

Recent results from the KATRIN experiment

Christoph Köhler

Technical University of Munich

59th International Winter Meeting on Nuclear Physics

Neutrino mass

- Neutrino oscillations →
 Non-zero mass
- Smallness and origin of mass?

Lower bound from oscillation experiments

Determination methods

Determination methods

Neutrino mass signal in β-decay

- Distortion of electron spectrum near the endpoint
- Independent of cosmology and neutrino nature

Experimental challenge

- Only 10⁻¹³ of all decays in last 1 eV,
 10⁻⁸ in the last 40 eV
- Strong tritium source: 10¹¹ decays/s
- Low background level < 0.1 cps
- Excellent energy resolution ~ 1 eV
- Precise understanding of the spectrum shape

 $m^2(\nu_e) = \sum |U_{ei}|^2 \cdot m_i^2$

KArlsruhe TRItium Neutrino Experiment

- International collaboration (150 members)
- Design sensitivity: 0.2 eV (90 % C.L.) (1000 days of measurement time)

Experimental overview

Measurement strategy

- ~2 h scan time •
- Several **campaigns** per year O(100) scans

Retarding energy (eV)

Analysis strategy

• Maximum likelihood fit of model

$$\Gamma(qU) \propto A \int_{qU}^{E_0} D(E; m_\beta^2, E_0) \, R(qU, E) \, \mathrm{d}E + B$$

- Free parameters: Amplitude **A**, squared neutrino mass m_{β}^2 , endpoint E_0 and background **B**
- Theoretical (Fermi theory, molecular excitations) and experimental inputs (calibration measurements)

Column density determination

- Electron rate measured at different retarding potentials: ~30 min
 - Fit with model response function:
 - Absolute electron rate
 - **ρd*σ** (column density * cross section)

- Source scattering depending on:
 - Electron path
 - Column density
 - Cross section
- $\rightarrow~$ Input for response function

Data taking overview

Latest neutrino mass result

- KNM1:
 - Best fit: $m_{\nu}^2 = (-1.0^{+0.9}_{-1.1}) \text{ eV}^2$
 - Limit: $m_{
 m v} < 1.1$ eV (90% CL)
- KNM2:
 - Best fit: $m_{\nu}^2 = (0.26^{+0.34}_{-0.34}) \text{eV}^2$
 - Limit: $m_{
 m v} < 0.9$ eV (90% CL)
- Combined result: $m_{
 m v} < 0.8$ eV (90% CL)

Uncertainty breakdown: 2nd campaign

Preview: 5th campaign

- Still statistics dominated, systematics largely improved
- Major improvement: Background reduction (÷2) via new EM field layout Lokhov et al arXiv:2201.11743 (2022)

Outlook

Physics beyond neutrino mass

Search for light sterile neutrinos

Search for Big Bang neutrinos

and more ... (not in this talk)

Light sterile neutrinos

 Motivated by anomalies in voscillation experiments → eV-scale

G. Mention et al Phys. Rev. D 83, 073006 (2011)

Sterile neutrino parameter space

- Reactor anomaly → resolved?
- Gallium anomaly \rightarrow

strengthened with BEST result

G. Mention et al Phys. Rev. D 83, 073006 (2011)
A. P. Serebrov et al., Pisma Zh. Eksp. Teor. Fiz. 109, 209 (2019)
V. V. Barinov et al. (BEST), arXiv:2109.11482 (2021)

Sterile neutrino parameter space

- **Partly exclusion** of Neutrino4 and GA with recent KATRIN result
- Potential to probe Neutrino4 and GA to great extend

KATRIN Collab., PRL. 126, 091803 (2021) KATRIN Collab. arXiv:2201.11593 (2022)

Sterile neutrino parameter space

• Complementary probe to oscillation-based experiments

DANSS, arXiv:1911.10140 (2019) STEREO, Phys. Rev. D 102, 052002 (2020) PROSPECT, Phys. Rev. D 103, 032001 (2021)

Relic neutrino signature

- Cosmic neutrino background (CvB)
 - Neutrino decoupling 1 s after Big Bang
 - High abundance: 400 v/cm³ today
 - Challenge: Tiny cross-section

Capture on tritium, no energy threshold
 Electron peak above endpoint
 Induced electron peak

 $m_v c^2$

m_v c² Electron energy

 $m_v > 0$

per year

Relic neutrino overdensity

- KATRIN data:
 - constraint on **local overdensity** $\eta < 1.1 \cdot 10^{11}$ (95% CL)
 - → **x100 improvement** over previous laboratory bounds

Summary

- First **sub-eV neutrino mass limit** from a direct experiment: $m_{\beta} < 0.8 \text{ eV}$
- Projected sensitivity for next data release: m_{β} < 0.5 eV
- Beyond the neutrino mass:
 - Complementary search for eV-scale neutrinos
 - New limit on relic neutrino overdensity

Backup

Spectrometer background

 $^{222}_{3.8 d}$ Rn

(218Po)

3.1 min

 $\begin{pmatrix} 214 \text{Pb} \\ 27 \text{ min} \end{pmatrix}$

214Po

164 µs

210 Pb 22 yr

 $^{\prime 214}\mathrm{Bi}$ 20 min

 $^{210}\mathrm{Bi}$

5.0 d

