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A Simple Paradigm

@ A natural way to generate neutrino masses is by breaking (B — L).
@ Parametrized through the dim-5 operator +(LLHH). [Weinberg (PRL '79)]
@ Three tree-level realizations: Type I, II, lll Seesaw mechanism.

@ Majorana mass term breaks L by two units.

@ Other profound implications of seesaw: Leptogenesis, Dark Matter,
Vacuum Stability, Inflation, ...[Alekhin et al. '15]

@ A pertinent question in the LHC era:

Is LNV or LFV as predicted by seesaw observable at the LHC?




Type-l Seesaw

[Minkowski (PLB '77); Mohapatra, Senjanovi¢ (PRL '80); Yanagida '79; Glashow '79; Gell-Mann, Ramond,
Slansky '79; Schechter, Valle (PRD ’80)]

@ Seesaw messenger: SM-singlet fermions (RH neutrinos).
@ A Majorana mass term MNﬁ,fNR, in addition to the Dirac mass Mp = vYy.
@ In the flavor basis {v¢, N}, leads to the mass matrix

0 Mp
My = ( M}, My >
@ In the seesaw approximation ||MpMy'|| < 1,

o MU ~ _MpM,y ' M} is the light neutrino mass matrix.

e Viv = MpMy ' is the active-sterile neutrino mixing.

@ From a bottom-up approach, no definite prediction for the seesaw scale.
@ Can find a natural explanation in UV-complete models.



Two Key Aspects of Seesaw

Majorana Mass
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LNV: Neutrinoless Double Beta Decay
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Does not probe the active-sterile
mixing if the mixed diagram is
sub-dominant. [Nemevsek, Senjanovic, Tello
(PRL ’13); BD, Goswami, Mitra, Rodejohann (PRD
Rapid '13)]

Active-sterile Mixing
4
@ Non-unitarity of the PMNS matrix.
@ LFV(eg. u—ev,u—3e,u—e
conversion in nuclei)

@ Does not prove the Majorana
nature since a Dirac neutrino can
also give large LFV effects.

[BD, Mohapatra (PRD '10); Forero, Morisi,
Tortola, Valle (JHEP '11)]



Seesaw at Colliders

@ Both aspects of seesaw can be directly tested in collider experiments.
@ ‘Smoking gun’ signal at hadron colliders: Same-sign dilepton + two jets
with no ET' [Keung, Senjanovi¢ (PRL '83)]
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@ In the minimal SM seesaw, requires both the Majorana nature of N at TeV
scale and a ‘large’ heavy-light mixing to have any observable effect.
[Pilaftsis (ZPC '92); Han, Zhang (PRL '06); del Aguila, Aguilar-Saavedra, Pittau (JHEP '07); BD, Pilaftsis,
Yang (PRL '14)]



Low-Scale Seesaw with Large Mixing

@ In the traditional seesaw,

@ However, possible to have ‘large’ mixing with TeV-scale My by exploiting
the matrix structures of Mp and My . [Pilaftsis (ZPC '92); Kersten, Smirnov (PRD '07); de
Gouvea '07; Gavela, Hambye, D. Hernandez, P. Hernandez (JHEP ’09); Ibarra, Molinaro, Petcov (JHEP
’10); Adhikari, Raychaudhuri (PRD ’11); Mitra, Senjanovié, Vissani (NPB ’12)]

@ Essentially two ways: (i) symmetry (ii) anarchy (fine-tuning).

@ In principle, can generate large LNV and/or LFV effects.



An Example

[Kersten, Smirnov (PRD '07)]

n 61
0 M .
Mp = my 0, and My = ! with §; < m;.
My O
ns 53

@ In the limit §; — 0, light neutrino masses given by M,, ~ —MpMy ' M},
vanish, while the mixing given by V;; ~ m;/M, can be large.

@ The textures can be stabilized by invoking discrete symmetries.
@ Also possible to embed in L-R models. [BD, Lee, Mohapatra (PRD "13)]

@ In the minimal seesaw, LNV is suppressed due to quasi-degeneracy of
the heavy neutrinos.

@ In the L-R seesaw, LNV effects could be large due to additional gauge
interactions. [BD, Mohapatra (Snowmass '13); BD, Lee, Mohapatra (PRD ’13)]



Another Example

[Pilaftsis (ZPC '92)]

d=—, B=—-=A
a

@ For b # a, LNV in the p and 7 sectors can be potentially large.

@ Include radiative effects and check whether all neutrino mixing angles
can be reproduced. [BD (ongoing)]

@ Mixing in the electron sector cannot be large due to Ov33 constraints.

[Lopez-Pavon, Molinaro, Petcov "15]



A (More) Natural Low-scale Seesaw

@ Inverse seesaw mechanism [Mohapatra (PRL '86); Mohapatra, Valle (PRD '86)]
@ Add two sets of singlet fermions carrying opposite lepton numbers.
@ Full neutrino mass matrix in the flavor basis {v{,, Nz.o ,Sf 5}

0 Mp 0
My = (M,g ; M;) S ()
0 My pus b N



A (More) Natural Low-scale Seesaw

@ Inverse seesaw mechanism [Mohapatra (PRL '86); Mohapatra, Valle (PRD '86)]
@ Add two sets of singlet fermions carrying opposite lepton numbers.
@ Full neutrino mass matrix in the flavor basis {v{,, Nz.o ,Sf 5}

0 Mp 0
M, = Mg 0 MI, = <_/\/10T j\\/l/lD>
0 My pus b N

@ Light neutrino mass matrix: M, = MpMy ' pis My" M}, + O(:3).
@ L-symmetry is restored for us — 0.
@ Can naturally allow for large mixing:

/ /1 keV
Viy >~



Collider Signal for Inverse Seesaw

@ For small L-breaking, LNV signal of same-sign dileptons is suppressed:

2AMy <AMN)
O
My

A 5)= Vi —
v (S) NAM 3T
for AMy < Ty, where AMy =~ pug.

@ Exception: Resonant enhancement for AMy ~ T'y. [Bray, Lee, Pilaftsis (NPB '07)]

@ Opposite-sign dilepton signal suffers from a large SM background.
@ Golden channel is the trilepton mode: [del Aguila, Aguilar-Saavedra (NPB '09); Chen,
BD (PRD '12); Das, BD, Okada (PLB '14)]
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Generalized Inverse Seesaw

0 Mp O
M, = | My . My
0 My ps

@ Attree-level, ug does not affect the light neutrino masses.
@ Only affects at loop-level through EW radiative corrections.
[Pilaftsis (ZPC '92); BD, Pilaftsis (PRD "12)]
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@ Sizable LNV through . [BD, Pilaftsis (PRD '12); Parida, Patra (PLB '13); BD, Mohapatra '15]



Direct Search Limits from LHC
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[CMS Collaboration (PLB ’15)]
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Heavy Neutrino Production at the LHC

@ LHC searches so far considered only the Drell-Yan production process
q et

w+

'

q N

@ Many other production modes, but most of them are negligible.
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New Dominant Production Mechanism

[BD, Pilaftsis, Yang (PRL '14); Das, BD, Okada (PLB '14); Alva, Han, Ruiz (JHEP '15)]
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Improved Upper Limit on Mixing

CcMS7

| e ATLAS7

New 7 (4.7 fb %)
Proj. 8 (470
Proj. 8 (20 fbY)
Proj. 14 (4.7 fo ™)
Proj. 14 (300 fb™1)
Ind. Limit (old)
Ind. Limit (new)

11

1074 L

103 ‘ ‘ ‘
100 150 200 250 300

My (GeV)




Direct Limit for Dirac Neutrinos
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[Das, BD, Okada (PLB ’14)]



Direct Limits from LEP
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Sensitivity at ILC
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[Banerjee, BD, Ibarra, Mandal, Mitra ’15]]



Summary Plot (Electron Sector)
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[Deppisch, BD, Pilaftsis (NJP '15); updated from Atre, Han, Pascoli, Zhang (JHEP ’09)]



Summary Plot (Muon Sector)
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[Deppisch, BD, Pilaftsis (NJP '15); updated from Atre, Han, Pascoli, Zhang (JHEP ’09)]



Summary Plot (Tau Sector)

10°8

10” 10

-12 ‘
10 0.1 1 10 100

My (GeV)

[Deppisch, BD, Pilaftsis (NJP '15); updated from Atre, Han, Pascoli, Zhang (JHEP ’09)]



U(l)p_, Seesaw
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Left-Right Seesaw

[Pati, Salam (PRD ’74); Mohapatra, Pati (PRD '75); Mohapatra, Senjanovi¢ (PRD '75)]
New contribution to Drell-Yan process via Wx exchange. [Keung, Senjanovi¢ (PRL '83)]
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L-R Seesaw Phase Diagram
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[Chen, BD, Mohapatra (PRD ’13); BD, Kim, Mohapatra (ongoing)]



L-R Seesaw at LHC 14
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L-R Seesaw at 100 TeV Collider (in China?)
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Distinguishing RR, RL and LL

@ Exploit helicity correlations. [Han, Lewis, Ruiz, Si (PRD '13)]
@ Distinct features in kinematic and angular distributions.
[Chen, BD, Mohapatra (PRD ’13)]
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Hint of L-R Symmetry at the LHC?
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Some Issues

1. Too large cross section. Solution: gz < g;.
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Some Issues

2. No pupjj excess. Solution: Small V.
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Some Issues

3. No ¢jj excess. Solution?
4. Only 1 out of 14 is of same-sign dielectron. Solution?



Some Issues

3. No ¢jj excess. Solution?
4. Only 1 out of 14 is of same-sign dielectron. Solution?

A common solution to all the issues by invoking the generalized inverse
seesaw within LRSM. [BD, Mohapatra '15]

0 Mp O
M, = My pr MY
0 My s

@ The flavor eigenstate N, is a mixture of two mass eigenstates with

opposite CP: |
MN1,2 = E |:MR + \/ :U’IZQ +4M12V:|

@ The same-sign dilepton signal not necessarily zero (Dirac) or equal to
opposite sign (Majorana):

o= A 1
Agt Hg + AMy




WZ Excess
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WH EXxcess
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Dijet Excess
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in LRSM
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Can also fit ¢¢jj Excess

My, = 1.9 TeV, gg = 0.51
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[BD, Mohapatra '15]



Gauge Coupling Unification to SO(10)
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@ Predicts the low-scale value of gg.

@ No need of SUSY!

@ Need SU(2), g-triplet fermions: Could serve as the DM.

@ Also need SU(3).-octet scalars: interesting signals at the LHC.



Conclusion

@ Neutrino oscillations: first conclusive experimental evidence of BSM.
@ Important to explore the experimental signatures of neutrino mass
models to understand the underlying new physics.

@ Low-scale neutrino mass models can lead to observable signals at the
Energy Frontier.

@ Complementary tests in low-energy experiments at the Intensity Frontier.

@ Also important consequences at the Cosmic Frontier, e.g. baryon
asymmetry via leptogenesis and Dark Matter.

@ Left-Right Symmetric Model provides a natural framework for low-scale
seesaw.

@ LHC might have already seen hints of a Wy boson.

@ All the observed excesses around 2 TeV can be consistently explained
within a simple, testable, UV-complete framework.
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THANK YOU.



