Standard and Non-Standard Oscillation Physics at ICAL-INO

Sanjib Kumar Agarwalla

sanjib@iopb.res.in

Institute of Physics, Bhubaneswar, India

Press Release on INO

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

National Centre of the Government of India for Nuclear Science & Mathematics HOMI BHABHA ROAD, COLABA, MUMBAI- 400 005

> Telephone : 2278-2227 Fax : 2280-4610

> > 05.01.2015

Press Release

The Union Cabinet of the Govt. of India chaired by the Prime Minister, Shri Narendra Modi, has given its approval for the establishment of India-based Neutrino Observatory (INO) at an estimated cost of Rs. 1500 crores.

The INO project is jointly supported by the Department of Atomic Energy and the Department of Science and Technology. Infrastructural support is provided by the Government of Tamil Nadu where the project is located. Tata Institute of Fundamental Research (TIFR), Mumbai is the host institute for INO.

Finally the wait of 15 years is over! But, we have miles to go...

White Paper on ICAL's Physics Potential

INO/ICAL/PHY/NOTE/2015-01

Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

The ICAL Collaboration

arXiv:1505.07380v1 [physics.ins-det] 27 May 2015

Oscillation Physics with ICAL .AT. INO

Plan of this talk:

Standard Oscillation Physics:

- 1) Issue of neutrino mass ordering
- 2) Precision measurements of oscillation parameters
- 3) Sensitivity to the octant of 2-3 mixing angle

Non-Standard Oscillation Physics:

- 1) Active Sterile Oscillation
- 2) Non-Standard Neutrino Interactions (NSI's) in propagation

Neutrino Mass Hierarchy from the Global Fit

- ---- + T2K-App
- ——— + Minos-App
 - + Atmos
- ····· Sol + Rea + Minos-Dis
- ·-·-· + T2K-Dis

Gonzalez-Garcia, Maltoni, Schwetz, arXiv:1409.5439v2

Several 1σ to 1.5σ hints for mass hierarchy

T2K appearance & SK atmospheric data prefers opposite hierarchies

2-3 Mixing Angle from the Global Fit

- ---- + T2K-App
- ——— + Minos-App
 - + Atmos
- ······ Sol + Rea + Minos-Dis
- ---- + T2K-Dis

Gonzalez-Garcia, Maltoni, Schwetz, arXiv:1409.5439v2

For IO, Second Octant is favored around 1.4σ

For NO, First Octant is favored around 1σ

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

Detector Characteristics

- Should have large target mass (50 100 kt)
- Good tracking and Energy resolution (tracking calorimeter)
- **Good directionality for up/down discrimination (nano-second time resolution)**
- Charge identification (need to have uniform, homogeneous magnetic field)
- Ease of construction & Modularity
- Complementary to the other existing and proposed detectors

Our choice

Magnetized iron (target mass): ICAL

RPC (active detector element)

Specifications of the ICAL Detector

No of modules	3
Module dimension	16 m X 16 m X 14.4m
Detector dimension	48.4 m X 16 m X 14.4m
No of layers	150
Iron plate thickness	5.6cm
Gap for RPC trays	4 cm
Magnetic field	1.4 Tesla
RPC unit dimension	195 cm x 184 cm x 2.4 cm
Readout strip width	3 cm
No. of RPCs/Road/Layer	8
No. of Roads/Layer/Module	8
No. of RPC units/Layer	<i>192</i>
Total no of RPC units	28800
No of Electronic channels	3.7 X 10 ⁶

Atmospheric Neutrino Flux

Athar, Honda, Kajita, Kasahara, Midorikawa, arXiv:1210.5154 [hep-ph]

Atmospheric Neutrino Flux

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

Matter effect in Atmospheric Experiments

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

Atmospheric Conspiracy

Presence of different flavors dilutes the MH effect in oscillation

Overview of Simulation Framework

NUANCE work in progress to adopt GENIE	$\begin{array}{c} \label{eq:constraint} \textbf{Neutrino Event} \\ \textbf{Generation} \\ \nu_{\ell} + N \rightarrow \ell + X \ . \\ \textbf{Generates particles that result} \\ \textbf{from a random interaction of a} \\ \textbf{neutrino with matter using} \\ \textbf{theoretical models for both} \\ \textbf{neutrino fluxes and cross-sections.} \end{array}$	Output: (i) Reaction Channel (ii) Vertex and time information (iii) Energy and momentum of all final state particles
GEANT	Event Simulation	Output:
	$\ell + X$ through simulated ICAL	(i) x, y, z, t of the particles as
	Simulates propagation of particles	they propagate through detector
	BPCs and magnetic fold	(ii) Energy deposited
	RPCs and magnetic field.	(III) Momentum information
	Event Digitisation	Output:
	(X, Y, Z, T) of final states on	(i) Digitised output of the
	including noise and detector	previous stage
	efficieny	
	Add detector efficiency and noise	
	to the hits.	
↓		
ANALYSIS	Event Reconstruction	Output:
	(E,p) of ℓ, λ (total hadrons)	(1) Energy and momentum of
	Fit the muon tracks using	muons and hadrons, for use in
	reconstruct much energy and	physics analyses.
	momentum; use hits in hadron	
	shower to reconstruct hadron	
	information.	

Simulation work is under progress in full swing!

Events in Various Channels

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph]

Relative contributions of three cross-section processes to the total events in the absence of oscillation and without detector efficiency and resolutions

Average Inelasticities in Various Channels

$$y \equiv (E_{\nu} - E_{\mu})/E_{\nu} = E_{\text{had}}'/E_{\nu}$$

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph]

Average Inelasticity in the deep-inelastic events is significant

Crucial for mass hierarchy identification

Distribution of Inelasticities in Events

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)

Inelasticities in individual events have a wide distribution

Important to measure inelasticity in individual events

Event Display Inside the ICAL Detector

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph]

Muon Efficiencies and Resolutions

Animesh Chatterjee, Meghna K.K., Kanishka Rawat, Tarak Thakore etal., arXiv:1405.7243 [physics.ins-det]

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

Hadron Energy Response of ICAL

 $E'_{h} = E_{v} - E_{\mu}$ (from hadron hit calibration)

Hadron energy resolution: 85% at 1 GeV and 36% at 15 GeV

Moon Moon Devi, Anushree Ghosh, Daljeet Kaur, Lakshmi S. Mohan etal., JINST 8 (2013) P11003

The χ^2 Analysis

We define the Poissonian χ^2_{-} for μ^- events as :

$$\chi_{-}^{2} = \min_{\xi_{l}} \sum_{i=1}^{N_{E_{\text{had}}}} \sum_{j=1}^{N_{E_{\mu}}} \sum_{k=1}^{N_{\cos\theta_{\mu}}} \left[2(N_{ijk}^{\text{theory}} - N_{ijk}^{\text{data}}) - 2N_{ijk}^{\text{data}} \ln\left(\frac{N_{ijk}^{\text{theory}}}{N_{ijk}^{\text{data}}}\right) \right] + \sum_{l=1}^{5} \xi_{l}^{2} ,$$

where

. .

$$N_{ijk}^{\text{theory}} = N_{ijk}^0 \left(1 + \sum_{l=1}^5 \pi_{ijk}^l \xi_l \right).$$

Observable	Range	Bin width	Total	bins
	[1,4)	0.5	6	
E_{μ} (GeV)	[4, 7)	1	3	10
	[7, 11)	4	1	
	[-1.0, -0.4)	0.05	12	
$\cos \theta_{\mu}$	[-0.4, 0.0)	0.1	4	21
	[0.0, 1.0]	0.2	5	J
	[0, 2)	1	2	
E'_{had} (GeV)	[2, 4)	2	1	4
	[4, 15)	11	1	J

Overall 5% systematic uncertainty
 Overall flux normalization: 20%
 Overall cross-section normalization: 10%

- 4) 5% uncertainty on the zenith angle dependence of the fluxes
- 5) Energy dependent tilt factor:

 $\Phi_{\delta}(E) = \Phi_{0}(E) [E/E_{0}]^{\delta} \approx \Phi_{0}(E) [1+\delta \ln E/E_{0}]$ where $E_{0} = 2$ GeV and δ is the 1 σ systematic error of 5%

Neutrino Mass Hierarchy Discrimination

Distribution of $\Delta \chi^2 [\chi^2 (IH) - \chi^2 (NH)]$ for mass hierarchy discrimination considering μ^2 events

- Further subdivide the events into four hadron energy bins
- Hadron energy carries crucial information

• Correlation between hadron energy and muon momentum is very important

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

Contribution of Various Hadron Bins

$E'_{ m had}~(m GeV)$	events	$\Delta \chi^2$	$\Delta \chi^2 / { m events}$
0–1	3995	5.8	0.0014
1–2	1152	1.9	0.0017
2–4	742	1.7	0.0023
4-15	677	1.2	0.0018
0–15	6566	10.7	0.0016
(with E'_{had} information)			
without E'_{had} information	6775	6.3	0.0009

• Enhancement in the sensitivity is not simply due to the events with low hadron energy

• The normalized $\Delta \chi^2$ per event is slightly higher for larger hadron energy bins

Identifying Neutrino Mass Hierarchy with ICAL

50 kt ICAL can rule out the wrong hierarchy with $\Delta \chi^2 \approx 9.5$ in 10 years

Impact of θ_{23} and θ_{13} on Mass Hierarchy

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph]

50 kt ICAL can rule out the wrong hierarchy with median $\Delta \chi^2 \approx 7$ to 12 depending on the true values of θ_{23} and θ_{13} in 10 years

MH Discovery with ICAL+T2K+NOvA

Thakore, Agarwalla, work in progress

 3σ median sensitivity can be achieved in 6 years

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

Precision of Atmospheric Oscillation Parameters

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph]

Significant improvement in the precision measurement of atmospheric mass splitting by adding hadron energy information with muon momentum

Precision Measurement of Atmospheric Parameters

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph]

ICAL's expected precision on atmospheric mass splitting is better than SK

Octant of θ_{23} with ICAL-INO

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

Non-Standard Oscillation Physics

Active-Sterile Mixing at ICAL-INO

 μ^- Event Distributions $\Delta m_{41}^2 = 10 \text{ eV}^2$ $\theta_{14} = \theta_{34} = 0$

Case	$\# \mu^-$	$\# \mu^+$
4f Matter Oscillations	4295.59	1877.41
3f Matter Oscillations	4736.1	2070.05

Thakore, Devi, Agarwalla, Dighe, in preparation (INO Collaboration)

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

Possible Constraints from ICAL-INO

Thakore, Devi, Agarwalla, Dighe, in preparation (INO Collaboration)

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

NC Analysis to Probe Active-Sterile Oscillation

 $|P_h| = \sum_i |p_i|$, where *i* is the total hadrons in the final state

Thakore, Devi, Agarwalla, Dighe, in preparation (INO Collaboration)

NC Analysis to Probe Active-Sterile Oscillation

Thakore, Devi, Agarwalla, Dighe, in preparation (INO Collaboration)

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

NC Shower Event Distribution

Thakore, Devi, Agarwalla, Dighe, in preparation (INO Collaboration)

Exclusion Plot from NC Analysis

Thakore, Devi, Agarwalla, Dighe, in preparation (INO Collaboration)

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

NSI's in Propagation

Spectral Study is must for NSI'S. Nothing can be done with only rates

Khatun, Chatterjee, Thakore, Agarwalla, in preparation (INO Collaboration)

Constraints on NSI's

Observable	Binning Scheme	Range	Bin width
F (CoV)	LE & HE	[1, 11]	1
$L_{\mu}(\text{Gev})$	HE	[11, 21]	5
000 A			0.1
$\cos \theta_{\mu}$		[0.0, 1.0]	0.2
	LE & HE	[0, 2]	1
$E'_{\rm had}~({\rm GeV})$	LE & HE	[2, 4]	2
	LE	[4, 15]	11
	HE	[4, 25]	21

Khatun, Chatterjee, Thakore, Agarwalla, in preparation (INO Collaboration)

See also, Choubey, Ghosh, Ohlsson, Tiwari, arXiv: 1507.02211 [hep-ph]

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

How quickly can we constrain these NSI's ?

Khatun, Chatterjee, Thakore, Agarwalla, in preparation (INO Collaboration)

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

How Robust is MH Study with NSI's ?

True MO	Analysis Mode	SM	With NSI	Reduce
LE	Preliminary			
NH	$(E_{\mu}, \cos \theta_{\mu})$	5.62	4.81	14.4%
NII	$(\mathbf{E}_{had}^{/}, \mathbf{E}_{\mu}, \cos \theta_{\mu})$	8.66	7.49	13.5%
IH	$(E_{\mu}, \cos \theta_{\mu})$	5.31	4.14	22.0%
	$(\mathbf{E}_{had}^{/}, \mathbf{E}_{\mu}, \cos \theta_{\mu})$	8.48	6.88	18.8%
HE				
NH	$(E_{\mu}, \cos \theta_{\mu})$	5.96	5.37	9.9%
	$(\mathbf{E}_{had}^{/}, \mathbf{E}_{\mu}, \cos \theta_{\mu})$	9.13	8.16	10.6%
IH	$(\mathbf{E}_{\mu}, \cos \theta_{\mu})$	5.66	4.95	12.5%
	$(\mathbf{E}_{had}^{\prime}, \mathbf{E}_{\mu}, \cos \theta_{\mu})$	8.99	7.66	14.8%

One extra parameter in the fit: $\varepsilon_{\mu\tau}$ in the range $\pm 10\%$

Khatun, Chatterjee, Thakore, Agarwalla, in preparation (INO Collaboration)

How Robust are Precision Measurements with NSI's ?

Current Status of INO

Pre-project activities started with an initial grant of ~ 15 M\$

- Site infrastructure development
- Development of INO centre at Madurai city (110 km from underground lab)
 Inter-Institutional Centre for High Energy Physics (IICHEP)
- Construction of an 1/8th size engineering prototype module
- Detector R&D is now over
- Detailed Project Report for Detector and DAQ system is ready
- Soon go for industrial production of RPCs & associated front-end electronics
- Full project approved by PM's cabinet committee to start construction

Glimpse of Activities at the IICHEP Site

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

Glimpse of Activities at the INO Site

receiving sump with 12 lakhs litre capacity

Human Resource Development and Training

- INO Graduate Training Program started in August 2008, students are affiliated to HBNI
- At present students being trained for 1 year at TIFR in both experimental techniques & theory
- After completion of coursework, attached to Ph.D. guides at various collaborating institutions
- Many short/long term visits to RPC labs (Mumbai & Kolkata) of students & faculties from Universities in last several years
- Several students from 1st batch (2008) and 2nd batch (2009) are already working as post-docs at different places
- 7th batch of 6 students have started their course work at TIFR in 2014

Stay Tuned!

More Analyses and Results are going to come soon

Comments and Suggestions are most welcome

Just drop an email to our Physics Coordinators (amol@theory.tifr.res.in or sruba@prl.res.in)

A Request: INO Students are extremely hard working and motivated!

Hire them as Post-docs

Thank you!

The Vavilov Distribution Function

The Vavilov probability density function in the standard form is defined by:

$$P(x;\kappa,\beta^2) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \phi(s) e^{xs} ds , \qquad (C.1)$$

where

$$\phi(s) = e^C e^{\psi(s)}, \quad C = \kappa (1 + \beta^2 \gamma) , \qquad (C.2)$$

and

$$\psi(s) = s \ln \kappa + (s + \beta^2 \kappa) \cdot \left[\int_0^1 \frac{1 - e^{-st/\kappa}}{t} dt - \gamma \right] - \kappa e^{-s/\kappa} , \qquad (C.3)$$

where $\gamma = 0.577...$ is the Euler's constant.

The parameters mean and variance (σ^2) of the distribution in Eq. (C.1) are given by

mean =
$$\gamma - 1 - \ln \kappa - \beta^2$$
; $\sigma^2 = \frac{2 - \beta^2}{2\kappa}$. (C.4)

For $\kappa \leq 0.05$, the Vavilov distribution may be approximated by the Landau distribution, while for $\kappa \geq 10$, it may be approximated by the Gaussian approximation, with the corresponding mean and variance.

We have used the Vavilov distribution function $P(x; \kappa, \beta^2)$ defined above, which is also built into ROOT, as the basic distribution for the fit. However the hadron hit distribution itself is fitted to the modified distribution $(P_4/P_3) P((x - P_2)/P_3; P_0, P_1)$, to account for the x-scaling (P₃), normalization P₄ and the shift of the peak to a non-zero value, P₂. Clearly P₀ = κ and P₁ = β^2 . The modified mean and variance are then

Mean_{Vavilov} =
$$(\gamma - 1 - \ln P_0 - P_1) P_3 + P_2$$
, $\sigma_{Vavilov}^2 = \frac{(2 - P_1)}{2P_0} P_3^2$. (C.5)

These are the quantities used while presenting the energy response of hadrons in the ICAL detector.

Three Flavor Effects in $v_{\mu} \rightarrow v_{e}$ oscillation probability

The appearance probability $(\nu_{\mu} \rightarrow \nu_{e})$ in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin 2\theta_{13}$, $P_{\mu e} \simeq (\sin^2 2\theta_{13}) \sin^2 \theta_{23} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2} \longrightarrow \theta_{13}$ Driven $\alpha \sin 2\theta_{13} \xi \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow CP \text{ odd}$ Resolves 0.009 octant + $\alpha \sin 2\theta_{13} \xi \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow CP \text{ even}$ + $\alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$; \Longrightarrow Solar Term where $\Delta \equiv \Delta m_{31}^2 L/(4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{21} \sin 2\theta_{23}$, and $\hat{A} \equiv \pm (2\sqrt{2}G_F n_e E)/\Delta m_{31}^2$ Cervera etal., hep-ph/0002108 Freund etal., hep-ph/0105071 changes sign with $sgn(\Delta m_{31}^2)$ changes sign with polarity See also, Agarwalla etal., arXiv:1302.6773 [hep-ph] key to resolve hierarchy! causes fake CP asymmetry!

This channel suffers from: (Hierarchy – δ_{CP}) & (Octant – δ_{CP}) degeneracy! How can we break them?

Present Understanding of the 2-3 Mixing Angle

Information on θ_{23} comes from: a) atmospheric neutrinos and b) accelerator neutrinos

In two-flavor scenario:
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{\text{eff}} \sin^2 \left(\frac{\Delta m_{\text{eff}}^2 L}{4E}\right)$$

For accelerator neutrinos: relate effective 2-flavor parameters with 3-flavor parameters:

$$\Delta m_{\rm eff}^2 = \Delta m_{31}^2 - \Delta m_{21}^2 (\cos^2 \theta_{12} - \cos \delta_{\rm CP} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$$

$$\sin^2 2\theta_{\text{eff}} = 4\cos^2 \theta_{13} \sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13} \sin^2 \theta_{23}\right) \quad \text{where} \quad \frac{|U_{\mu3}|^2}{|U_{\tau3}|^2} = \tan^2 \theta_{23}$$

Nunokawa etal, hep-ph/0503283; A. de Gouvea etal, hep-ph/0503079

Combining beam and atmospheric data in MINOS, we have:

MINOS Collaboration: arXiv:1304.6335v2 [hep-ex]

 $\sin^2 2\theta_{\text{eff}} = 0.95^{+0.035}_{-0.036} (10.71 \times 10^{21} \text{ p.o.t})$ $\sin^2 2\bar{\theta}_{\text{eff}} = 0.97^{+0.03}_{-0.08} (3.36 \times 10^{21} \text{ p.o.t})$

Atmospheric data, dominated by Super-Kamiokande, still prefers maximal value of $\sin^2 2\theta_{eff} = 1 ~(\geq 0.94 ~(90\% ~C.L.))$

Talk by Y. Itow in Neutrino 2012 conference, Kyoto, Japan

Bounds on θ_{23} from the global fits

In v_{μ} survival probability, the dominant term mainly sensitive to $\sin^2 2\theta_{23}$

If $\sin^2 2\theta_{23}$ differs from 1 (as indicated by recent data), we get two solutions for θ_{23} :

one in lower octant (LO: $\theta_{23} < 45$ degree), other in higher octant (HO: $\theta_{23} > 45$ degree)

In other words, if $(0.5 - \sin^2 \theta_{23})$ is +ve (-ve) then θ_{23} belongs to LO (HO)

This is known as the octant ambiguity of θ_{23}

Fogli and Lisi, hep-ph/9604415

Conferences	After Neutrino 2012	After NeuTel 2013	After TAUP 2013
$\sin^2 \theta_{23}$	$0.41^{+0.037}_{-0.025} \oplus 0.59^{+0.021}_{-0.022}$	$0.437^{+0.061}_{-0.031}$	$0.446^{+0.007}_{-0.007} \oplus 0.587^{+0.032}_{-0.037}$
3σ range	0.34 ightarrow 0.67	$0.357 \rightarrow 0.654$	0.366 ightarrow 0.663
1σ precision	13.4%	11.3%	11.1%
(relative)			

Based on Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org

Global fit disfavors maximal 2-3 mixing at 1.4σ confidence level (mostly driven by MINOS)

 v_{μ} to v_{e} oscillation data can break this degeneracy

The preferred value would depend on the choice of the neutrino mass hierarchy

New Measurements of Atmospheric Parameters

NUL	sin²θ ₂₃	0.514+0.055
NH	∆m² ₃₂	2.51 ± 0.10
IH	sin²θ ₂₃	0.511 ± 0.055
	Δm ² ₁₃	2.48 ± 0.10

Already mixing angle is better constrained by T2K in comparison to SK and MINOS

Talk by C. Walter in Neutrino 2014

Present Status of Neutrino Oscillation Parameters

	bfp $\pm 1\sigma$	3σ range	Relative
$\sin^2 heta_{12}$	$0.304\substack{+0.012\\-0.012}$	$0.270 \rightarrow 0.344$	
$\theta_{12}/^{\circ}$	$33.48\substack{+0.77\\-0.74}$	$31.30 \rightarrow 35.90$	4%
$\sin^2 \theta_{23}$ maximal	$\left[0.451^{+0.001}_{-0.001} ight] \oplus 0.577^{+0.027}_{-0.035}$	$0.385 \rightarrow 0.644$	
$\theta_{23}/^{\circ} N_{71.46}^{\circ}$	$\left[42.2^{+0.1}_{-0.1} ight] \oplus 49.4^{+1.6}_{-2.0}$	$38.4 \rightarrow 53.3$	9.6%
$\sin^2 \theta_{13}$ Non-Zero	$0.0219\substack{+0.0010\\-0.0011}$	0.0188 ightarrow 0.0251	
$\theta_{13}/^{\circ}$	$8.52^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	4.8%
$\delta_{\rm CP}/^{\circ}$ sin $\delta_{\rm CP}/^{\circ}$ $\delta_{\rm at}$ 90% C.L.	251^{+67}_{-59}	0 ightarrow 360	(Not Known)
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	2.4%
$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2} \text{ (N)}$	$\left[+2.458^{+0.002}_{-0.002}\right]$	$+2.325 \rightarrow +2.599$	1 00/
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2} \text{ (I)}$	$-2.448^{+0.047}_{-0.047}$	-2.590 ightarrow -2.307	1.9%

Based on the data available after Neutrino 2014 conference

Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org

Fundamental Unknowns in Neutrino Oscillation

<u>1. What is the hierarchy of the neutrino mass spectrum, normal or inverted?</u>

- The sign of $\Delta m_{31}^2 = m_3^2 m_1^2$ is not known!
- Currently do not know which neutrino is the heaviest?
- Only have a lower bound on the mass of the heaviest v!

 $\sqrt{2.5 \cdot 10^{-3} eV^2} \sim 0.05 eV$

2. What is the octant of the 2-3 mixing angle, lower ($\theta_{23} < 45^\circ$) or higher ($\theta_{23} > 45^\circ$)?

Measure θ_{23} *precisely, Establish deviation from maximality at higher C.L. Then look for Octant*

<u>2. Is there CP violation in the leptonic sector, as in the quark sector?</u>

Mixing can cause CP violation in the leptonic sector (if δ_{CP} *differs from* 0° *and* 180°) *Need to measure the CP-odd asymmetries:* $\Delta P_{\alpha\beta} \equiv P(\nu_{\alpha} \rightarrow \nu_{\beta}; L) - P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}; L)$ ($\alpha \neq \beta$)

With current knowledge of θ_{13} , resolving these unknowns fall within our reach Sub-leading 3 flavor effects are extremely crucial in current & future oscillation expts

Introducing INO Collaboration

Ahmadabad: Physical Research Laboratory Aligarh: Aligarh Muslim University Allahabad: HRI Bhubaneswar: IoP, Utkal University Calicut: University of Calicut Chandigarh: Panjab University Chennai: IIT-Madras, IMSc Delhi: University of Delhi Kalpakkam: IGCAR Kolkata: SINP, VECC, University of Calcutta Lucknow: Lucknow University Madurai: American College Mumbai: BARC, IIT-Bombay, TIFR, CMEMS Mysore: University of Mysore Srinagar: University of Kashmir Varanasi: Banaras Hindu University

Nearly 100 scientists from 23 research institutes & universities all over India

One of the largest basic science projects in India in terms of man power & cost as well

We are growing day by day International Collaborators are most welcome

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

- A multi-institutional attempt to build a world-class underground facility to study fundamental issues in science with special emphasis on neutrinos
- With ~1 km all-round rock cover accessed through a 2 km long tunnel. A large and several smaller caverns to pursue many experimental programs
- Complementary to ongoing efforts worldwide to explore neutrino properties
- A mega-science project (~250 M\$) in India, jointly funded (50:50) by the Department of Atomic Energy and the Department of Science and Technology
- International Community is welcome to participate in ICAL@INO activity. INO facility is also available to the entire community for setting up experiments like Neutrino-less Double Beta Decay, Direct Dark Matter searches

Coordinates of INO

Located 115 km west of the Madurai city in the Theni district of Tamil Nadu

Madurai has an International Airport

Approved projects under INO

- Come up with an underground lab & surface facilities near Pottipuram village in Theni district of Tamil Nadu
- Build massive 50 kt magnetized Iron calorimeter (ICAL) detector to study properties of neutrinos
- Construction of INO centre at Madurai: Inter-Institutional Centre for High Energy Physics (IICHEP)
- Human Resource Development (INO Graduate Training Program)
- Completely in-house Detector R&D with substantial INO-Industry interface
- *Time Frame for 1st module: 2019*

S. K. Agarwalla, MITP, Johannes Gutenberg University, Mainz, Germany, 28th July, 2015

Physics Issues with ICAL-INO

Study Atmospheric neutrinos w/ a wide range of Baselines & Energies

Recent discovery of large θ_{13} : A good news for ICAL-INO

What do we want to achieve?

- **Reconfirm neutrino oscillations using neutrinos and anti-neutrinos separately**
- ***** Improved precision of atmospheric oscillation parameters
- ***** Determine neutrino mass hierarchy using matter effects via charge discrimination
- ***** Measure the deviation of 2-3 mixing angle from its maximal value and its octant
- ***** Test bed for various new physics like NSI, CPT violation, long range forces
- * Detect Ultra High Energy Neutrinos, Cosmic Muons, Indirect searches of DM