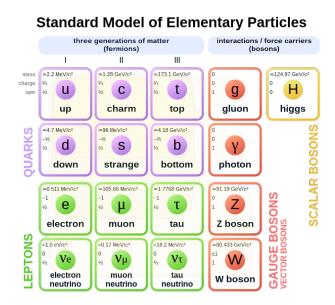
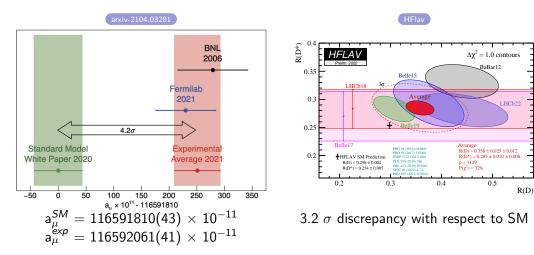
Latest Results from ATLAS Experiment

Antonio De Maria on the behalf of the ATLAS collaboration

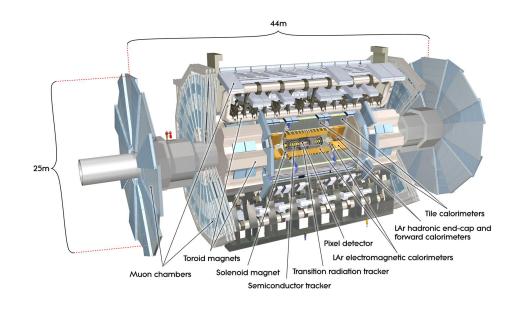

Bormio 2023 Conference

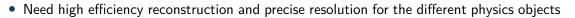
The Standard Model of Particle Physics

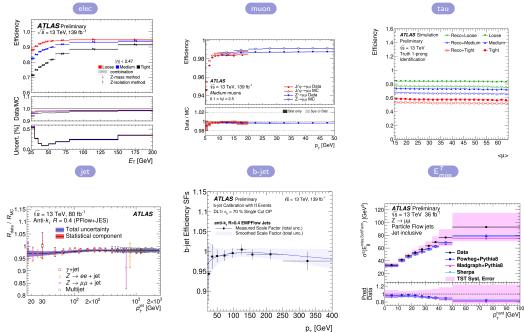


- Gauge symmetry group given by: $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$
 - Except for gravity, gives good description of the other fundamental forces in nature
- We want to measure all particle properties and their interactions

Standard Model limitations

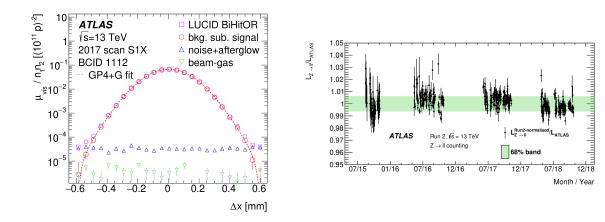

- Standard Model (SM) *fails* to explain/leave several opened questions:
 - Lepton Flavour Violation (LFV), like in neutrino oscillation
 - Muon anomalous magnetic moment
 - Anomalies in B-physics, $R_D^{(*)}$
 - Dark matter in the universe
 - Many Others ...
- All these opens to a new pletora of searches for physics Beyond Standard Model (BSM)


The ATLAS experiment



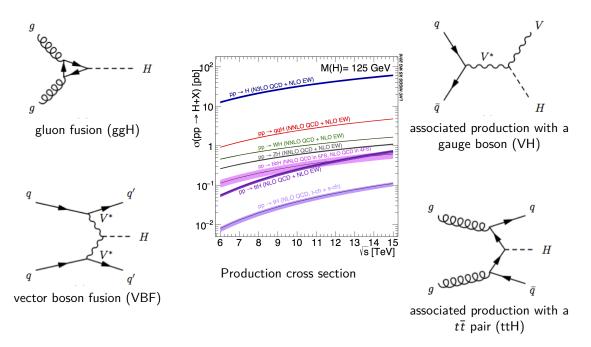
- Multi-purpose detector to measure pp and heavy ion collision products
- Tracking plus Calorimeter systems to measure particles
- 2 level trigger system to filter interesting events

Object reconstruction performance



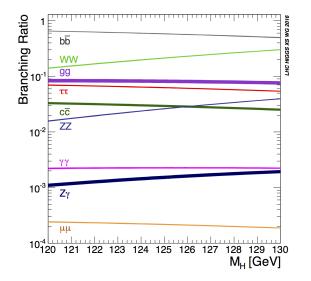
• % level uncertainties for light leptons, higher for other objects but still great performance

Luminosity measurement arxiv-2212.09379


- Important since it can be leading uncertainty for example for cross-section measurements
- Lumi scale through Van der Meer scans, extrapolated using multiple detector information
- Run2 luminosity known with a precision of 0.83 %
 - most accurate lumi measurement at hadron collider so far

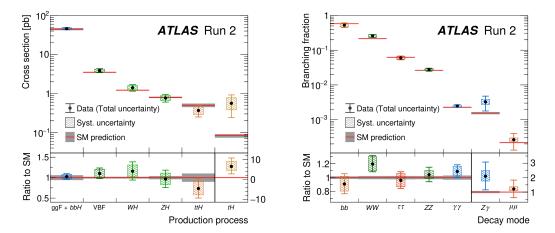
Higgs and Di-Higgs results

Higgs boson production modes



· Largest cross section for gluon fusion and vector boson fusion production modes

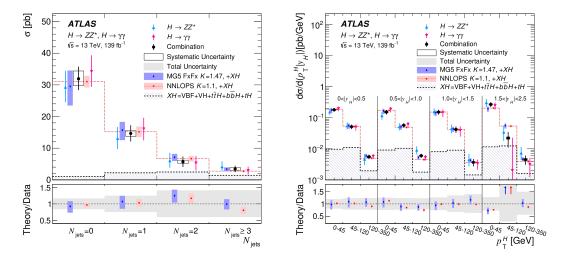
Higgs boson decay branching ratios

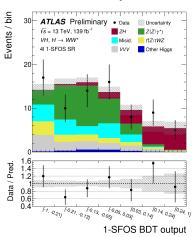


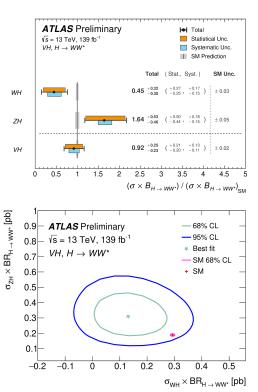
- Larger branching ratio (BR) for H → bb̄, H → WW* and H → ττ, however poor mass resolution and large background contamination
- $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ have lower BR, but better mass resolution; can be used for precision measurements
- $H \rightarrow Z\gamma$ and $H \rightarrow \mu\mu$ becoming now accessible thanks to the large Run 2 dataset and the good detector performance

Higgs Combination arxiv-2207.00092

- 2022 was the 10th anniversary of the Higgs boson discovery
- Combined measurement from the different Higgs boson decays
- Provide stringent test of the SM prediction and constrain to many BSM models
- Inclusive production rate with respect to SM prediction:

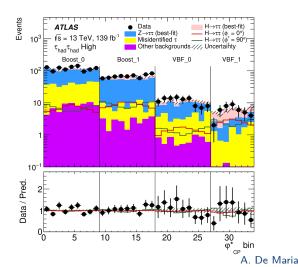

 $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03$ (stat.) ± 0.03 (exp.) ± 0.04 (sig. th.) ± 0.02 (bkg. th.)

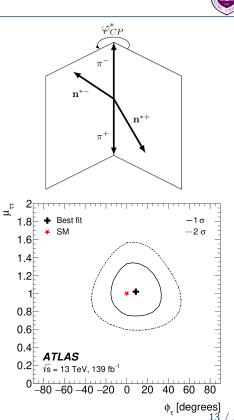

Differential cross-section results arxiv-2207.08615


- Provide more in depth comparison of the SM prediction in various phase-space corner
- Combine results from $H \rightarrow ZZ^*$ and $H \rightarrow \gamma \gamma$ channels
- Measured total cross section $\sigma_{tot} = 55.5^{+4.0}_{-3.8}$ pb, in agreement with $\sigma_{SM} = 55.6 \pm 2.8$ pb
- All results compatible between the two channels and compatible with SM prediction
- Cross-section measured with respect to several variables, both in 1 and 2 dimensions

VH H \rightarrow WW * coupling CONF-2022-067

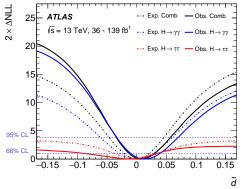
- Considering $H \rightarrow WW^* \rightarrow l\nu l\nu$ and $H \rightarrow WW^* \rightarrow l\nu jj$ final states
- Challenging final state to observe; use multivariate analysis (MVA) to separate signal from background
- Obs. (Exp.) significance: $\sigma_{WH} = 1.5$ (3.3), $\sigma_{ZH} = 4.6$ (3.1)
- Measurement statistically dominated

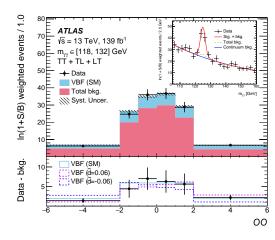




$H \rightarrow \tau \tau \ CP \ measurement$ (arXiv-2212.05833)

- SM predicts Higgs to be pure CP even state
- Measure CP properties of the Higgs in ${\rm H}{\rightarrow}\,\tau\tau$ decay vertex
- Using angle between τ decay planes as CP-sensitive variable
- Pure CP-odd hypothesis excluded at 3.4 σ

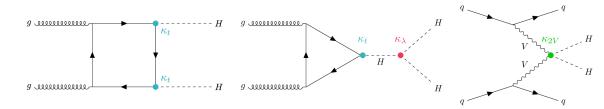



VBF H $\rightarrow \gamma\gamma$ CP measurement arxiv-2208.02338

- Measure CP properties of the Higgs in the HVV vertex
- Complementary with respect CP in decay
- Use *Optimal Observable* to measure CP-violating parameter \tilde{d}

$$OO = \frac{2 \ Re(M_{SM}^*M_{CP-Odd})}{|M_{SM}|^2}$$

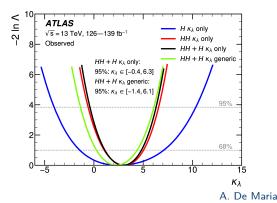
- No sign of CP violation, since $<\!OO\!>$ compatible with 0

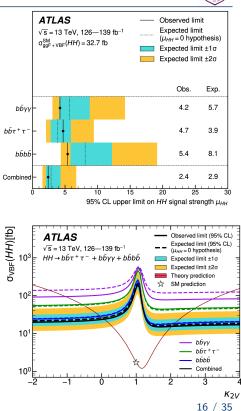


• $\tilde{d}\epsilon$ interval at 95% CL when combining with Hightarrow au au

	68% CL	95% CL
	[-0.022,0.021]	
Observed	[-0.012,0.030]	[-0.034,0.057]

Di-Higgs production

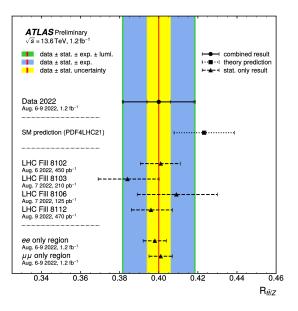

- Important for studying the EWK symmetry breaking and origin of the Universe
- Higgs potential influenced by Higgs boson trilinear self coupling term λ_{HHH}
- Direct way to measure the coupling modifier is through Higgs boson pair production
- Much smaller cross-section compared to single Higgs production ($\simeq 1/1000)$
- Production mainly through ggH and VBF
 - ggH provides most of the sensitivity to Higgs self-coupling modifier (k_{λ})
 - VBF provides a unique way to probe VVHH vertex (k_{2V})



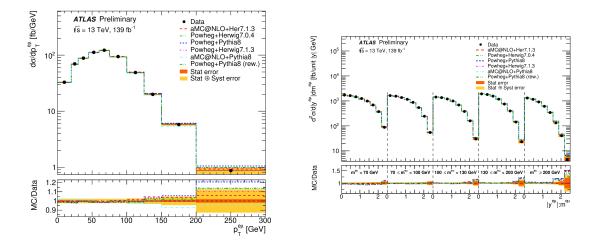
Higgs Decay	bb	WW	π	ZZ	γγ
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.07%	
YY	0.26%	0.10%	0.03%	0.01%	<0.001%

Di-Higgs Combination arxiv-2211.01216

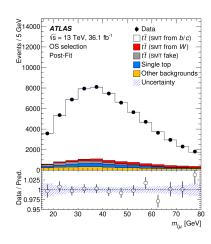
- Combination of HH \rightarrow bbbb, HH \rightarrow bb $\gamma\gamma$ and HH \rightarrow bb $\tau\tau$ final states
- 95% confidence limit (CL) on the di-Higgs cross section normalised to SM prediction: $\mu_{HH} < 2.4 (2.9)$ obs. (exp)
- Combination with single-Higgs measurements, with no constraint on other k, lead to k_λ constraint at 95% CL: -1.4(-2.2) < k_λ < 6.1(7.7) obs. (exp)
- Constraint on k_{2V} at 95% CL: $0.1(0.0) < k_{2V} < 2.0(2.1)$ obs. (exp)



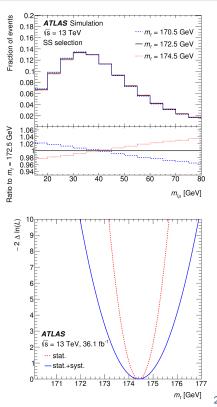
LHC as Top factory



- First Run3 ATLAS measurement, performed using 1.2 fb⁻¹ dataset collected in August 2022
- Use di-leptonic $t\bar{t} \rightarrow bbWW \rightarrow bbe\nu\mu\nu$ final state, no stat limitation
- Total measured cross section: $\sigma_{tot} = 830 \pm 12(\text{stat}) \pm 27(\text{syst}) \pm 86(\text{lumi})$ pb, in agreement with SM prediction
- Additionally, measure the ratio of $t\bar{t}$ Vs Z cross section in Z fiducial phase space (m_{II} > 40 GeV) using Z $\rightarrow ee/\mu\mu$ final states: $R_{t\bar{t}/Z} = 0.400 \pm 0.006(\text{stat}) \pm 0.017(\text{syst}) \pm 0.005(\text{lumi})$, consistent with SM prediction using PDF4LHC21 PDF set


$t\bar{t}$ differential cross-section in dilepton final state at $\sqrt{s}=13~{\rm TeV}$ (CONF-2022-061

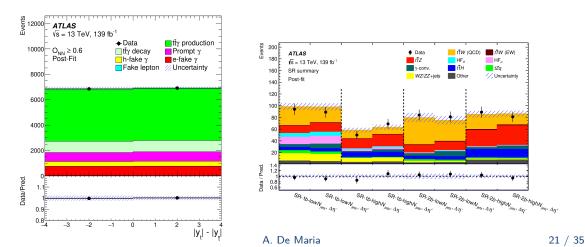
- Use di-leptonic $t \overline{t}
 ightarrow bbWW
 ightarrow bbe
 u \mu
 u$ final state
- Total cross section $\sigma_{tot} = 836 \pm 1 \text{ (stat)} \pm 12 \text{ (syst)} \pm 16 \text{ (lumi)} \pm 2 \text{ (beam) pb, in agreement with SM prediction}$
- Single and double differential cross-section measured with respect to several variables; results in agreement with SM prediction, useful to tune generators



Top mass measurement arxiv-2209.00583

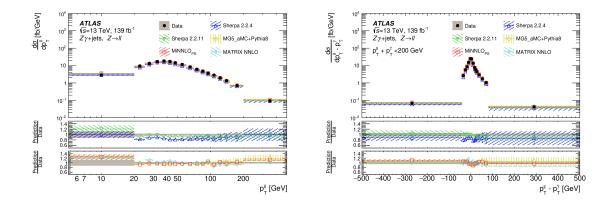
- New approach using semi-leptonic $t\bar{t}$ final state, $t\bar{t} \rightarrow bbWW \rightarrow bbl\nu jj$
- Measured value: $m_t = 174.41 \pm 0.39 \text{ (stat)} \pm 0.66 \text{ (syst)} \pm 0.25 \text{ (recoil)}$ GeV, where *recoil* indicate parton shower variation

A. De Maria


20 / 35

Charge asymmetry in $t\bar{t}\gamma$ (arxiv-2212.10552) and $t\bar{t}W$ (arxiv-2301.04245)

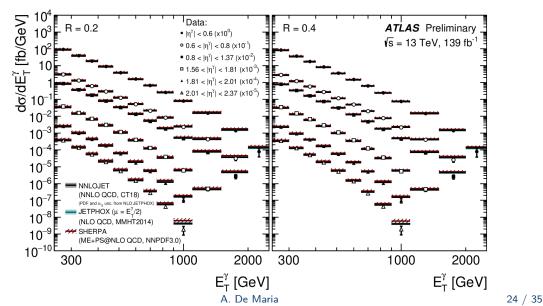
- Important test of the SM prediction at Next-to-leading-order in QCD
- Use $t\bar{t} \rightarrow bbWW \rightarrow bbl\nu jj (t\bar{t}\gamma)$ or tri-lepton final state $(t\bar{t}W)$
- $t\bar{t}\gamma$: MVA to separate signal, $t\bar{t}+\gamma$ in production, from background, $t\bar{t}+\gamma$ in decay
- $t\bar{t}W$: MVA to distinguish lepton from top and from W
- Charge asymmetry measured from distribution of absolute rapidities of top and anti-top:


A_C	$tar{t}\gamma$	$t\overline{t}W$
measured	-0.003 ± 0.024 (stat) \pm 0.017 (syst)	-0.123 ± 0.136 (stat.) \pm 0.051 (syst.)
SM prediction	0.0064	-0.084 $^{0.005}_{-0.003}$ (scale) \pm 0.006 (MC stat.)

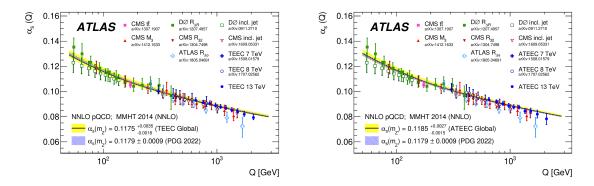
Other SM results

$Z\gamma$ +jets cross-section (arXiv-2212.07184)

- Consider final state with Zightarrow $ee/\mu\mu$ plus γ usually from initial state-radiation
- Results using different MC generators; helps to improve MC parton shower description/tuning, PDF functions
- Single an double differential cross-section measured for variables sensitive to hard-scattering production and soft/collinear radiation
- Important also to test and improve theory resummation models

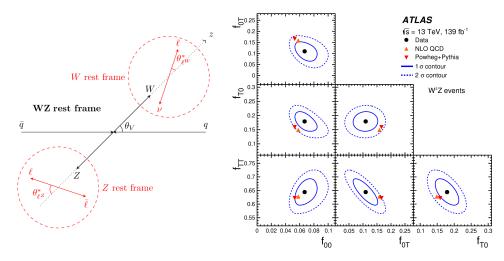


Isolated γ cross-section $_{\rm CONF-2022-065}$



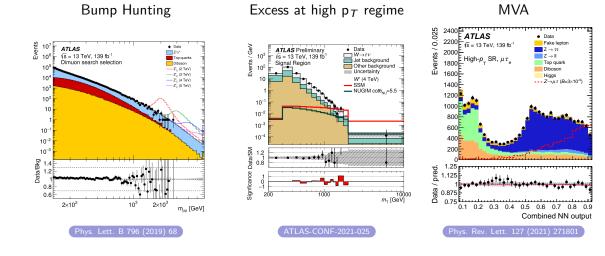
- Provide in-depth test of theoretical predictions for parton distribution functions
- γ are required to be isolated using fixed-cone method with two different cone radii
- Cross sections measured as functions of the γ transverse energy in different γ pseudorapidity regions
- Results in good agreement with the prediction in all the different phase spaces

α_S measurement in multijet events


- Test perturbative QCD and possibly new physics
- Large theoretical improvement from NNLO correction to 3 jet production in pp collisions
 - results in reduction of theoretical uncertainty by factor 3
- Use transverse energy–energy correlations (*TEEC*) and their associated azimuthal asymmetries (*ATEEC*) to perform the measurement
- Results show good agreement with the renormalisation group equation up to highest energy scales and with previous measurement

WZ polarisation arxiv-2211.09435

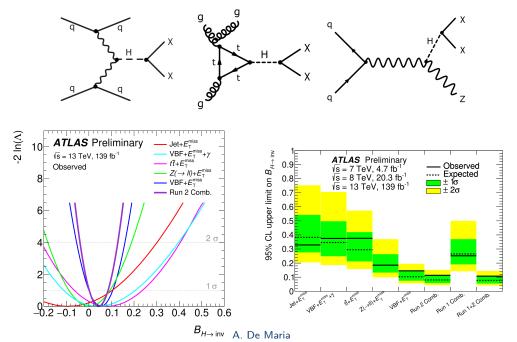
- Test of the SM gauge symmetry structure and triple gauge coupling
- Measure joint/individual helicity fractions, as well as inclusive/differential cross-sections
- Use WZ rest frame to extract fraction of events where both bosons are longitudinally/transversally polarised or mixed states
- Reach observation (7.1 σ) of events where both bosons are longitudinally polarised
 - $\simeq 7\%$ of total considered events



BSM searches

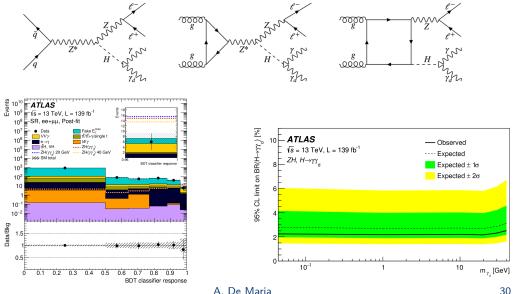
A. De Maria

Search for BSM signatures


- At LHC, several data analyses are trying to search for BSM signatures
- Possible to test several signal hypotheses and tune models
- Requires also to develop new object reconstruction and machine learning algorithms

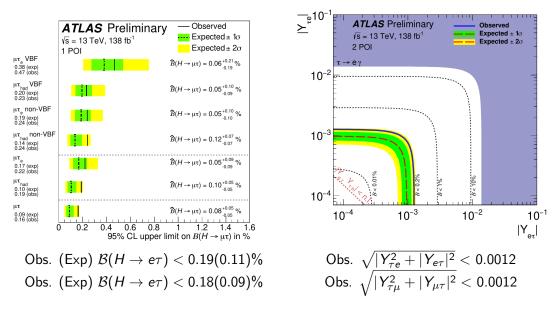
$H{\rightarrow} \text{ invisible combination } \textbf{HIGG-2021-05}$

- Search for Higgs decaying into dark matter particles, especially in VBF Higgs production
- $\bullet\,$ Main background from strong and electroweak Z+jets production
- BR(H \rightarrow invisible) > 15 % excluded at 95% CL



Search for Dark γ (γ_d) from Higgs decay

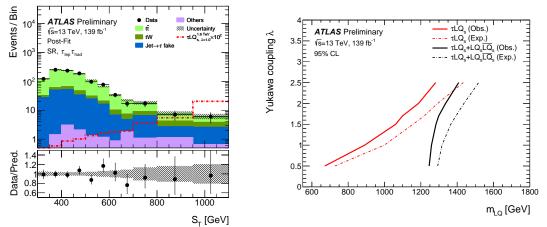
arxiv-2212.09649


- Dark sector can interact weakly with SM
- γ_d produced from $H \rightarrow \gamma \gamma_d$ decay and not detected, resulting in $\mathsf{E}_{miss}^{\mathcal{T}}$
- Consider the ZH production; use MVA to enhance the sensitivity
- Obs. (Exp.) upper limits at 95% CL on BR(H→ γγ_d) of 2.28 % (2.82 ^{+1.33}_{-0.84}%) for massless γ_d, 2.19% (2.71%) < BR(H → γγ_d) < 2.52% (3.11%) for M_{γd} < 40 GeV

30 / 35

LFV search in H ightarrow Iau (Atlas-conf-2022-060

- Search in both leptonic and hadronic au decay final state
- Use MVA discriminant to enhance signal over background and extract results

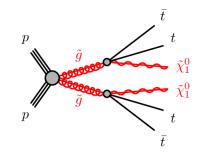

• Results can be interpreted as limits for non-diagonal Yukawa coupling matrix elements

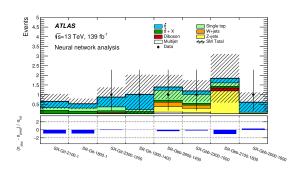
Leptoquark (LQ) search in bau final state

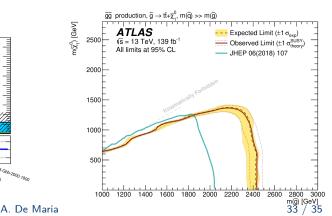
ATLAS-CONF-2022-037

- LQs can explain anomalies in B-physics, decay to lepton-quark pairs
- Main focus on singly produced scalar LQ:
 - considering $ilde{S_1}$ model with LQ having 4/3e and 3B+L=-2
 - LQ production mostly through quark-gluon fusion and scattering
- Include also pair production of scalar LQs since similar final state
- Assuming LQ exclusive decay in b au

- First ATLAS result for the search of singly-produced LQ in bau final state
- For singly+pair LQ production, masses below 1.25 TeV excluded for λ values >0.5

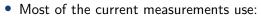


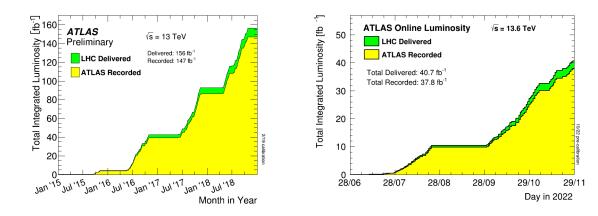




SUSY search in final states with E_{miss}^{T} plus \geq 3 b+jets arxiv-2211.08028

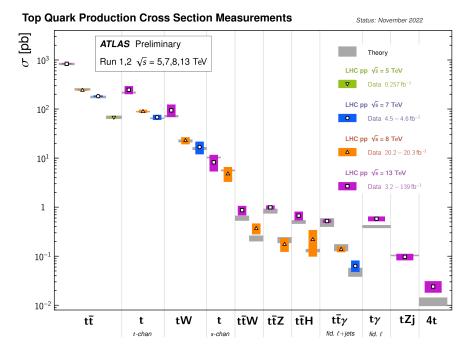
- Supersymmetry predicts a partner for each SM particle with spin differing by half unit
- Searching for pair production of gluinos, each decaying into a pair of heavy-flavor quarks and a neutralino ($\tilde{\chi}_1^0$)
- Use MVA to enhance sensitivity over SM background, but no significant excess found
- For simplified models with gluinos decaying via off-shell top (bottom) squarks, gluino masses less than 2.44 TeV (2.35 TeV) are excluded at 95% CL for massless $\tilde{\chi}_1^0$


Conclusion

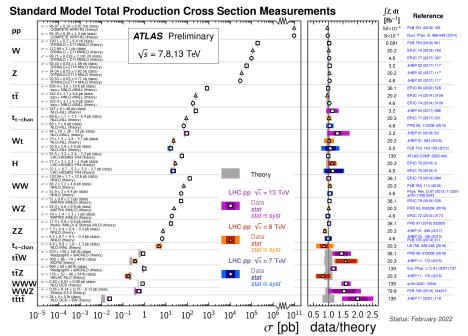

- Lots of exciting results from ATLAS experiment have been published recently
- Several physics topics covered: (Beyond) Standard Model measurements, including several results from Higgs and Top physics
- Great precision achieved thanks to the large available dataset and the good detector performance
- Run 3 just started, but already capable to make Standard Model measurements at increased center of mass energy
- More and more results still to come

Thanks For Your Attention

Backup

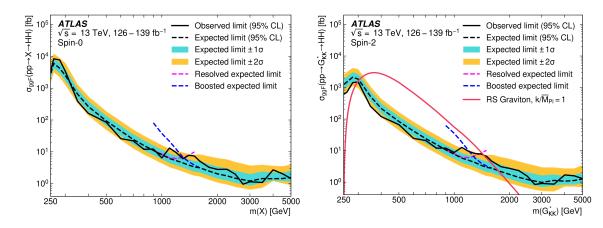


- Run2 dataset, $\simeq 139~{
 m fb}^{-1}$ recorded in 2015-2018 at $\sqrt{s}=13~{
 m TeV}$ (R2lumi)
- Run3 dataset, started in 2022 (press) ; \simeq 38 fb $^{-1}$ recorded at $\sqrt{s} =$ 13.6 TeV R31umi
- Large dataset allow to challenge LEP measurements precision


Top cross-section summary webpage

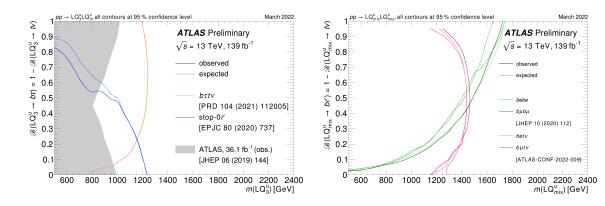
• Lots of measurements spanning over cross-section range of several order of magnitude

SM cross-section summary webpage


- Lots of measurements spanning over cross-section range of several order of magnitude
- No strong tensions between measurements and theory; large success of SM predictions

Search for $X \to HH \to 4b$ (Phys.Rev.D105(2022)092002

- Considering spin-0 and spin-2 benchmark signal models
 - corresponds to resonant HH production via gluon-fusion
- Analysis performed in *Resolved* and *Boosted* regime:
 - Resolved for $M_X \epsilon$ [250, 1500] GeV, using anti-Kt 0.4 jets
 - Boosted for $M_X \in [0.9, 5]$ TeV, using largeR jets



• Bulk Randall-Sundrum model excluded for graviton masses 298 GeV < M < 1460 GeV

- LQs can explain deviations from lepton flavour universality from the SM in B-physics
 - Predicted in many BSM scenarios and decay to lepton-quark pairs
 - Carry color change, electric charge and non-zero baryon (B) and lepton (L) number
- Several searches for 1st,2nd and 3rd and cross-generations final states (PUB-2022-012)

