Neutrino Physics at the LHC and beyond

BHUPAL DEV

The University of Manchester \rightarrow Technische Universität München

F. F. Deppisch, BD and A. Pilaftsis, New J. Phys. **17**, 075019 (2015). BD and R. N. Mohapatra, arXiv:1508.0xxxx [hep-ph].

> Crossroads of Neutrino Physics, MITP, Mainz, Germany

> > August 10, 2015

ПП

The University of Manchester

Outline

Seesaw Mechanism

- Low-scale Seesaw
 - Theoretical Aspects
 - Experimental Prospects

• Hints of Low-scale Seesaw at the LHC?

Conclusion

Neutrino Mass

A Simple Paradigm

- A *natural* way to generate neutrino masses is by breaking (B L).
- Parametrized through the dim-5 operator $\frac{1}{\Lambda}(LLHH)$. [Weinberg (PRL '79)]
- Three tree-level realizations: Type I, II, III Seesaw mechanism.

- Majorana mass term breaks *L* by two units.
- Other profound implications of seesaw: Leptogenesis, Dark Matter, Vacuum Stability, Inflation, ...[Alekhin *et al.* '15]
- A pertinent question in the LHC era:

Is LNV or LFV as predicted by seesaw observable at the LHC?

Type-I Seesaw

[Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80); Yanagida '79; Glashow '79; Gell-Mann, Ramond, Slansky '79; Schechter, Valle (PRD '80)]

- Seesaw messenger: SM-singlet fermions (RH neutrinos).
- A Majorana mass term $M_N \overline{N}_R^C N_R$, in addition to the Dirac mass $M_D = v Y_N$.
- In the flavor basis $\{\nu_L^C, N\}$, leads to the mass matrix

$$\mathcal{M}_{
u} = \left(egin{array}{cc} 0 & M_D \ M_D^\mathsf{T} & M_N \end{array}
ight)$$

- In the seesaw approximation $||M_D M_N^{-1}|| \ll 1$,
 - $M_{\nu}^{\text{light}} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$ is the light neutrino mass matrix.
 - $V_{\ell N} \equiv M_D M_N^{-1}$ is the active-sterile neutrino mixing.
- From a bottom-up approach, no definite prediction for the seesaw scale.
- Can find a natural explanation in UV-complete models.

Two Key Aspects of Seesaw

Majorana Mass

LNV: Neutrinoless Double Beta Decay

Does not probe the active-sterile mixing if the mixed diagram is sub-dominant. [Nemevsek, Senjanović, Tello (PRL '13); BD, Goswami, Mitra, Rodejohann (PRD Rapid '13)]

Active-sterile Mixing

- Non-unitarity of the PMNS matrix.
- LFV (e.g. $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, μe conversion in nuclei)

 Does not prove the Majorana nature since a Dirac neutrino can also give large LFV effects.
 [BD, Mohapatra (PRD '10); Forero, Morisi, Tortola, Valle (JHEP '11)]

Seesaw at Colliders

- Both aspects of seesaw can be directly tested in collider experiments.
- 'Smoking gun' signal at hadron colliders: Same-sign dilepton + two jets with no E_T. [Keung, Senjanović (PRL '83)]

In the minimal SM seesaw, requires *both* the Majorana nature of *N* at TeV scale and a 'large' heavy-light mixing to have any observable effect.
 [Pilaftsis (ZPC '92); Han, Zhang (PRL '06); del Aguila, Aguilar-Saavedra, Pittau (JHEP '07); BD, Pilaftsis, Yang (PRL '14)]

Low-Scale Seesaw with Large Mixing

In the traditional seesaw,

$$V_{lN}\simeq \sqrt{rac{M_
u}{M_N}}\lesssim 10^{-6}\sqrt{rac{100~{
m GeV}}{M_N}}$$

- However, possible to have 'large' mixing with TeV-scale M_N by exploiting the matrix structures of M_D and M_N. [Pilaftsis (ZPC '92); Kersten, Smirnov (PRD '07); de Gouvea '07; Gavela, Hambye, D. Hernandez, P. Hernandez (JHEP '09); Ibarra, Molinaro, Petcov (JHEP '10); Adhikari, Raychaudhuri (PRD '11); Mitra, Senjanović, Vissani (NPB '12)]
- Essentially two ways: (i) symmetry (ii) anarchy (fine-tuning).
- In principle, can generate large LNV and/or LFV effects.

An Example

[Kersten, Smirnov (PRD '07)]

$$M_D = \begin{pmatrix} m_1 & \delta_1 \\ m_2 & \delta_2 \\ m_3 & \delta_3 \end{pmatrix}$$
 and $M_N = \begin{pmatrix} 0 & M_1 \\ M_1 & 0 \end{pmatrix}$ with $\delta_i \ll m_i$.

- In the limit $\delta_i \to 0$, light neutrino masses given by $M_{\nu} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$ vanish, while the mixing given by $V_{ij} \sim m_i/M_1$ can be large.
- The textures can be stabilized by invoking discrete symmetries.
- Also possible to embed in L-R models. [BD, Lee, Mohapatra (PRD '13)]
- In the minimal seesaw, LNV is suppressed due to quasi-degeneracy of the heavy neutrinos.
- In the L-R seesaw, LNV effects could be large due to additional gauge interactions. [BD, Mohapatra (Snowmass '13); BD, Lee, Mohapatra (PRD '13)]

Another Example

[Pilaftsis (ZPC '92)]

$$M_D = \left(egin{array}{c} 0 & 0 \ a & b \ c & d \end{array}
ight) ext{ and } M_N = \left(egin{array}{c} A & 0 \ 0 & B \end{array}
ight).$$

• Assuming
$$a \neq 0, M_{\nu} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}} = 0$$
 if

$$d = \frac{bc}{a}, \qquad B = -\frac{b^2}{a^2}A$$

• For $b \neq a$, LNV in the μ and τ sectors can be potentially large.

- Include radiative effects and check whether all neutrino mixing angles can be reproduced. [BD (ongoing)]
- Mixing in the electron sector cannot be large due to $0\nu\beta\beta$ constraints. [Lopez-Pavon, Molinaro, Petcov '15]

A (More) Natural Low-scale Seesaw

- Inverse seesaw mechanism [Mohapatra (PRL '86); Mohapatra, Valle (PRD '86)]
- Add two sets of singlet fermions carrying opposite lepton numbers.
- Full neutrino mass matrix in the flavor basis $\{\nu_{L,l}^{C}, N_{R,\alpha}, S_{L,\beta}^{C}\}$:

$$\mathcal{M}_{\nu} = \begin{pmatrix} \mathbf{0} & M_D & \mathbf{0} \\ M_D^{\mathsf{T}} & \mathbf{0} & M_N^{\mathsf{T}} \\ \mathbf{0} & M_N & \mu_S \end{pmatrix} \equiv \begin{pmatrix} \mathbf{0} & \mathcal{M}_D \\ \mathcal{M}_D^{\mathsf{T}} & \mathcal{M}_N \end{pmatrix}$$

- Light neutrino mass matrix: $M_{\nu} = M_D M_N^{-1} \mu_S M_N^{-1^{T}} M_D^{T} + \mathcal{O}(\mu_S^3).$
- *L*-symmetry is restored for $\mu_S \rightarrow 0$.
- Can naturally allow for large mixing:

$$V_{lN} \simeq \sqrt{\frac{M_{
u}}{\mu_S}} pprox 10^{-2} \sqrt{\frac{1 \text{ keV}}{\mu_S}}$$

A (More) Natural Low-scale Seesaw

- Inverse seesaw mechanism [Mohapatra (PRL '86); Mohapatra, Valle (PRD '86)]
- Add two sets of singlet fermions carrying opposite lepton numbers.
- Full neutrino mass matrix in the flavor basis $\{\nu_{L,l}^{C}, N_{R,\alpha}, S_{L,\beta}^{C}\}$:

$$\mathcal{M}_{\nu} = \begin{pmatrix} \mathbf{0} & M_D & \mathbf{0} \\ M_D^{\mathsf{T}} & \mathbf{0} & M_N^{\mathsf{T}} \\ \mathbf{0} & M_N & \mu_S \end{pmatrix} \equiv \begin{pmatrix} \mathbf{0} & \mathcal{M}_D \\ \mathcal{M}_D^{\mathsf{T}} & \mathcal{M}_N \end{pmatrix}$$

- Light neutrino mass matrix: $M_{\nu} = M_D M_N^{-1} \mu_S M_N^{-1^T} M_D^T + \mathcal{O}(\mu_S^3)$.
- *L*-symmetry is restored for $\mu_S \rightarrow 0$.
- Can naturally allow for large mixing:

$$V_{lN} \simeq \sqrt{\frac{M_{\nu}}{\mu_S}} \approx 10^{-2} \sqrt{\frac{1 \text{ keV}}{\mu_S}}$$

Collider Signal for Inverse Seesaw

• For small *L*-breaking, LNV signal of same-sign dileptons is suppressed:

$$\mathcal{A}_{ ext{LNV}}(ar{s}) = -V_{lN}^2rac{2\Delta M_N}{\Delta M_N^2+\Gamma_N^2} + \mathcal{O}\left(rac{\Delta M_N}{M_N}
ight)$$

for $\Delta M_N \lesssim \Gamma_N$, where $\Delta M_N \simeq \mu_S$.

- Exception: Resonant enhancement for $\Delta M_N \simeq \Gamma_N$. [Bray, Lee, Pilaftsis (NPB '07)]
- Opposite-sign dilepton signal suffers from a large SM background.
- Golden channel is the trilepton mode: [del Aguila, Aguilar-Saavedra (NPB '09); Chen, BD (PRD '12); Das, BD, Okada (PLB '14)]

Generalized Inverse Seesaw

$$\mathcal{M}_{
u} = egin{pmatrix} \mathbf{0} & M_D & \mathbf{0} \ M_D^\mathsf{T} & \mu_R & M_N^\mathsf{T} \ \mathbf{0} & M_N & \mu_S \end{pmatrix}$$

- At tree-level, μ_R does not affect the light neutrino masses.
- Only affects at loop-level through EW radiative corrections. [Pilaftsis (ZPC '92); BD, Pilaftsis (PRD '12)]

$$M_{\nu}^{1-\text{loop}} = \frac{\alpha_{W}}{16\pi M_{W}^{2}} \left[\frac{M_{H}^{2}}{M_{N}^{2} - M_{H}^{2}} \ln\left(\frac{M_{N}^{2}}{M_{H}^{2}}\right) + \frac{3M_{Z}^{2}}{M_{N}^{2} - M_{Z}^{2}} \ln\left(\frac{M_{N}^{2}}{M_{Z}^{2}}\right) \right] M_{D} \mu_{R} M_{D}^{\mathsf{T}}$$

• Sizable LNV through μ_R . [BD, Pilaftsis (PRD '12); Parida, Patra (PLB '13); BD, Mohapatra '15]

Direct Search Limits from LHC

[ATLAS Collaboration '15]

Heavy Neutrino Production at the LHC

• LHC searches so far considered only the Drell-Yan production process

• Many other production modes, but most of them are negligible.

[Datta, Guchait, Pilaftsis (PRD '94)]

New Dominant Production Mechanism

[BD, Pilaftsis, Yang (PRL '14); Das, BD, Okada (PLB '14); Alva, Han, Ruiz (JHEP '15)]

Improved Upper Limit on Mixing

Direct Limit for Dirac Neutrinos

[Das, BD, Okada (PLB '14)]

Direct Limits from LEP

Sensitivity at ILC

[Banerjee, BD, Ibarra, Mandal, Mitra '15]]

Summary Plot (Electron Sector)

[Deppisch, BD, Pilaftsis (NJP '15); updated from Atre, Han, Pascoli, Zhang (JHEP '09)]

Summary Plot (Muon Sector)

[Deppisch, BD, Pilaftsis (NJP '15); updated from Atre, Han, Pascoli, Zhang (JHEP '09)]

Summary Plot (Tau Sector)

[Deppisch, BD, Pilaftsis (NJP '15); updated from Atre, Han, Pascoli, Zhang (JHEP '09)]

$U(1)_{B-L}$ Seesaw

[Deppisch, Desai, Valle (PRD Rapid '14)]

Left-Right Seesaw

[Pati, Salam (PRD '74); Mohapatra, Pati (PRD '75); Mohapatra, Senjanović (PRD '75)] New contribution to Drell-Yan process via *W*_R exchange. [Keung, Senjanović (PRL '83)]

[CMS Collaboration (EPJC '14)]

L-R Seesaw Phase Diagram

[Chen, BD, Mohapatra (PRD '13); BD, Kim, Mohapatra (ongoing)]

L-R Seesaw at LHC 14

[BD, Kim, Mohapatra (ongoing)]

L-R Seesaw at 100 TeV Collider (in China?)

[BD, Kim, Mohapatra (preliminary)]

Distinguishing RR, RL and LL

- Exploit helicity correlations. [Han, Lewis, Ruiz, Si (PRD '13)]
- Distinct features in kinematic and angular distributions.

[Chen, BD, Mohapatra (PRD '13)]

Also look for kinematic endpoints of invariant mass observables. [BD, Kim,

Hint of L-R Symmetry at the LHC?

[CMS Collaboration (EPJC '14)]

1. Too large cross section. Solution: $g_R < g_L$.

[Deppisch, Gonzalo, Patra, Sahu, Sarkar (PRD '14)]

2. No $\mu\mu jj$ excess. Solution: Small $V_{\mu N}$.

[Deppisch, Gonzalo, Patra, Sahu, Sarkar (PRD '14)]

3. No ejj excess. Solution?

4. Only 1 out of 14 is of same-sign dielectron. Solution?

A common solution to all the issues by invoking the generalized inverse seesaw within LRSM. [BD, Mohapatra '15]

$$\mathcal{M}_{
u} = egin{pmatrix} \mathbf{0} & M_D & \mathbf{0} \ M_D^\mathsf{T} & \mu_R & M_N^\mathsf{T} \ \mathbf{0} & M_N & \mu_S \end{pmatrix}$$

• The flavor eigenstate N_{ℓ} is a mixture of two mass eigenstates with opposite *CP*:

$$M_{N_{1,2}} \simeq \frac{1}{2} \left[\mu_R \pm \sqrt{\mu_R^2 + 4M_N^2} \right]$$

 The same-sign dilepton signal not necessarily zero (Dirac) or equal to opposite sign (Majorana):

$$r \equiv rac{\mathcal{A}_{\ell^+\ell^+ jj}}{\mathcal{A}_{\ell^+\ell^- jj}} \simeq \sqrt{rac{\mu_R^2}{\mu_R^2 + 4M_N^2}}$$

- 3. No ejj excess. Solution?
- 4. Only 1 out of 14 is of same-sign dielectron. Solution?
- A common solution to all the issues by invoking the generalized inverse seesaw within LRSM. [BD, Mohapatra '15]

$$\mathcal{M}_{
u} \;=\; egin{pmatrix} \mathbf{0} & M_D & \mathbf{0} \ M_D^\mathsf{T} & \mu_R & M_N^\mathsf{T} \ \mathbf{0} & M_N & \mu_S \end{pmatrix}$$

• The flavor eigenstate N_{ℓ} is a mixture of two mass eigenstates with opposite *CP*:

$$M_{N_{1,2}} \simeq rac{1}{2} \left[\mu_R \pm \sqrt{\mu_R^2 + 4M_N^2}
ight]$$

 The same-sign dilepton signal not necessarily zero (Dirac) or equal to opposite sign (Majorana):

$$r~\equiv~rac{{\cal A}_{\ell^+\ell^+jj}}{{\cal A}_{\ell^+\ell^-jj}}~\simeq~\sqrt{rac{\mu_R^2}{\mu_R^2+4M_N^2}}$$

WZ Excess

[ATLAS Collaboration '15]

WH Excess

[CMS Collaboration '15]

Dijet Excess

Fitting Diboson and Dijet Excesses in LRSM

[Brehmer, Hewett, Kopp, Rizzo, Tattersall '15]

Can also fit *eejj* Excess

Gauge Coupling Unification to SO(10)

- Predicts the low-scale value of g_R.
- No need of SUSY!
- Need $SU(2)_{L,R}$ -triplet fermions: Could serve as the DM.
- Also need SU(3)_c-octet scalars: interesting signals at the LHC.

Conclusion

- Neutrino oscillations: first conclusive experimental evidence of BSM.
- Important to explore the experimental signatures of neutrino mass models to understand the underlying new physics.
- Low-scale neutrino mass models can lead to observable signals at the Energy Frontier.
- Complementary tests in low-energy experiments at the Intensity Frontier.
- Also important consequences at the Cosmic Frontier, e.g. baryon asymmetry via leptogenesis and Dark Matter.
- Left-Right Symmetric Model provides a natural framework for low-scale seesaw.
- LHC might have already seen hints of a W_R boson.
- All the observed excesses around 2 TeV can be consistently explained within a simple, testable, UV-complete framework.

Conclusion

- Neutrino oscillations: first conclusive experimental evidence of BSM.
- Important to explore the experimental signatures of neutrino mass models to understand the underlying new physics.
- Low-scale neutrino mass models can lead to observable signals at the Energy Frontier.
- Complementary tests in low-energy experiments at the Intensity Frontier.
- Also important consequences at the Cosmic Frontier, e.g. baryon asymmetry via leptogenesis and Dark Matter.
- Left-Right Symmetric Model provides a natural framework for low-scale seesaw.
- LHC might have already seen hints of a W_R boson.
- All the observed excesses around 2 TeV can be consistently explained within a simple, testable, UV-complete framework.

THANK YOU.