that
direct detection experiments can also probe low mass SIDM as well, via electron recoils [56, 57],
although the effective reach in couplings is much reduced compared to nuclear recoils.

In the remainder of this work, we first present simple particle physics models for SIDM in
Sec. II. Then we discuss different portals for how the dark and visible sectors may be coupled in
Sec. IV. We present our results in Sec. V, showing how direct detection and other constraints map
onto SIDM parameter space. Lastly, we conclude in Sec. VI.

II. PARTICLE PHYSICS OF SELF-INTERACTING DARK MATTER

As a minimal model for SIDM, we consider DM X to be a Dirac fermion which is coupled
to a mediator particle �. X is assumed to be a SM gauge singlet with no direct coupling to SM

3

�SI ⇠
↵2

m2
�

�ann ⇠ ↵2

M2
X
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Effects
• In-falling dark matter is scattered before  reaching the center of 

the galaxy. These collisions increase the entropy of the dark 
matter phase space distribution and lead to a dark matter halo 
profile with a shallower density profile. 

• It can flatten the halo centre, solving the “cusp-vs-core” and 
“too-big-to-fail” problems. 

• MeV mediator can provide the right elastic scattering cross 
section for TeV dark matter

χ

χ̄

χ

χ̄

V

Fig. 4. E↵ect of self-interacting dark matter (SIDM) on halo structure, from simulations by Rocha et al. (2013). The left panel shows a Milky Way mass CDM halo,
and the middle panel shows the same halo from an SIDM simulation with cross-section of 1 cm2 g�1. The structure and substructure are similar, but the SIDM halo is
rounder and less dense in the center. The right panel compares the density profiles of a CDM and SIDM halo, showing the core produced by elastic scattering. This halo has
M = 4.2⇥ 1013M

�

, but similar behavior is found at other halo masses.

WDM; recent examples include Polisensky & Ricotti (2011),
Anderhalden et al. (2012), Lovell et al. (2012), Macciò et al.
(2012), Schneider et al. (2012), and Angulo et al. (2013).

Warm dark matter is a “just-so” solution to CDM’s prob-
lems, requiring a particle mass (or free-streaming velocity)
that is tuned to the particular scale of dwarf galaxy halos.
However, the more serious challenge to WDM is observational,
for two reasons. First, WDM does too good a job in elim-
inating power on small scales; for a thermal relic of mass
m = 2 keV, there are too few subhalos in the Milky Way to
host the known satellite galaxies (Polisensky & Ricotti 2011).
It also appears in conflict with observations of strong-lens sys-
tems, which show evidence for a significant subhalo fraction
as well as the existence of small (108M

�

) subhalos (Dalal &
Kochanek 2002; Dobler & Keeton 2006; Vegetti et al. 2010a,b,
2012; Fadely & Keeton 2011, 2012). Second, suppressing pri-
mordial fluctuations on small scales alters the predicted struc-
ture of Lyman-↵ forest absorption towards quasars at high
redshift, where these scales are still in the quasi-linear regime
(Narayanan et al. 2000). Recent studies of the Lyman-↵ forest
set a lower limit on the dark matter particle mass of several
keV, high enough that the dark matter is e↵ectively “cold”
from the point of view of the cusp-core problem (Seljak et
al. 2006; Viel et al. 2008; but see Abazajian 2006 for a coun-
terclaim of a lower minimum particle mass). Even setting
these problems aside, it appears that WDM on its own does
not fix the shape of rotation curves across the full range of
galaxy masses where conflict with CDM is observed (Kuzio
de Naray et al. 2010). While some uncertainties in the nu-
merical simulations and observational data remain, it appears
that WDM cannot solve the cusp-core and missing satellite
problems while remaining consistent with Lyman-↵ forest and
substructure observations.

An alternative idea, made popular by Spergel & Stein-
hardt (2000), is that cold dark matter has weak interactions
with baryons but strong self-interactions. The required scat-
tering cross-section is roughly (m/g)�1 cm2 where m is the
particle mass; note that 1 cm2 g�1 ⇡ 1 barnGeV�1 is approx-
imately a nuclear-scale cross section. In this case, elastic scat-
tering in the dense central regions of halos is frequent enough
to redistribute energy and angular momentum among par-
ticles, creating an isothermal, round core of approximately
constant density (Burkert 2000). Some early studies suggested
that this idea was ruled out by gravitational lensing (Miralda-
Escudé 2002) or by catastrophic gravitational core collapse
found in a simulation of an isolated halo (Kochanek & White

2000), but recent numerical studies show that these concerns
are not borne out in fully cosmological simulations. Instead,
simulations show that there is a viable window of mass and
cross-section where self-interacting dark matter (SIDM) can
produce cored dark matter profiles and remain consistent with
observational constraints (Rocha et al. 2013; Peter et al.
2013).

Figure 4, based on Rocha et al. (2013), compares the struc-
ture and density profiles of halos formed from the same initial
conditions with collisionless CDM and SIDM. Elastic scatter-
ing in the central regions, where an average particle expe-
riences a few collisions per Hubble time, flattens the density
cusp and reduces triaxiality. The scattering mechanism would
operate across a wide range of halo masses, allowing SIDM to
address both the rotation curves of Milky Way-like galaxies
and the central densities of dwarf satellites. Because they are
more weakly bound, SIDM subhalos are more easily subject
to tidal disruption than CDM subhalos. However, the sup-
pression of the low-mass subhalo count is not significant for
allowed cross sections except in the innermost region of the
host halo (Vogelsberger et al. 2012; Rocha et al 2013). Thus,
SIDM can solve the cusp-core problem while leaving enough
subhalos to host Milky Way satellites, unlike WDM.

The prospects for SIDM appear much more hopeful than
for WDM (though for a summary of pro-WDM views see Bier-
mann et al. 2013). Velocity-independent cross sections in the
range ⇠ 0.1�0.5 cm2 g�1 create cores that are approximately
the right size for Milky Way dwarf galaxies, spiral galaxies,
and galaxy clusters (Newman et al. 2013a,b; Rocha et al.
2013) while leaving halos triaxial enough to match observa-
tions (Peter et al. 2013). Cross sections in this range are also
consistent with observations of merging galaxy clusters (Clowe
et al. 2006; Randall et al. 2008; Dawson et al. 2012). More-
over, particle model builders have recently focused attention
on new classes of “hidden sector” models that generically pro-
duce SIDM particle candidates, although in general the elas-
tic scattering cross section has a strong velocity dependence
(Ackerman et al. 2009; Buckley 2010; Feng et al. 2010; Tulin
et al. 2013a,b). For these models, strong self-interactions may
only be present in a narrow range of halo mass, leaving halos
on other scales e↵ectively collisionless. Observationally, the
goal is to either rule out or find evidence for SIDM cross sec-
tions � > 0.1 cm2 g�1, as for smaller cross-sections the halo
phenomenology is likely to be indistinguishable from CDM.

There are alternative dark matter physics mechanisms
that could reduce the central densities of halos, including par-
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Astrophysical Constraints
• Bullet Cluster, elliptical halo shapes

 Astrophysics Summary
• Evidence for DM self-interactions on dwarf galaxy scales

! σ/mX ~ 0.1– 10 cm2/g  for v ~ 10-30 km/s

• Constraints: Bullet Cluster; elliptical halo shapes

σ/mX < 1 cm2/g for 3000 km/s (cluster);v ~ 300 km/s (group)

gas

DM

DM

Bullet Cluster

star

� ' n⇥v = (�/mX)⇥v ⇠ H0

Peter, Rocha, Bullock, Kaplinghat (2012)

 Astrophysics Summary
• Evidence for DM self-interactions on dwarf galaxy scales

! σ/mX ~ 0.1– 10 cm2/g  for v ~ 10-30 km/s

• Constraints: Bullet Cluster; elliptical halo shapes

σ/mX < 1 cm2/g for 3000 km/s (cluster);v ~ 300 km/s (group)

gas

DM

DM

Bullet Cluster

star

� ' n⇥v = (�/mX)⇥v ⇠ H0

Peter, Rocha, Bullock, Kaplinghat (2012)
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Velocity dependence

• For scalar dark matter and 
scalar mediator

that isotropic assumption for scattering on dwarf galaxy scales which has been taken in the recent
simulation [6]. In addition, the Rutherford formula is available in the massless mediator limit. We
have devised benchmarks which may be utilized in simulations.

In addition, our results allow the correlation of DM self-scattering with annihilation, having
implications for indirect detection experiments. Sommerfeld enhancements for DM annihilation
directly correspond to velocity dependent self-interacting DM. Conversely, the absence of Som-
merfeld enhancements imply a velocity-independent DM self-scattering cross section, so that if
cores form in dwarves they also form in clusters.

Clearly DM self-interactions provide an avenue for exploration with rich consequences for DM
structure in our Universe. While the nature of the DM may first be revealed through its interactions
with ordinary matter, to date everything we have learned about DM has been gleaned through the
formation of structure. DM self-interactions can change this structure in complex ways, so that as
we learn more about it, we may also uncover evidence for the particle physics nature of DM.

Acknowledgements: We thank F. Governato, M. Kaplinghat, T. Quinn, and S. Tremaine for
helpful discussions. ST and KZ are supported by the DoE under contract de-sc0007859. HBY and
KZ are supported by NASA Astrophysics Theory Grant NNX11AI17G. KZ is also supported by
NSF CAREER award PHY 1049896.

Appendix A: Compendium of analytic results and benchmark points

We summarize analytic results for self-interacting DM scattering through a Yukawa potential.
The relevant parameters are the DM mass m
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that isotropic assumption for scattering on dwarf galaxy scales which has been taken in the recent
simulation [6]. In addition, the Rutherford formula is available in the massless mediator limit. We
have devised benchmarks which may be utilized in simulations.

In addition, our results allow the correlation of DM self-scattering with annihilation, having
implications for indirect detection experiments. Sommerfeld enhancements for DM annihilation
directly correspond to velocity dependent self-interacting DM. Conversely, the absence of Som-
merfeld enhancements imply a velocity-independent DM self-scattering cross section, so that if
cores form in dwarves they also form in clusters.

Clearly DM self-interactions provide an avenue for exploration with rich consequences for DM
structure in our Universe. While the nature of the DM may first be revealed through its interactions
with ordinary matter, to date everything we have learned about DM has been gleaned through the
formation of structure. DM self-interactions can change this structure in complex ways, so that as
we learn more about it, we may also uncover evidence for the particle physics nature of DM.
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that isotropic assumption for scattering on dwarf galaxy scales which has been taken in the recent
simulation [6]. In addition, the Rutherford formula is available in the massless mediator limit. We
have devised benchmarks which may be utilized in simulations.

In addition, our results allow the correlation of DM self-scattering with annihilation, having
implications for indirect detection experiments. Sommerfeld enhancements for DM annihilation
directly correspond to velocity dependent self-interacting DM. Conversely, the absence of Som-
merfeld enhancements imply a velocity-independent DM self-scattering cross section, so that if
cores form in dwarves they also form in clusters.

Clearly DM self-interactions provide an avenue for exploration with rich consequences for DM
structure in our Universe. While the nature of the DM may first be revealed through its interactions
with ordinary matter, to date everything we have learned about DM has been gleaned through the
formation of structure. DM self-interactions can change this structure in complex ways, so that as
we learn more about it, we may also uncover evidence for the particle physics nature of DM.
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that isotropic assumption for scattering on dwarf galaxy scales which has been taken in the recent
simulation [6]. In addition, the Rutherford formula is available in the massless mediator limit. We
have devised benchmarks which may be utilized in simulations.

In addition, our results allow the correlation of DM self-scattering with annihilation, having
implications for indirect detection experiments. Sommerfeld enhancements for DM annihilation
directly correspond to velocity dependent self-interacting DM. Conversely, the absence of Som-
merfeld enhancements imply a velocity-independent DM self-scattering cross section, so that if
cores form in dwarves they also form in clusters.

Clearly DM self-interactions provide an avenue for exploration with rich consequences for DM
structure in our Universe. While the nature of the DM may first be revealed through its interactions
with ordinary matter, to date everything we have learned about DM has been gleaned through the
formation of structure. DM self-interactions can change this structure in complex ways, so that as
we learn more about it, we may also uncover evidence for the particle physics nature of DM.
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where � ⌘ 2↵
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. 1), the cross section is largely dominated by s-wave
scattering. We have obtained a new exact non-perturbative result for �
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and  ⇡ 1.6 is a dimensionless number. The differential cross section is d�/d⌦ = �

T

/(4⇡). This
formula takes into account non-perturbative effects associated with s-wave scattering, and covers
a complementary parameter region to the classical and Born formulae.
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Velocity-Dependence

 
XX

X X

ɸ

σ/mX < 1 cm2/g for v ~ 300 km/s (group),3000 km/s (cluster)

σ/mX ~ 0.1– 10 cm2/g  for v ~ 10-30 km/s

• DM self-interactions are typically suppressed on large scales 

ɸɸ

X X

X Fix αX

by ΩDMσT~v-4

Calculate 
σT 

Feng et al, Buckley & Fox, Leob & Weiner, Tulin & Yu et al,…

The more relevant quantity for quantifying the self-interaction of DMs is the momentum-
transfer or transport cross section2

�T ⌘
Z

d⌦ (1� cos ✓)
d�

d⌦
,

which regularizes the forward scattering(✓ = 0) at which no momentum is transfered. In
our case, we have for XX⇤ ! XX⇤ scattering
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This formula is consistent with [33] where a vector mediator is considered. We may rewrite
the above equation as
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.

On the other hand, annihilation cross section for XX⇤ ! �� at the freezing out time is
approximately

�ann ' �4
�Xv

4
�

64⇡M2
X

3

M4
X

,

which is much suppressed by M4
H2
/M4

X , compared with Eq.s (5.1) and (5.2). Naive es-
timates su�ce to show that if we have �ann ⇠ O(1) pb for MX ⇠ O(1)GeV, then
MH2 ⇠ O(1) � O(100)MeV would give �SI ⇠ O(1) barn and �T/MX ⇠ 1 cm2/g, although
more delicated analysis would involve the velocity-averaged h�T i and non-perturbative ef-
fects when ↵�MX > MH2 .

As an illustration, we show the scatter plots for MH2-MX . Since we focus on the light
H2 here, we can fix MZ0 = 200 GeV and impose the constrain from electroweak precison
observable, ✏ ⌧ 0.03. Other parameters are scanned as indicated from the legend bar of
individual plot.

gX . 1.2, ��X . 1, �HX . 0.1, �3 . 0.1, and ��H ' 0.

Because of the velocity-dependent behavior of Eq. 5.1 and 5.2, the transfer cross section over
mass, �T/MX , can be around [0.1, 10] cm2/g at Dwarf scale with vrel ' 10 km/s while still
satisfy the requirement �T/MX . 0.5 cm2/g to be consistent with ellipticity constraints on
Milky Way and cluster scales.

Before closing this section, we briefly discuss the CMB constraints which are quite strong.
When ↵�MX > M�, there would exist large non-perturbative e↵ect in the low-velocity limit
(v ! 0) of DM particle, known as Sommerfeld enhancement, and there could be relevant
astrophysical constraint from cosmic microwave background(CMB) for some parameter space
we discussed above. Then XX⇤ annihilation is enhanced at CMB time and significant

2 If the scattering particles are identical, XX ! XX for instance, it may be more appropriate to use

the �T ⌘ R
d⌦

�
1� cos2 ✓

� d�

d⌦
which regularizes both forward and backward scattering [32](see similar

discussion in [38]).
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Cosmological Bounds
• Extra radiation,       , 
• eV sterile neutrinos as hot dark matter, 

BBN, CMB, LSS

Ne↵

Planck Collaboration: Cosmological parameters

�8. As mentioned in Sect. 6.4.2, massive sterile neutrinos of-
fer a possible solution to reactor neutrino oscillation anoma-
lies (Kopp et al. 2013; Giunti et al. 2013) and this has led to
significant recent interest in this class of models (Wyman et al.
2014; Battye & Moss 2014; Hamann & Hasenkamp 2013;
Leistedt et al. 2014; Bergström et al. 2014; MacCrann et al.
2014). Alternatively, active neutrinos could have significant de-
generate masses above the minimal baseline value together with
additional massless particles contributing to Ne↵ . Many more
complicated scenarios could also be envisaged.

In the case of massless radiation density, the cosmologi-
cal predictions are independent of the actual form of the dis-
tribution function since all particles travel at the speed of light.
However, for massive particles the results are more model de-
pendent. To formulate a well-defined model, we follow PCP13
and consider the case of one massive sterile neutrino parameter-
ized by me↵

⌫, sterile ⌘ (94.1⌦⌫,sterileh2) eV, in addition to the two
approximately massless and one massive neutrino of the base-
line model. For thermally-distributed sterile neutrinos, me↵

⌫, sterile
is related to the true mass via

me↵
⌫, sterile = (Ts/T⌫)3mthermal

sterile = (�Ne↵)3/4mthermal
sterile , (63)

and for the cosmologically-equivalent Dodelson-Widrow (DW)
case (Dodelson & Widrow 1994) the relation is given by

me↵
⌫, sterile = �s mDW

sterile , (64)

with �Ne↵ = �s. We impose a prior on the physical thermal
mass, mthermal

sterile < 10 eV, when generating parameter chains, to
exclude regions of parameter space in which the particles are
so massive that their e↵ect on the CMB spectra is identical to
that of cold dark matter. Although we consider only the specific
case of one massive sterile neutrino with a thermal (or DW) dis-
tribution, our constraints will be reasonably accurate for other
models, for example eV-mass particles produced as non-thermal
decay products (Hasenkamp 2014).

Figure 32 shows that although Planck is perfectly consistent
with no massive sterile neutrinos, a significant region of param-
eter space with fractional �Ne↵ is allowed, where �8 is lower
than in the base ⇤CDM model. This is also the case for massless
sterile neutrinos combined with massive active neutrinos. In the
single massive sterile model, the combined constraints are

Ne↵ < 3.7

me↵
⌫, sterile < 0.52 eV

9>>=
>>; 95%, Planck TT+lowP+lensing+BAO.

(65)
The upper tail of me↵

⌫, sterile is largely associated with high physical
masses near to the prior cuto↵; if instead we restrict to the region
where mthermal

sterile < 2 eV the constraint is

Ne↵ < 3.7

me↵
⌫, sterile < 0.38 eV

9>>=
>>; 95%, Planck TT+lowP+lensing+BAO.

(66)
Massive sterile neutrinos with mixing angles large enough to
help resolve the reactor anomalies would typically imply full
thermalization in the early Universe, and hence give �Ne↵ = 1
for each additional species. Such a high value of Ne↵ , espe-
cially combined with msterile ⇡ 1 eV, as required by reactor
anomaly solutions, were virtually ruled out by previous cos-
mological data (Mirizzi et al. 2013; Archidiacono et al. 2013a;
Gariazzo et al. 2013). This conclusion is strengthened by the
analysis presented here, since Ne↵ = 4 is excluded at greater
than 99 % confidence. Unfortunately, there does not appear to be

a consistent resolution to the reactor anomalies, unless thermal-
ization of the massive neutrinos can be suppressed, for example,
by large lepton asymmetry, new interactions, or particle decay
(see Gariazzo et al. 2014; Bergström et al. 2014, and references
therein).

We have also considered the case of additional radiation and
degenerate massive active neutrinos, with the combined con-
straint:

Ne↵ = 3.2 ± 0.5
X

m⌫ < 0.32 eV

9>>=
>>; 95%, Planck TT+lowP+lensing+BAO.

(67)
Again Planck shows no evidence for a deviation from the base
⇤CDM model.

6.4.4. Neutrino models and tension with external data

The extended models discussed in this section allow Planck to be
consistent with a wider range of late-Universe parameters than in
base ⇤CDM. Figure 33 summarizes the constraints on ⌦m, �8,
and H0 for the various models that we have considered. The in-
ferred Hubble parameter can increase or decrease, as required to
maintain the observed acoustic scale, depending on the relative
contribution of additional radiation (changing the sound hori-
zon) and neutrino mass (changing mainly the angular diameter
distance). However, all of the models follow similar degeneracy
directions in the ⌦m–�8 and H0–�8 planes, so these models re-
main predictive: large common areas of the parameter space are
excluded in all of these models. The two-parameter extensions
are required to fit substantially lower values of �8 without also
decreasing H0 below the values determined from direct measure-
ments, but the scope for doing this is clearly limited.

External data sets need to be reanalysed consistently in ex-
tended models, since the extensions change the growth of struc-
ture, angular distances, and the matter-radiation equality scale.
For example, the dashed lines in Fig. 33 shows how di↵erent
models a↵ect the CFHTLenS galaxy weak lensing constraints
from Heymans et al. (2013) (see Sect. 5.5.2), when restricted
to the region of parameter space consistent with the Planck
acoustic scale measurements and the local Hubble parameter.
The filled green, grey, and red contours in Fig. 33 show the
CMB constraints on these models for various data combina-
tions. The tightest of these constraints comes from the Planck
TT+lowP+lensing+BAO combination. The blue contours show
the constraints in the base ⇤CDM cosmology. The red contours
are broader than the blue contours and there is greater overlap
with the CFHTLenS contours, but this o↵ers only a marginal
improvement compared to base ⇤CDM (compare with Fig. 18;
see also the discussions in Leistedt et al. 2014 and Battye et al.
2014). For each of these models, the CFHTLenS results prefer
lower values of �8. Allowing for a higher neutrino mass lowers
�8 from Planck, but does not help alleviate the discrepancy with
the CFHTLenS data as the Planck data prefer a lower value of
H0. A joint analysis of the CFHTLenS likelihood with Planck
TT+lowP shows a ��2 < 1 preference for the extended neu-
trino models compared to base ⇤CDM, and the fits to Planck
TT+lowP are worse in all cases. In base ⇤CDM the CFHTLenS
data prefer a region of parameter space ��2 ⇡ 4 away from the
Planck TT+lowP+CFHTLenS joint fit, indicative of the tension
between the data sets. This is only slightly relieved to ��2 ⇡ 3
in the extended models.

In summary, modifications to the neutrino sector alone can-
not easily explain the discrepancies between Planck and other
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Fig. 36. Constraints in the !b–Ne↵ plane from Planck and
Planck+BAO data (68 % and 95 % contours) compared to the
predictions of BBN given primordial element abundance mea-
surements. We show the 68 % and 95 % confidence regions de-
rived from 4He bounds compiled by Aver et al. (2013) and from
deuterium bounds compiled by Cooke et al. (2014). In the CMB
analysis, Ne↵ is allowed to vary as an additional parameter to
base ⇤CDM, with YP fixed as a function of !b and Ne↵ accord-
ing to BBN predictions. These constraints assume no significant
lepton asymmetry.

abundance measurements derived from emission lines from low-
metallicity H ii regions are notoriously di�cult and prone to sys-
tematic errors. As a result, many discrepant helium abundance
measurements can be found in the literature. Izotov et al. (2014)
have reported a helium abundance measurement of YBBN

P =
0.2551 ± 0.0022, which is discrepant with the base ⇤CDM pre-
dictions by 3.4�. Such a high helium fraction could be ac-
commodated by increasing Ne↵ (see Fig. 36 and Sect. 6.5.3).
However, at present it is not clear whether the error quoted by
Izotov et al. (2014) accurately reflects systematic errors, includ-
ing the error in extrapolating to zero metallicity.

Historically, deuterium abundance measurements have
shown excess scatter over that expected from statistical er-
rors indicating the presence of systematic errors in the obser-
vations. Figure 35 shows the data compilation of Iocco et al.
(2009), yDP = 2.87 ± 0.22 (68 % CL), which includes mea-
surements based on damped Ly↵ and Lyman limit systems.
We also show the more recent results by Cooke et al. (2014)
(see also Pettini & Cooke 2012) based on their observations of
low-metallicity damped Ly↵ absorption systems in two quasars
(SDSS J1358+6522, zabs = 3.06726; SDSS J1419+0829, zabs =
3.04973) and a reanalysis of archival spectra of damped Ly↵
systems in three further quasars that satisfy strict selection cri-
teria. The Cooke et al. (2014) analysis gives yDP = 2.53 ± 0.04
(68 % CL), somewhat lower than the central Iocco et al. (2009)
value, but with a much smaller error. The Cooke et al. (2014)
value is almost certainly the more reliable measurement, as ev-
idenced by the consistency of the deuterium abundances of the
five systems in their analysis. The Planck base ⇤CDM predic-
tions of Eq. (74) lie within 1� of the Cooke et al. (2014) result.
This is a remarkable success for the standard theory of BBN.

It is worth noting that the Planck data are so accurate that !b
is insensitive to the underlying cosmological model. In our grid

of extensions to base ⇤CDM the largest degradation of the error
in !b is in models that allow Ne↵ to vary. In these models, the
mean value of !b is almost identical to that for base ⇤CDM, but
the error on !b increases by about 30 %. The value of !b is sta-
ble to even more radical changes to the cosmology, for example,
adding general isocurvature modes (Planck Collaboration XX
2015).

If we relax the assumption that Ne↵ = 3.046 (but adhere to
the hypothesis that electron neutrinos have a standard distribu-
tion with a negligible chemical potential), BBN predictions de-
pend on both parameters (!b,Ne↵). Following the same method-
ology as in Sect. 6.4.4 of PCP13, we can identify the region of
the (!b,Ne↵) parameter space that is compatible with direct mea-
surements of the primordial helium and deuterium abundances,
including the BBN theoretical errors. This is illustrated in Fig. 36
for the Ne↵ extension to base ⇤CDM. The region preferred by
CMB observations lies at the intersection between the helium
and deuterium abundance 68 % CL preferred regions and is com-
patible with the standard value of Ne↵ = 3.046. This confirms the
beautiful agreement between CMB and BBN physics. Figure 36
also shows that the Planck polarization data helps in reducing
the degeneracy between !b and Ne↵ .

We can actually make a more precise statement by combin-
ing the posterior distribution on (!b,Ne↵) obtained for Planck
with that inferred from helium and deuterium abundance, in-
cluding observational and theoretical errors. This provides joint
CMB+BBN predictions on these parameters. After marginaliz-
ing over !b, the 95 % CL preferred ranges for Ne↵ are

Ne↵ =

8>>>>><
>>>>>:

3.11+0.59
�0.57 He+Planck TT+lowP,

3.14+0.44
�0.43 He+Planck TT+lowP+BAO,

2.99+0.39
�0.39 He+Planck TT,TE,EE+lowP,

(75)

when combining Planck with the helium abundance estimated
by Aver et al. (2013), or

Ne↵ =

8>>>>><
>>>>>:

2.95+0.52
�0.52 D+Planck TT+lowP,

3.01+0.38
�0.37 D+Planck TT+lowP+BAO,

2.91+0.37
�0.37 D+Planck TT,TE,EE+lowP,

(76)

when combining with the deuterium abundance measured
by Cooke et al. (2014). These bounds represent the best
currently-available estimates of Ne↵ and are remarkably consis-
tent with the standard model prediction.

The allowed region in (!b,Ne↵) space does not increase sig-
nificantly when other parameters are allowed to vary at the same
time. From our grid of extended models, we have checked that
this conclusion holds in models with neutrino masses, tensor
fluctuations, or running of the scalar spectral index.

6.5.2. Constraints from Planck and deuterium observations
on nuclear reaction rates

We have seen that primordial element abundances inferred
from direct observations are consistent with those inferred from
Planck data under the assumption of standard BBN. However,
the Planck determination of !b is so precise that the theoreti-
cal errors in the BBN predictions are now a dominant source
of uncertainty. As noted by Cooke et al. (2014), one can begin
to think about using CMB measurements together with accurate
deuterium abundance measurements to learn about the underly-
ing BBN physics.
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Difficulty
• With such mixing parameters, 
!

• neutrino oscillation would bring sterile neutrino 
into equilibrium in the early universe, then 
contribute               , in tension with CMB and LSS 

• This is not true in case there is a large lepton 
asymmetry, or a self-interaction for sterile 
neutrinos, which induces a matter potential 
!

Ve↵

Hannestad,Hansen,Tram, 1310.5926(PRL); Dasgupta,Kopp, 1310.6337(PRL)

�Ne↵ ' 1

�m2
14 ⇠ eV2, sin2 2✓14 ⇠ 0.05

sin

2
2✓m =

sin

2
2✓0�

cos 2✓0 � 2E
�m2Ve↵

�2
+ sin

2
2✓0

, Ve↵ ⇠ GX

M2
X
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Interacting Sterile Neutrinos

• The new interaction might lead to flavor equilibrium after BBN, A. 
Mirizzi et al, 1410.1385, disfavored by cosmological neutrino 
mass bounds

2

matter potential for sterile neutrinos of the form [14, 15]

Vs(ps) =
g2s

8π2ps

∫

pdp (fφ + fs) , (3)

where fφ is the Bose-Einstein distribution for the pseu-
doscalar and fs is the distribution for the sterile neutrinos
(see e.g. [3, 16–19] for a discussion of matter potentials
in the standard model).
Before proceeding with a quantitative calculation we

can estimate how large gs needs to be in order to block
thermalisation. Consider a scenario with thermal φ and
νs distributions characterised by a common temperature
T . The potential is then

Vs ∼ 10−1 g2sT. (4)

The requirement for blocking thermalisation is that

V >
∼

∆m2

2E
∼

∆m2

T
(5)

prior to neutrino decoupling so that

g2s >
∼ 10

∆m2

T 2
∼ 10−10, (6)

We therefore a priori expect that a value of gs ∼ 10−5 is
sufficient to block thermalisation.
Thermal history of the sterile neutrino. — The sterile

neutrino can in principle be thermalised via incoherent
processes such as φφ → ν̄sνs, assuming that there is a
pre-existing background of φ. The cross section for this
process is given by [20]

⟨σ|v|⟩ =
4x

K2
2(x)

∫ 1

0

dη
η

(1 − η)7/2
σ(η)K1

(

2x

(1− η)1/2

)

(7)
where x = mνs/T and

σ(η) =
g4

128π

1− η

m2η

[

log

(

1 + η1/2

1− η1/2

)

− 2η1/2
]

. (8)

In the highly relativistic limit this simply reduces to

⟨σ|v|⟩ ∼ g4

128πT 2 . Conservatively assuming that gs ∼ 10−4

we find that νs and φ come into equilibrium around a
temperature of T ∼ 1 GeV, i.e. significantly before the
oscillation process becomes important. However, since
the dark sector is decoupled it does not share the en-
tropy transfer to the standard model particles, and the
end result is that when oscillations become important,
a low-temperature background of φ and νs exists. How-
ever, if g is significantly lower no thermalisation occurs
before the oscillation period.
Results and numerical implementation. — We com-

pute the thermalisation process by solving the Quantum
Kinetic Equations (QKEs) using a modified version of
our public code lasagna [21]. The equations we solve
can be found in Ref. [10] so we will only list the changes
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FIG. 1: The contribution of the sterile neutrino to the rela-
tivistic energy density Neff as a function of the coupling pa-
rameter gs.

here. We compute the sterile neutrino contribution to
the potential in equation (3) from the actual numerical
distribution. The contribution from the φ-background is
computed analytically assuming that the φ-particles were
produced thermally above a TeV. They will then follow
a Bose-Einstein distribution with a reduced temperature
of

Tφ =

(

g⋆(Tγ)

g⋆(1TeV)

)
1

3

Tγ ≃

(

10.75

106.7

)
1

3

Tγ ≃ 0.47Tγ, (9)

where the approximation is valid in the temperature
range of interest. We are ignoring momentum transfer
between the sterile neutrinos and the pseudoscalars for
simplicity, but we suspect that including it would have
a negligible effect on our results. When sterile neutrinos
are produced, they will create non-thermal distortions in
the sterile neutrino distribution. These distortions will
then subsequently be thermalised through scattering pro-
cesses. We approximate the full scattering kernel as in
Ref. [10], but with the sterile equilibration rate

Γs =
g4s

64πT 2
νs

Nνs , (10)

where Nνs is the number density of sterile neutrinos nor-
malised to T 3

γ in thermal equilibrium. In Fig. 1 we show
the final contribution to Neff from a sterile neutrino with
mixing parameter sin2 2θs = 0.05 and ms = 1eV, close
to the best fit value from neutrino oscillation data [1, 2].
The transition from full thermalisation to zero thermali-
sation happens in the region 10−6 < gs < 10−5, confirm-
ing the simple estimate in Eq. (6).

Archidiacono et al, 1404.5915v1 

• Partial thermalization at BBN

sin
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sin
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�2
+ sin
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,

YT, 1501.00059; Chu, Dasgupta and Kopp, 1505.02795
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Kinetic Equations
two-flavor mixing for  
!
!
density matrix is evolving as 
!
!
where  
!
and C(ρ) is the collision term.

⌫a-⌫s

⇢ =

✓
⇢aa ⇢as
⇢sa ⇢ss

◆

i
d⇢

dt
= [H, ⇢] + C(⇢)

H =

0

B@
��m2

2E
cos 2✓0 + Ve↵

�m2

2E
sin 2✓0

�m2

2E
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�m2

2E
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Kinetic Equations
Reparametrize

Pa ≡ P0 þ Pz ¼ 2
ρaa
f0

; Ps ≡ P0 − Pz ¼ 2
ρss
f0

; (3)

which separate the sterile and the active sector. The equations
of motions are then given by

Pa

:
¼ VxPy þ Γa

!
2
f0
f0

− Pa

"
; (4a)

Ps

:
¼ −VxPy þ Γs

!
2
feq;sðTνs ; μνsÞ

f0
− Ps

"
; (4b)

Px

:
¼ −VzPy −DPx; (4c)

Py

:
¼ VzPx − 1

2
VxðPa − PsÞ −DPy: (4d)

The Γs term is an approximation to the full scattering
kernel which is valid in the limit of strong coupling.
The sterile equilibrium distribution, feq;sðTνs ; μνsÞ ¼
ðeðp−μνs Þ=Tνs þ 1Þ−1,whereTνs andμνs are the sterile neutrino
temperature and pseudochemical potential, respectively, is
uniquely determined from the requirement that the interac-
tion must respect energy conservation and number conser-
vation. Γa and Γs are related to the 4-point interaction
constants as

Γa ¼ CμG2
FpT

4; Γs ¼ G2
XpT

4
νsnνs ; (5)

whereCμ ≃ 0.92,whilenνs is thenormalizednumberdensity
of sterile neutrinos, nνs ¼ ð2=3ζð3ÞT3Þ

R
p2ρssðpÞdp. D

quantifies the damping of quantum coherence in the system
and is approximately half of the scattering rates:
D≃ 1

2 ðΓa þ ΓsÞ. We have chosen to define Γs in analogy
with Γa, and this means that we do not have exact con-
servation ofΔNeff for the scattering term in Eq. (4b) sinceΓs
depends on p. However, none of the results change signifi-
cantly when we let p ¼ 3.15T in the expression for Γs.
In order to include the sterile neutrino self-interaction,

we repeat the derivation in [14] for the self-interaction due
to the Z boson in the active sector, but now for an X boson
in the sterile sector. This gives an additional term in the
matter potential Vz. The potentials are now

Vx ¼
δm2

s

2p
sin 2θ; (6a)

Vz ¼ V0 þ Va þ Vs; (6b)

V0 ¼ − δm2
s

2p
cos 2θ; (6c)

Va ¼ − 14π2

45
ffiffiffi
2

p p
!
GF

M2
Z
T4
γnνa

"
; (6d)

Vs ¼ þ 16GX

3
ffiffiffi
2

p
M2

X

puνs : (6e)

Here, δm2
s is the mass difference, θ is the vacuum mixing

angle,MZ is the mass of the Z boson,MX is the mass of the
boson mediating the new force, and uνs is the physical
energy density of the sterile neutrino. We solve the system
of equations using a modified version of the public code
LASAGNA [16,17].

Results.—In Fig. 1 we show the degree of thermalization
of the sterile neutrino, quantified in terms of the total
energy density in the active plus sterile sector,

Neff ≡
uνa þ uνs

uν0
; uν0 ≡

7

8

$
4

11

%
4=3

uγ: (7)

We have chosen gX ¼ 0.1 and a sample of values for GX,
and we show how ΔNeff develops with the decreasing
temperature. We can see that the thermalization of the
sterile neutrino moves to lower temperatures when the
interaction becomes stronger, and this is what we would
expect since a strong interaction means that even a small
background of sterile neutrinos can prevent further
thermalization.
The amount of thermalization depends on both gX and

GX, and in Fig. 2 we show ΔNeff as a function of both. It
shows that thermalization can be almost completely
blocked by the presence of the new interaction for high
values of GX and low values of gX.
Another interesting observation is that the degree of

thermalization depends almost entirely on the mass of the

024681012
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0.8
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FIG. 1 (color online). The evolution ofΔNeff as the temperature
drops for gX ¼ 0.1 and different values of the coupling
constant GX.
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Flavor Equilibrium after BBN

MeV

eV

T⌫a 6= T⌫s

T⌫a = T⌫s ⌘ T⌫

flavor equilibrium

T�

partially thermalized ⌫s

FIG. 1. Thermal history of active/sterile neutrinos. When the temperature is high, ⌫ss are not

in thermal equilibrium with ⌫as because of the suppression from a large matter potential. As the

Universe cools down, equilibrium between active and sterile neutrinos could be reached.

or

�Ne↵ (t) =
X

�

✓
T⌫� (t)

T 0
⌫a

◆4

� 3, (2.4)

where T 0
⌫a stands for the neutrino temperature in the standard cosmology without new

physics, T 0
⌫a = T� before e± annihilation and T 0

⌫a = (4/11)1/3 T� afterwards, and � runs

through all active/sterile neutrinos.

We shall keep in mind that 3 in Eqs. 2.3 and 2.4 is actually 3.046 precisely. But this little

di↵erence would not a↵ect our later discussions and we shall use 3 throughout the paper.

III. Nbbn
e↵ VS Ncmb

e↵

In this section, we discuss how self-interaction can a↵ect the thermalization of sterile

neutrinos. The essential picture is described in Fig. 1 where sterile neutrinos are only

partially thermalized at/before BBN time, but flavor equilibrium, ⇢⌫s = ⇢⌫a , is reached at

later time. To be as general as possible, we do not discuss the specific particle physics

models, but emphasize that new interaction for the sterile neutrinos is required.

First, we assume there is a 4-th neutrino which mixes with the active species. For simplic-

ity and without loss of generality, we can work with only two neutrino states, ⌫e-⌫s mixing

with mass di↵erence �m2 and mixing angle ✓0. Generalization to multiple neutrino mixing

4
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δNeff < 0 ?
• Neff at BBN and CMB 
!

• Flavor equilibrium: 
number density is conserved 
!
!
Assume Fermi-Dirac Distribution
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FIG. 3. �Nbbn
e↵ vs �N cmb

e↵ . We choose several cases for the number of sterile species, as indicated

by n. For each case, the solid curve shows �Nbbn
e↵ while the dashed one gives �N cmb

e↵ . Sizable

di↵erences can arise in the low T⌫s/T
0
⌫a region.

Now, we are in a position to discuss the e↵ect on Ne↵ at or after CMB time. If sterile

and active neutrinos reach the equilibrium when they are still relativistic, they would have

the same temperature T⌫ determined by the conservation of entropy density,

3⇥
�
T 0
⌫a

�3
+ n⇥ T 3

⌫s = (3 + n)⇥ T 3
⌫ , (3.5)

where n is the number of sterile species that have self-interactions. With the new tempera-

ture T⌫ , we can calculate �Ne↵ at CMB time with Eq. 2.4,

�N cmb
e↵ = (3 + n)�1/3 ⇥

"
3 + n⇥

✓
T⌫s

T 0
⌫a

◆3
#4/3

� 3, (3.6)

in comparison with

�Nbbn
e↵ = n⇥

✓
T⌫s

T 0
⌫a

◆4

. (3.7)

If sterile neutrinos were fully thermalized at BBN time, we would have T⌫s = T 0
⌫a , and

Eq. 3.6 gives the same result as Eq. 3.7 does. However, for partially thermalized ⌫s, T⌫s < T 0
⌫a .

As shown in Fig. 3, it is evident that �N cmb
e↵  �Nbbn

e↵ , and that the di↵erence can be signif-

icant in the low T⌫s/T
0
⌫a region and it increases as n gets bigger. An interesting observation
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YT, arXiv:1501.00059

Neff can be even reduced.
Similar observations in Bringmann, Hasenkamp, Kersten, JCAP 1407 (2014) 042  
and Mirizzi, Mangano, Pisanti, Saviano, PRD 91 (2015) 025019. 
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mn
eff vs dNeff
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FIG. 4. me↵
⌫ vs n. me↵

⌫ is a model-dependent quantity. We show how it changes as T⌫s/T
0
⌫a varies

in four cases with di↵erent n. m⌫4 = 1eV is assumed to be dominant on the mass.

is that �N cmb
e↵ can even be negative for small values of T⌫s/T

0
⌫a . If future experiment data

indicate a deficit of Ne↵, it would be natural to consider the scenario that active neutrinos

are mixing with self-interacting sterile species.

IV. COSMOLOGICAL NEUTRINO MASS BOUNDS

In this section, we show how the conflict between eV sterile neutrino and cosmological

mass bounds can be relaxed when more than one light sterile species are introduced.

Cosmological bounds on the neutrino masses from the combination of CMB, large scale

structure and distance measurements are constraining the following e↵ective quantity [9],

me↵
⌫ ⌘

P
i n⌫im⌫i

n0
⌫a

=
X

i

✓
T⌫i

T 0
⌫a

◆3

m⌫i ' 94.1eV ⇥ ⌦⌫h
2, (4.1)

where n⌫i stand for ⌫i’s number density, n0
⌫a for the value of active neutrino in standard

cosmology, ⌦⌫h
2 accounts for its energy density fraction in the Universe. After the flavor

equilibrium discussed above, all neutrinos share the same temperature, T⌫i = T⌫ . We can

simplify the discussion and assume one sterile state around eV scale is much heavier than

other species, therefore dominant on the mass. So we can reduce the above summation to
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Planck Collaboration: Cosmological parameters

�8. As mentioned in Sect. 6.4.2, massive sterile neutrinos of-
fer a possible solution to reactor neutrino oscillation anoma-
lies (Kopp et al. 2013; Giunti et al. 2013) and this has led to
significant recent interest in this class of models (Wyman et al.
2014; Battye & Moss 2014; Hamann & Hasenkamp 2013;
Leistedt et al. 2014; Bergström et al. 2014; MacCrann et al.
2014). Alternatively, active neutrinos could have significant de-
generate masses above the minimal baseline value together with
additional massless particles contributing to Ne↵ . Many more
complicated scenarios could also be envisaged.

In the case of massless radiation density, the cosmologi-
cal predictions are independent of the actual form of the dis-
tribution function since all particles travel at the speed of light.
However, for massive particles the results are more model de-
pendent. To formulate a well-defined model, we follow PCP13
and consider the case of one massive sterile neutrino parameter-
ized by me↵

⌫, sterile ⌘ (94.1⌦⌫,sterileh2) eV, in addition to the two
approximately massless and one massive neutrino of the base-
line model. For thermally-distributed sterile neutrinos, me↵

⌫, sterile
is related to the true mass via

me↵
⌫, sterile = (Ts/T⌫)3mthermal

sterile = (�Ne↵)3/4mthermal
sterile , (63)

and for the cosmologically-equivalent Dodelson-Widrow (DW)
case (Dodelson & Widrow 1994) the relation is given by

me↵
⌫, sterile = �s mDW

sterile , (64)

with �Ne↵ = �s. We impose a prior on the physical thermal
mass, mthermal

sterile < 10 eV, when generating parameter chains, to
exclude regions of parameter space in which the particles are
so massive that their e↵ect on the CMB spectra is identical to
that of cold dark matter. Although we consider only the specific
case of one massive sterile neutrino with a thermal (or DW) dis-
tribution, our constraints will be reasonably accurate for other
models, for example eV-mass particles produced as non-thermal
decay products (Hasenkamp 2014).

Figure 32 shows that although Planck is perfectly consistent
with no massive sterile neutrinos, a significant region of param-
eter space with fractional �Ne↵ is allowed, where �8 is lower
than in the base ⇤CDM model. This is also the case for massless
sterile neutrinos combined with massive active neutrinos. In the
single massive sterile model, the combined constraints are

Ne↵ < 3.7

me↵
⌫, sterile < 0.52 eV

9>>=
>>; 95%, Planck TT+lowP+lensing+BAO.

(65)
The upper tail of me↵

⌫, sterile is largely associated with high physical
masses near to the prior cuto↵; if instead we restrict to the region
where mthermal

sterile < 2 eV the constraint is

Ne↵ < 3.7

me↵
⌫, sterile < 0.38 eV

9>>=
>>; 95%, Planck TT+lowP+lensing+BAO.

(66)
Massive sterile neutrinos with mixing angles large enough to
help resolve the reactor anomalies would typically imply full
thermalization in the early Universe, and hence give �Ne↵ = 1
for each additional species. Such a high value of Ne↵ , espe-
cially combined with msterile ⇡ 1 eV, as required by reactor
anomaly solutions, were virtually ruled out by previous cos-
mological data (Mirizzi et al. 2013; Archidiacono et al. 2013a;
Gariazzo et al. 2013). This conclusion is strengthened by the
analysis presented here, since Ne↵ = 4 is excluded at greater
than 99 % confidence. Unfortunately, there does not appear to be

a consistent resolution to the reactor anomalies, unless thermal-
ization of the massive neutrinos can be suppressed, for example,
by large lepton asymmetry, new interactions, or particle decay
(see Gariazzo et al. 2014; Bergström et al. 2014, and references
therein).

We have also considered the case of additional radiation and
degenerate massive active neutrinos, with the combined con-
straint:

Ne↵ = 3.2 ± 0.5
X

m⌫ < 0.32 eV

9>>=
>>; 95%, Planck TT+lowP+lensing+BAO.

(67)
Again Planck shows no evidence for a deviation from the base
⇤CDM model.

6.4.4. Neutrino models and tension with external data

The extended models discussed in this section allow Planck to be
consistent with a wider range of late-Universe parameters than in
base ⇤CDM. Figure 33 summarizes the constraints on ⌦m, �8,
and H0 for the various models that we have considered. The in-
ferred Hubble parameter can increase or decrease, as required to
maintain the observed acoustic scale, depending on the relative
contribution of additional radiation (changing the sound hori-
zon) and neutrino mass (changing mainly the angular diameter
distance). However, all of the models follow similar degeneracy
directions in the ⌦m–�8 and H0–�8 planes, so these models re-
main predictive: large common areas of the parameter space are
excluded in all of these models. The two-parameter extensions
are required to fit substantially lower values of �8 without also
decreasing H0 below the values determined from direct measure-
ments, but the scope for doing this is clearly limited.

External data sets need to be reanalysed consistently in ex-
tended models, since the extensions change the growth of struc-
ture, angular distances, and the matter-radiation equality scale.
For example, the dashed lines in Fig. 33 shows how di↵erent
models a↵ect the CFHTLenS galaxy weak lensing constraints
from Heymans et al. (2013) (see Sect. 5.5.2), when restricted
to the region of parameter space consistent with the Planck
acoustic scale measurements and the local Hubble parameter.
The filled green, grey, and red contours in Fig. 33 show the
CMB constraints on these models for various data combina-
tions. The tightest of these constraints comes from the Planck
TT+lowP+lensing+BAO combination. The blue contours show
the constraints in the base ⇤CDM cosmology. The red contours
are broader than the blue contours and there is greater overlap
with the CFHTLenS contours, but this o↵ers only a marginal
improvement compared to base ⇤CDM (compare with Fig. 18;
see also the discussions in Leistedt et al. 2014 and Battye et al.
2014). For each of these models, the CFHTLenS results prefer
lower values of �8. Allowing for a higher neutrino mass lowers
�8 from Planck, but does not help alleviate the discrepancy with
the CFHTLenS data as the Planck data prefer a lower value of
H0. A joint analysis of the CFHTLenS likelihood with Planck
TT+lowP shows a ��2 < 1 preference for the extended neu-
trino models compared to base ⇤CDM, and the fits to Planck
TT+lowP are worse in all cases. In base ⇤CDM the CFHTLenS
data prefer a region of parameter space ��2 ⇡ 4 away from the
Planck TT+lowP+CFHTLenS joint fit, indicative of the tension
between the data sets. This is only slightly relieved to ��2 ⇡ 3
in the extended models.

In summary, modifications to the neutrino sector alone can-
not easily explain the discrepancies between Planck and other

44

the heaviest one, for instance, i = 4,

me↵
⌫ '

✓
T⌫

T 0
⌫a

◆3

m⌫4 . (4.2)

In Fig. 4, we plot how me↵
⌫ changes with T⌫i/T

0
⌫a in four cases, n = 1, 2, 3, 6. When more

light states are added with but fixed �Ne↵, the individual number density of each species is

decreased. Therefore, the total number of the heaviest state ⌫4 is reduced and me↵
⌫ then gets

smaller correspondingly. Other light states are just radiations and red-shifted, contributing

only negligibly in late Universe.

Now, we compare with the cosmological bounds. We should note that cosmological

bounds on sterile neutrino mass and abundance depend on the cosmological models and the

chosen data set [46–54]. Varying N cmb
e↵ and me↵

⌫ only, and using the Planck+WP+HighL

data combination, Planck collaboration was able to give bounds with 95% CL [9],

N cmb
e↵ < 3.91, me↵

⌫ < 0.59eV. (4.3)

If BAO data is further combined, these constraints get stronger,

N cmb
e↵ < 3.80, me↵

⌫ < 0.42eV. (4.4)

As we show in Fig. 4, if we take the first constraint, then n = 2 is on the marginal status.

The latter tighter bounds, Eq. 4.4, would require n > 3. From the trend shown in the four

cases of Fig. 4, it is easy to introduce more light sterile states in the discussed scenario to

relax the cosmological bounds.

V. CONCLUSION

In this paper, we have discussed a scenario that eV sterile neutrinos are partially ther-

malized before BBN era but equilibrated with active ones in later time. A mechanism

to realize such a scenario is to introduce secret self-interactions for sterile neutrinos. The

self-interactions can induce large matter potentials at high temperature, suppress the mix-

ing angle and block the production of sterile neutrinos from oscillations. They can also

lead to a rapid scattering-induced decoherent production of sterile neutrinos at later times

before CMB. When flavor equilibrium between active and sterile species is approached, it

surprisingly leads to a decrease of Ne↵.

9

Increasing n would make the 
number density of each  
species decrease.

YT, arXiv:1501.00059
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Connection with DM
Interaction with relativistic particles can induce a 
cut-off in the matter power spectrum by collisional 
damping, solving the “missing satellites” problem.

χ

χ̄

χ

χ̄

V

ν ν

5

if it is constant and

sDM�n,0 . 10�35 (mDM/GeV) cm2 , (8)

if it is proportional to the temperature squared.
Forthcoming polarisation data from e.g. Planck [4],

ACTpol [48], POLARBEAR [49] and SPIDER [50] will
improve these results and could provide us with a powerful
tool to study DM interactions in the future.

B. Large-Scale Structure

The effects of introducing DM–neutrino interactions on the
matter power spectrum, P(k), are shown in Fig. 2 (where
for simplicity, we assume that the cross section is constant).
We obtain a series of damped oscillations, which suppress
power on small scales (see Ref. [10]). For the cross sections
of interest, significant damping effects are restricted to the
non-linear regime (for which k & 0.2 h Mpc�1).

In general, the reduction of small-scale power for a DM
candidate is described by a transfer function, T (k), defined by

P(k) = T 2(k) PCDM(k) , (9)

where PCDM(k) is the equivalent matter power spectrum for
CDM.

For a non-interacting warm DM (WDM) particle, the
transfer function can be approximated by the fitting
formula [51]:

T (k) = [1+(ak)2n]�5/n , (10)

where

a =
0.049

h Mpc�1

⇣mWDM

keV

⌘�1.11
✓

WDM

0.25

◆0.11✓ h
0.7

◆1.22
, (11)

n ' 1.12 and mWDM is the mass of the warm thermal relic [52].
From Fig. 2, one can see that cosmological models

including DM–neutrino interactions can provide an initial
reduction of small-scale power in a similar manner to the
exponential cut-off of WDM. The presence of damped
oscillations is unimportant for setting limits since we are only
interested in the cut-off of the spectrum and the power is
already significantly reduced by the first oscillation. However,
we note that this difference could allow one to distinguish the
two models in high-resolution N-body simulations [53].

Using an analysis of the Lyman-a flux from the HIRES [54]
and MIKE spectrographs [55], Ref. [33] obtained a bound
on the free-streaming scale of a warm thermal relic,
corresponding to a particle mass of mWDM ' 3.3 keV (or
equivalently, a ' 0.012). This constraint is represented by
the solid grey curve in Fig. 2.

By comparing models of DM–neutrino interactions with
WDM, we can effectively rule out cross sections in
which the collisional damping scale is larger than the
maximally-allowed WDM free-streaming scale. Taking into
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FIG. 2: The impact of DM–neutrino interactions on the matter power
spectrum, where u ⌘ [sDM�n/sTh] [mDM/100 GeV]�1 (such that
u = 0 corresponds to no coupling). We take sDM�n to be constant
and use the ‘Planck + WP’ best-fit parameters from Ref. [32]. The
solid grey curve represents the most recent constraint on warm DM
models from the Lyman-a forest [33]. The new coupling produces
(power-law) damped oscillations, reducing the number of small-scale
structures with respect to vanilla LCDM [10].

account the freedom from the other cosmological parameters,
we obtain the conservative upper bounds:

sDM�n . 10�33 (mDM/GeV) cm2 , (12)

if the cross section is constant and

sDM�n,0 . 10�45 (mDM/GeV) cm2 , (13)

if it scales as the temperature squared.
These limits are significantly stronger than those obtained

from the CMB analysis in Sec. III A and will improve
further with forthcoming data from LSS surveys such as
SDSS-III [56] and Euclid [57]. However, CMB constraints
are important to compare to as they do not depend on the
non-linear evolution of the matter fluctuations.

We can now fix the cross section to be the maximum value
allowed by these constraints and redo our CMB analysis.
Applying Eq. (12) for a constant cross section, we obtain the
bounds on the cosmological parameters shown in Table II and
illustrated in Fig. 5. These results are similar to the case of no
interaction with Neff free to vary, corresponding to the second
line in Table I (especially after correcting the central value
of 100 h by 0.6, as explained in Footnote 6). The reason is
that the cross section imposed by the Lyman-a data is small
enough to not significantly modify the CMB spectrum.

Finally, we note that if more than one species were
responsible for the observed DM relic density (which is
the case that we consider here), larger values of the elastic
scattering cross section would be allowed.

Wilkinson et al, 1401.7597
1.2 Basic Elements of Galaxy Formation 11

t1

t2

t3

t4

Fig. 1.3. A schematic merger tree, illustrating the merger history of a dark matter halo. It shows, at three
different epochs, the progenitor halos that at time t4 have merged to form a single halo. The size of each
circle represents the mass of the halo. Merger histories of dark matter halos play an important role in
hierarchical theories of galaxy formation.

have larger amplitudes on smaller scales. Consequently, dark matter halos grow hierarchically, in
the sense that larger halos are formed by the coalescence (merging) of smaller progenitors. Such
a formation process is usually called a hierarchical or ‘bottom-up’ scenario.

The formation history of a dark matter halo can be described by a ‘merger tree’ that traces
all its progenitors, as illustrated in Fig. 1.3. Such merger trees play an important role in modern
galaxy formation theory. Note, however, that illustrations such as Fig. 1.3 can be misleading. In
CDM models part of the growth of a massive halo is due to merging with a large number of much
smaller halos, and to a good approximation, such mergers can be thought of as smooth accretion.
When two similar mass dark matter halos merge, violent relaxation rapidly transforms the orbital
energy of the progenitors into the internal binding energy of the quasi-equilibrium remnant. Any
hot gas associated with the progenitors is shock-heated during the merger and settles back into
hydrostatic equilibrium in the new halo. If the progenitor halos contained central galaxies, the
galaxies also merge as part of the violent relaxation process, producing a new central galaxy in
the final system. Such a merger may be accompanied by strong star formation or AGN activity if
the merging galaxies contained significant amounts of cold gas. If two merging halos have very
different mass, the dynamical processes are less violent. The smaller system orbits within the
main halo for an extended period of time during which two processes compete to determine its
eventual fate. Dynamical friction transfers energy from its orbit to the main halo, causing it to
spiral inwards, while tidal effects remove mass from its outer regions and may eventually dissolve
it completely (see Chapter 12). Dynamical friction is more effective for more massive satellites,
but if the mass ratio of the initial halos is large enough, the smaller object (and any galaxy
associated with it) can maintain its identity for a long time. This is the process for the build-up of
clusters of galaxies: a cluster may be considered as a massive dark matter halo hosting a relatively
massive galaxy near its center and many satellites that have not yet dissolved or merged with the
central galaxy.
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An Example Model

2

then calculate the e↵ective number of additional neutri-
nos�N cmb

e↵ and show it can give a value that is consistent
with all the observations within 1� level. Finally we give
a summary.

MODEL FOR CDM AND STERILE NEUTRINO

In addition to 2 right-handed gauge singlet Ni(i =
1, 2), we add to the SM a dark sector with U(1)X gauge

symmetry, X̂,�X , and �. All the new fields are SM
gauge singlets and �X and  are assigned with equal
U(1)X charges QX normalized to 1. Then the most gen-
eral gauge invariant renormalizable Lagrangian is given
by

L =LSM + N̄ii/@Ni �
✓
1

2
mR

ijN̄
c
i Nj + y↵iL̄↵HNi + h.c

◆
� 1

4
X̂µ⌫X̂

µ⌫ � 1

2
sin ✏X̂µ⌫B̂

µ⌫

+ �̄
�
i /D �m�

�
�+  ̄

�
i /D �m 

�
 +D†

µ�
†
XDµ�X �

⇣
fi�

†
XN̄ c

i  + gi�X  ̄Ni + h.c
⌘

� ��

"
�†X�X � v2�

2

#2

� ��H

"
�†X�X � v2�

2

# 
H†H � v2h

2

�
, (2)

where Ni is the right-handed gauge singlet neutrino, �X
is the dark Higgs field to break U(1)X , � is the fermionic
CDM and  is a Dirac fermion in the dark sector. 1 The
local gauge symmetry is broken by the following vacuum
configurations:

hHi = 1p
2

✓
0
vh

◆
, h�Xi = v�p

2
, (3)

where vh ' 246GeV and v� ⇠ O(MeV) for our interest.
There will be mixings among various fields after the

spontaneous gauge symmetry breaking. The gauge ki-
netic mixing term results in tiny mixing among the phys-
ical gauge fields, Aµ, Zµ and Xµ. Also there is a mixing
between Higgs fields h and � with

H ! vh + hp
2

and �X ! v� + �p
2

.

Two scalar excitations h and � can be expressed in terms
of mass eigenstates, H1 and H2, as

h = H1 cos↵�H2 sin↵, (4)

� = H1 sin↵+H2 cos↵, (5)

with a mixing angle ↵. Because of the Higgs portal in-
teraction (��H term) and the additional scalar �, elec-
troweak vacuum could be stable up to Planck scale with-
out additional new physics beyond the particle contents
presented in Eq. (2) (see Refs. [52] for example).

1 We could also add one very heavy N in the lagrangian for lepto-
genesis [51], which will not a↵ect our discussions in the following.

A novel feature of the model in this paper is that
there can be mixing among three active neutrinos ⌫↵,
sterile neutrinos Ni and  due to y↵iL̄↵HNi, fi�

†
XN̄i 

and gi�X  ̄Ni after the symmetry breaking. In order to
correctly explain the active neutrino oscillation data, at
least two Ns are needed, in which case two of ⌫a are
massive and the other one is massless. Then neutrino
mass eigenstates are composed of 7 Majorana neutrinos,
⌫a(a = 1, 2, 3) and ⌫si(i = 4, ..., 7). In the following dis-
cussion, if not specified, we shall use ⌫a and ⌫s to collec-
tively denote the three active neutrinos and four sterile
neutrinos, respectively.

The mixing also distributes the new U(1)X gauge inter-
action to all neutrinos with actual couplings depending
on the exact mixing angles. We assume that the mixing
angles between ⌫↵ and  are negligible, compared to the
mixing between Ni and  . This can be easily achieved
by adjusting y↵i’s, fi’s and gi’s. Because of the new dark
interaction for ⌫s, all sterile neutrinos ⌫s’s are not ther-
malized by oscillation from active neutrinos and thus can
contribute to the number of e↵ective neutrino by a proper
amount, �Ne↵ < 1 after BBN [48, 49].

The exact mass spectrum and mixing angles for ⌫s are
free, subject to conditions for fitting the data. We shall
take at least one ⌫s is around 1 eV and others as free,
lighter or heavier, and the mixing angles among ⌫s are
large enough for suppressing their production by oscilla-
tion from active neutrino.

Our model improves the similar model presented in
a recent paper [50] in two aspects. First, our model
is ultraviolet complete and thus renormalizable, while
Ref. [50] assumed a dimensional-5 operator for generating

P. Ko, YT, 1404.0236(PLB)

We introduce two right-handed gauge singlets, a 
dark sector with an extra U(1)X  gauge symmetry 

v� ⇠ O (MeV) for our interest
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Various Mixings
• Kinetic mixing term                   leads to 

three physical neutral gauge boson mixing, 

• Scalar interaction term  
   leads to Higgs mixing, 

!

•                                                 give rise to 

neutrino mixing.

1

2
sin ✏X̂µ⌫B̂

µ⌫

��H

"
�†
X�X �

v2�
2

# 
H†H � v2h

2

�

2

MODEL FOR CDM AND STERILE NEUTRINO

We consider the standard seesaw model with two right-
handed (RH) neutrinos (gauge singlet) Ni(i = 1, 2)1, and
add a dark sector with U(1)X gauge symmetry and cou-

pling gX , and dark photon field X̂µ, and dark Higgs field
�X and two di↵erent Dirac fermion  and � in the dark
sector. All the new fields are SM gauge singlets. We
assign equal U(1)X charges to �X and  , which is nor-
malized to 1. Then the most general gauge invariant
renormalizable Lagrangian is given by

L =L
SM

+ N̄ii/@Ni �
✓
1

2
mR

ijN̄
c
i Nj + y↵iL̄↵HNi + h.c
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� 1
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i /D �m 
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 +Dµ�
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XDµ�X �
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⌘
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�†X�X � v2�

2

#
2

� ��H

"
�†X�X � v2�

2

# 
H†H � v2h

2

�
, (2)

where L↵ are the SM left-handed lepton doublets, H is
the SM Higgs doublet, and B̂ is the field strength for SM
U(1)Y . The covariant derivative on a field K is defined
as

DµK = (@µ � iQKgXX̂µ)K (with K = �, ,�X) .

We have chosen the U(1)X charge for � in such a way that
the �X �̄Ni term is forbidden by U(1)X gauge symmetry
(otherwise � may decay if kinamatically allowed). Thus
� would be stable and the DM candidate.

The local gauge symmetry is broken by the following
vacuum configurations:

hHi = 1p
2

✓
0
vh

◆
, h�Xi = v�p

2
, (3)

where vh ' 246GeV and v� ⇠ O(MeV) for our inter-
est. There will be mixings among various fields after
the spontaneous gauge symmetry breaking. The gauge
kinetic mixing term results in tiny mixings among the
physical gauge fields, Aµ, Zµ and Xµ. Also there is a
mixing between Higgs fields h and � with

H ! vh + hp
2

and �X ! v� + �p
2

.

Two scalar excitations h and � can be expressed in terms
of mass eigenstates, H

1

and H
2

, as

h = H
1

cos↵�H
2

sin↵, (4)

� = H
1

sin↵+H
2

cos↵, (5)

with a mixing angle ↵. Because of the Higgs portal in-
teraction (��H term) and the additional scalar �, the

1
We could add more heavy N in the Lagrangian for leptogene-

sis [56], which will not a↵ect our discussions in the following.

electroweak vacuum could be stable up to Planck scale
without additional new physics beyond the particle con-
tents presented in Eq. (2) (see Refs. [57] for example).
A novel feature of this model is that there can be mix-

ing among three active neutrinos ⌫↵, sterile neutrinos
Ni and dark fermion  due to y↵iL̄↵HNi, fi�

†
XN̄i and

gi�X  ̄Ni after spontaneous gauge symmetry breaking.
In order to correctly explain the active neutrino oscilla-
tion data, at least two N ’s are needed, in which case two
of ⌫a are massive and the other one is massless. Then
after diagonalization of 7⇥ 7 mass matrix for ⌫↵, Ni and
 , mass eigenstates are composed of 7 Majorana neutri-
nos, ⌫a(a = 1, 2, 3) and ⌫si(i = 4, ..., 7), or collectively
⌫i = ⌫iL + ⌫ciR:

0
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where U is the unitary mixing matrix that diagonalizes
the mass matrix M,

M =

0
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In the following discussion, if not specified, we shall use
⌫a and ⌫s to collectively denote three active neutrinos
and four sterile neutrinos, respectively.
The mixing also distributes the new U(1)X

gauge/Yukawa interaction to all neutrinos with ac-
tual couplings depending on the exact mixing angles.
We assume that the mixing angles between ⌫↵ and  
are negligible, compared to the mixing between Ni and

y↵iL̄↵HNi, fi�
†
XN̄ c

i  , gi�X  ̄Ni
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Physical Spectrum
• Neutrino Mixing 
!
!
!
!
!

• Dark Matter, dark gauge boson Xµ, dark 
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Thermal History

• DM chemically decoupled, determining its relic density, 
• Then the whole dark sector decoupled from SM thermal 

bath, and entropy is conserved separately. Effective 
number of neutrinos can be calculated. 

• Relativistic particles at CMB time contribute as hot dark 
matter. Sterile neutrinos are not thermalized before BBN 
due to the new interaction.
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Fig. 1. Feynman diagrams for (a) χχ̄ and (b) χνs scattering where i ̸= j for νi ’s 
Majorana nature, ν̄iγ µνi = 0.

data with neutrino oscillation experiments within 1σ rather than 
only within 2σ as discussed in [55].

3. Thermal history and CDM controversies

Communication between dark sector and SM particles or ther-
mal history before BBN time is determined mostly by two mix-
ing parameters, sinϵ and λφH . sinϵ is constrained by DM direct 
searches around sinϵ < 10−9 for O(TeV) χ and O(MeV) Xµ [58]. 
And λφH as small as 10−8 would be enough to thermalize the dark 
sector at T ∼ TeV [59]. After the cross sections of dark particles’ 
scattering-off SM particle drop below the expansion rate of the 
Universe, the dark sector decouples from the thermal bath of the 
visible sector and entropy density would be conserved separately 
in each sector. The decoupling temperature of the dark sector, T dec

x , 
would determine how much (Neff is left at a later time. The exact 
value for (Neff will be given in the following.

Chemical decoupling of DM from the heat bath sets its relic 
density today. After the temperature drops below mχ , χ starts 
to leave the chemical equilibrium and would finally freeze out at 
T ≃ mχ/25. To account for the correct thermal relic density, the 
thermal cross section for χχ̄ annihilation ⟨σ v⟩ should be around 
3 × 10−26 cm3/s. The dominant annihilation channel in this model 
is χχ̄ → Xµ Xµ , and the relic density requires the gauge coupling 
g X to be [60]

g X ∼ 0.50
Q χ

×
(

0.114
Ωcdm

) 1
4
(

mχ

TeV

) 1
2

, (6)

where Q χ is the U (1)X charge of χ and shall be taken ∼O (1) for 
definiteness in later discussion. We shall focus on the CDM χ with 
mass ∼TeV, which is preferred region as shown in Ref. [28].

Kinetic decoupling of χ from νs happens at much later time 
when the elastic scattering rate for χνs ↔ χνs drops below some 
value determined by Hubble parameter H . The Feynman diagram 
is shown in Fig. 1(b). For a thermal distribution of sterile neutrino, 
the decoupling temperature is given by

T kd
χ ≃ 1 keV

(
0.1
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)(
Tγ

Tνs

) 3
2

kd
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mχ

TeV

) 1
4
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mX
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)
, (7)

where Tγ and Tνs are the temperatures of CMB and sterile neu-
trinos, respectively. Except that DM is dominantly scattering-off
sterile neutrinos in our model rather than active ones, the above 
formula is similar to the one in Ref. [28] and gives the approxi-
mate order-of-magnitude estimation, although the precise formula 
may depend on the neutrino mixing angles from the couplings 
ν̄iγ µν j Xµ .

The kinetic decoupling of DM from the relativistic particles im-
prints on the matter power spectrum, for which there are two 
relevant scales [61,62]: the comoving horizon τkd ∝ 1/T kd

χ and 
free-streaming length (T kd

χ /mχ )1/2τkd. For our interested regime, 

Fig. 2. σT /mχ as function of relative velocity for mχ = 1 TeV, mX = 4 MeV and 
gX = 0.5.

τkd is much larger and relevant. Thus T kd
χ can be translated into a 

cut-off in the power spectrum of matter density perturbation with

Mcut = 4π

3
ρM(cτkd)3 ∼ 2 × 108

( T kd
χ

keV

)−3

M⊙,

where ρM is the sum of matter densities today, ρCDM + ρbaryon. 
Then Mcut ∼ O(109)M⊙ can be easily obtained for explanation of 
missing satellites problem for O(TeV) χ and O(MeV) Xµ .

Because of the light mediator Xµ , the DM self-scattering χχ̄ →
χχ̄ can have a large cross section, σ ∼ 1 cm2/g at small scales, 
while relative small values at Milky Way and larger scales. This 
can flatten the dark halo, decrease the total mass of halo centre 
and resolve both cusp vs. core and too-big-to-fail controversies. The 
quantity that is usually used to describe the efficiency for the DM–
DM self-scattering is the transfer cross section

σT ≡
∫

dΩ(1 − cos θ)
dσ

dΩ
.

σT can be easily calculated from Fig. 1(a) in the perturbative re-
gime αXmχ < mX as

σT = 8π

m2
X

β2
[

ln
(
1 + R2) − R2

1 + R2

]
,

αX = g2
X

4π
, β = 2αXmX

mχ v2
rel

, R = mχ vrel

mX
,

where vrel is the relative velocity of χ and χ̄ . vrel is around 20, 
200, 1000 km/s for Dwarf galaxies, Milky Way and the galaxy clus-
ters, respectively. In the non-perturbative regime αXmχ > mX , we 
have [22]

σT =

⎧
⎪⎪⎪⎨
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m2
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β2 ln(1 + β−1) β ! 0.2
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As an illustration, in Fig. 2, we show the case with mχ = 1 TeV, 
mX = 4 MeV and g X = 0.5, in which σT /mχ can be achieved prop-
erly for Dwarf galaxies with vvel ≃ 20 km/s.
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Fig. 1. Feynman diagrams for (a) χχ̄ and (b) χνs scattering where i ̸= j for νi ’s 
Majorana nature, ν̄iγ µνi = 0.
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where ρM is the sum of matter densities today, ρCDM + ρbaryon. 
Then Mcut ∼ O(109)M⊙ can be easily obtained for explanation of 
missing satellites problem for O(TeV) χ and O(MeV) Xµ .

Because of the light mediator Xµ , the DM self-scattering χχ̄ →
χχ̄ can have a large cross section, σ ∼ 1 cm2/g at small scales, 
while relative small values at Milky Way and larger scales. This 
can flatten the dark halo, decrease the total mass of halo centre 
and resolve both cusp vs. core and too-big-to-fail controversies. The 
quantity that is usually used to describe the efficiency for the DM–
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where vrel is the relative velocity of χ and χ̄ . vrel is around 20, 
200, 1000 km/s for Dwarf galaxies, Milky Way and the galaxy clus-
ters, respectively. In the non-perturbative regime αXmχ > mX , we 
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As an illustration, in Fig. 2, we show the case with mχ = 1 TeV, 
mX = 4 MeV and g X = 0.5, in which σT /mχ can be achieved prop-
erly for Dwarf galaxies with vvel ≃ 20 km/s.
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scattering-off SM particle drop below the expansion rate of the 
Universe, the dark sector decouples from the thermal bath of the 
visible sector and entropy density would be conserved separately 
in each sector. The decoupling temperature of the dark sector, T dec
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would determine how much (Neff is left at a later time. The exact 
value for (Neff will be given in the following.

Chemical decoupling of DM from the heat bath sets its relic 
density today. After the temperature drops below mχ , χ starts 
to leave the chemical equilibrium and would finally freeze out at 
T ≃ mχ/25. To account for the correct thermal relic density, the 
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3 × 10−26 cm3/s. The dominant annihilation channel in this model 
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mass ∼TeV, which is preferred region as shown in Ref. [28].

Kinetic decoupling of χ from νs happens at much later time 
when the elastic scattering rate for χνs ↔ χνs drops below some 
value determined by Hubble parameter H . The Feynman diagram 
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where Tγ and Tνs are the temperatures of CMB and sterile neu-
trinos, respectively. Except that DM is dominantly scattering-off
sterile neutrinos in our model rather than active ones, the above 
formula is similar to the one in Ref. [28] and gives the approxi-
mate order-of-magnitude estimation, although the precise formula 
may depend on the neutrino mixing angles from the couplings 
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prints on the matter power spectrum, for which there are two 
relevant scales [61,62]: the comoving horizon τkd ∝ 1/T kd
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free-streaming length (T kd
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where ρM is the sum of matter densities today, ρCDM + ρbaryon. 
Then Mcut ∼ O(109)M⊙ can be easily obtained for explanation of 
missing satellites problem for O(TeV) χ and O(MeV) Xµ .

Because of the light mediator Xµ , the DM self-scattering χχ̄ →
χχ̄ can have a large cross section, σ ∼ 1 cm2/g at small scales, 
while relative small values at Milky Way and larger scales. This 
can flatten the dark halo, decrease the total mass of halo centre 
and resolve both cusp vs. core and too-big-to-fail controversies. The 
quantity that is usually used to describe the efficiency for the DM–
DM self-scattering is the transfer cross section

σT ≡
∫

dΩ(1 − cos θ)
dσ

dΩ
.

σT can be easily calculated from Fig. 1(a) in the perturbative re-
gime αXmχ < mX as
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where vrel is the relative velocity of χ and χ̄ . vrel is around 20, 
200, 1000 km/s for Dwarf galaxies, Milky Way and the galaxy clus-
ters, respectively. In the non-perturbative regime αXmχ > mX , we 
have [22]
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As an illustration, in Fig. 2, we show the case with mχ = 1 TeV, 
mX = 4 MeV and g X = 0.5, in which σT /mχ can be achieved prop-
erly for Dwarf galaxies with vvel ≃ 20 km/s.
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Kinetic decoupling
Kinetic decoupling of � from ⌫s happens when the elastic scattering rate for

�⌫s $ �⌫s drops below Hubble parameter H. The decoupling temperature is
given by
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The kinetic decoupling of DM from the relativistic particles imprints on the
matter power spectrum, for which there are two relevant scales: the comoving
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Then Mcut ⇠ O(109)M� can be easily obtained for explanation of missing

satellites problem for O(TeV) � and O(MeV) Xµ.
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Simulation

• DM-γ/v interaction ~
4 C. Bœhm et al.

Figure 2. The simulated distribution of DM in a MW-like halo. The shading represents the DM density, with brighter colours indicating

higher densities. The panels show the halo in simulations of di↵erent cosmological models: CDM (top left), �CDM with �
DM�� =

2⇥ 10

�9 �
Th

(m
DM

/GeV) (bottom left), the equivalent model of WDM with m
DM

= 1.24 keV (top right) and �CDM’ with �
DM�� =

10

�7 �
Th

(m
DM

/GeV) (bottom right). The large number of subhaloes observed in the top-left panel illustrates the MW satellite problem.

By replacing CDM with WDM (top right), the number of subhaloes is reduced dramatically. A similar paucity of subhaloes is seen in

the bottom-right panel, in which the DM–photon interaction strength is just allowed by CMB constraints (Wilkinson et al. 2014). This

model underestimates the number of MW satellites. The model in the bottom-left panel has an interaction strength that is 1000 times

smaller than the CMB limit, in which the number of subhaloes is a much better match to the observed number of satellites.
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Figure 3. The number of satellite galaxies in a MW-like DM halo as a function of their maximal circular velocity: CDM (left), �CDM

with �
DM�� = 2 ⇥ 10

�9 �
Th

(m
DM

/GeV) (middle) and �CDM’ with �
DM�� = 10

�7 �
Th

(m
DM

/GeV) (right). The lines and shading

show the mean cumulative number counts of MW satellites for a simulated DM halo in the mass bin (2.3 � 2.7) ⇥ 10

12

M� and the 1�
uncertainty. Also plotted are the observational results (Willman 2010, solid black lines), which are then corrected for the completeness

of the Sloan Digital Sky Survey coverage (dashed lines). The maximal circular velocity, V
max

, is selected as a measure for the mass and

is determined directly from the simulations (it is derived from the observed stellar line-of-sight velocity dispersions using the assumption

that V
max

=

p
3�?; Klypin et al. 1999). The number of selected MW-like haloes are 11, 13 and 3 for CDM, �CDM and �CDM’,

respectively (the reduced scatter for �CDM’ is simply a result of the small-number statistics in this extreme model).

lead to even stricter constraints on the interaction cross
section. A future paper will present the non-linear struc-
ture formation for such models in greater depth to exam-
ine whether one can solve the other small-scale problems of
CDM (Schewtschenko et al. 2014).

Recent simulations with DM and baryons have shown

that baryonic physics can alter the appearance of the sub-
halo mass function (Sawala et al. 2014). A definitive calcula-
tion would include the full impact of these e↵ects, in particu-
lar, supernovae feedback and photoionization heating of the
interstellar medium, but this is deferred to a future paper.
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Figure 2. The simulated distribution of DM in a MW-like halo. The shading represents the DM density, with brighter colours indicating

higher densities. The panels show the halo in simulations of di↵erent cosmological models: CDM (top left), �CDM with �
DM�� =

2⇥ 10

�9 �
Th

(m
DM

/GeV) (bottom left), the equivalent model of WDM with m
DM

= 1.24 keV (top right) and �CDM’ with �
DM�� =

10

�7 �
Th

(m
DM

/GeV) (bottom right). The large number of subhaloes observed in the top-left panel illustrates the MW satellite problem.

By replacing CDM with WDM (top right), the number of subhaloes is reduced dramatically. A similar paucity of subhaloes is seen in

the bottom-right panel, in which the DM–photon interaction strength is just allowed by CMB constraints (Wilkinson et al. 2014). This

model underestimates the number of MW satellites. The model in the bottom-left panel has an interaction strength that is 1000 times

smaller than the CMB limit, in which the number of subhaloes is a much better match to the observed number of satellites.
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Figure 3. The number of satellite galaxies in a MW-like DM halo as a function of their maximal circular velocity: CDM (left), �CDM

with �
DM�� = 2 ⇥ 10

�9 �
Th

(m
DM

/GeV) (middle) and �CDM’ with �
DM�� = 10

�7 �
Th

(m
DM

/GeV) (right). The lines and shading

show the mean cumulative number counts of MW satellites for a simulated DM halo in the mass bin (2.3 � 2.7) ⇥ 10

12

M� and the 1�
uncertainty. Also plotted are the observational results (Willman 2010, solid black lines), which are then corrected for the completeness

of the Sloan Digital Sky Survey coverage (dashed lines). The maximal circular velocity, V
max

, is selected as a measure for the mass and

is determined directly from the simulations (it is derived from the observed stellar line-of-sight velocity dispersions using the assumption

that V
max

=

p
3�?; Klypin et al. 1999). The number of selected MW-like haloes are 11, 13 and 3 for CDM, �CDM and �CDM’,

respectively (the reduced scatter for �CDM’ is simply a result of the small-number statistics in this extreme model).

lead to even stricter constraints on the interaction cross
section. A future paper will present the non-linear struc-
ture formation for such models in greater depth to exam-
ine whether one can solve the other small-scale problems of
CDM (Schewtschenko et al. 2014).

Recent simulations with DM and baryons have shown

that baryonic physics can alter the appearance of the sub-
halo mass function (Sawala et al. 2014). A definitive calcula-
tion would include the full impact of these e↵ects, in particu-
lar, supernovae feedback and photoionization heating of the
interstellar medium, but this is deferred to a future paper.
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Summary
• Introduction of three controversies in CDM 

paradigm, cusp-vs-core, too-big-to-fail, and 
missing satellites problems. 

• Self-interacting DM is an attractive solution. 
• eV sterile neutrino is motivated from anomalies, 

but cosmologically disfavored, relaxed if large 
lepton asymmetry, new interactions or more light 
species are introduced.  

• We study a simple model νΛMDM based on an 
extra U(1) gauge symmetry that connects sterile 
neutrinos and DM.
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Thanks for your attention.


