KU LEUVEN

NUCLEAR AND RADIATION PHYSICS

Novel radioisotopes for medical applications: the CERN MEDICIS project and beyond

Prof Thomas Elias Cocolios

KU Leuven Institute for Nuclear & Radiation Physics

59th International Winter Meeting on Nuclear Physics – Bormio – 25 Jan 2023

>Nuclear medicine from a nuclear physicist's perspective

>Why so few radionuclides?

>A new supply chain via mass separation: CERN MEDICIS

PRISMAP – The European Medical Radionuclide Programme

Nuclear medicine

Some very basic concepts

Molecular imaging

- A radionuclide is transported to a specific location in the body where it decays with the emission of a γ ray.
- The γ ray penetrates the tissues and exits the body so that it may be recorded externally to visualize where it decayed.
- Multiple orientations yield a 3D tomographic reconstruction of the image.

Institute for Nuclear and Radiation Physics Department of Physics & Astronomy

Targeted action

The body uses some trace elements for specific actions:

- iodine for thyroid functions
- calcium in the bones

A radioactive isotope can be included in a molecule involved in metabolic activities: sugar-equivalent FDG

Important to match biodistribution to half-life! Cells may display receptors that are specific and can be linked to by target

- peptides
- hormones
- antibodies

Interdisciplinary Research Group Institute for Nuclear and Radiation Physics **Department of Physics & Astronomy**

Switching to therapy

Cell

- Replacing the γ-ray emission with charged particle emission yields therapeutic effect.
- β⁻ particles may reach up to a few mm, α particles reach but a few cells, Auger electrons act within a cell.
- For an efficient treatment, the DNA of the targeted cell must be damaged

Interdisciplinary Research Group Institute for Nuclear and Radiation Physics Department of Physics & Astronomy

KU LEUVEN

JCLEAR AND RADIATION PHYSIC

Theranostics

- If a single vector molecule can be identified with interchangeable radioisotopes, then its efficacy and properties can be tested with molecular imaging and then applied with therapy.
- If a single radioisotope decays by both γ-ray or β⁺ emission and α or β⁻ emission, then that single radioisotope can be used to treat and at the same time monitor the patient dose and the treatment's efficacy.

Final aim: personalized medicine where the treatment is tailored to the needs of the patient

> Interdisciplinary Research Group Institute for Nuclear and Radiation Physics Department of Physics & Astronomy

Key challenge: supply

What is used vs what could be used...

Interdisciplinary Research Group Instituut voor Kern- en Stralingsfysica Department of Physics & Astronomy

8

Interdisciplinary Research Group Institute for Nuclear and Radiation Physics Department of Physics & Astronomy

Producing the Tb isotopes

149	152	155	161
Tb	Tb	Tb	Tb
Terbium	Terbium	Terbium	Terbium

-																				
	¹⁵¹ Εr _{β+}	¹⁵² E r م	¹⁵³ E r م	¹⁵⁴ Ег ^{в+}	¹⁵⁵ Er _{β+}	¹⁵⁶ Εr _{β+}	³⁰⁷ Er _{β+}	¹⁵⁸ Er e- capture	¹⁶⁹ Er _{β+}	¹⁶⁰ Er e- capture	¹⁶¹ Er _{β+}	¹⁶² E r م	¹⁶³ Er _{β+}	¹⁶⁴ Er م	¹⁶⁵ Er e- capture	¹⁶⁶ Er _{Stable}	¹⁶⁷ Er _{Stable}	¹⁶⁸ Er _{Stable}	¹⁶⁹ Εr _{β-}	¹⁷⁰ Ег _{2β-}
	¹⁵⁰ Ho _{β+}	¹⁵¹ Но ^{в+}	¹⁵² Ηο _{β+}	¹⁵³ Ηο _{β+}	¹⁵⁴ Но ^{в+}	¹⁵⁵ Ηο _{β+}	¹⁵⁶ Ηο _{β+}	¹⁵⁷ Но _{β+}	¹⁵⁸ Ηο _{β+}	¹⁵⁹ Ηο _{β+}	¹⁶⁰ Ho _{β+}	¹⁶¹ Ho e- capture	¹⁶² Ηο _{β+}	¹⁶³ Ho e- capture	¹⁶⁴ Ho e- capture	¹⁶⁵ HO Stable	¹⁶⁶ Ηο _{β-}	¹⁶⁷ Ho β-	¹⁶⁸ Ηο β-	¹⁶⁹ Ηο β-
	¹⁴⁹ Dy ^{β+}	¹⁵⁰ Dy _{β+}	¹⁵¹ Dy _{β+}	¹⁵² Dy e- capture	¹⁵³ Dy _{β+}	¹⁵⁴ Dy م	¹⁵⁵ Dy _{β+}	¹⁵⁶ Dy α	¹⁵⁷ Dy _{β+}	¹⁵⁸ Dy α	¹⁵⁹ Dy e- capture	¹⁶⁰ Dy _{Stable}	¹⁶¹ Dy _{Stable}	¹⁶² Dy _{Stable}	¹⁶³ Dy _{Stable}	¹⁶⁴ Dy _{Stable}	¹⁶⁵ Dy β-	¹⁶⁶ Dy β-	¹⁶⁷ Dy β-	¹⁶⁸ Dy β-
	¹⁴⁸ Tb _{β+}	¹⁴⁹ Tb β+	¹⁵⁰ ТЬ _{в+}	¹⁵¹ Tb	¹⁵² Tb _{β+}	¹⁵³ ТЬ _{в+}	¹⁵⁴ Tb _{β+}	¹⁵⁵ Tb e- capture	¹⁵⁶ ТЬ ^{в+}	¹⁵⁷ Tb e- capture	¹⁵⁸ Tb _{β+}	¹⁵⁹ Tb _{Stable}	¹⁶⁰ Tb β-	¹⁶¹ Tb β-	¹⁶² ТЬ ^{β-}	¹⁶³ Тb _{β-}	¹⁶⁴ Tb β-	¹⁶⁵ Tb Primary D	¹⁶⁶ Tb ecav ^β Mode	¹⁶⁷ Tb
	¹⁴⁷ Gd _{β+}	¹⁴⁸ Gd	¹⁴⁹ Gd _{β+}	¹⁵⁰ Gd ∝	¹⁵¹ Gd e- capture	¹⁵² Gd α	¹⁵³ Gd e- capture	¹⁵⁴ Gd _{Stable}	¹⁵⁵ Gd Stable	¹⁵⁶ Gd _{Stable}	¹⁵⁷ Gd _{Stable}	¹⁵⁸ Gd _{Stable}	¹⁵⁹ Gd _{β-}	¹⁶⁰ Gd 2β-	¹⁶¹ Gd β-	¹⁶² Gd β-	¹⁶³ Gd β-	Stable β-3 d 2β-	¹⁶⁵ Gd β-	2β+ p ¹⁶⁶ Gd 2p _β -
	¹⁴⁶ Eu _{β+}	¹⁴⁷ Eu _{β+}	¹⁴⁸ Eu _{β+}	¹⁴⁹ Eu e- capture	¹⁵⁰ Eu _{β+}	¹⁵¹ Eu م	¹⁵² Eu _{β+}	¹⁵³ Eu _{Stable}	¹⁵⁴ Eu β-	¹⁵⁵ Eu β-	¹⁵⁶ Eu β-	¹⁵⁷ Eu β-	¹⁵⁸ Eu β-	¹⁵⁹ Eu β-	¹⁶⁰ Eu β-	¹⁶¹ Eu β-	¹⁶² Eu β-	e- capt	ure ⁶⁴ Eu	α Fission
	¹⁴⁵ Sm e- capture	¹⁴⁶ Sm ª	¹⁴⁷ Sm α	¹⁴⁸ Sm a	¹⁴⁹ Sm a	¹⁵⁰ Sm _{Stable}	¹⁵¹ Sm β-	¹⁵² Sm _{Stable}	¹⁵³ Sm β-	¹⁵⁴ Sm 2β-	¹⁵⁵ Sm β-	¹⁵⁶ Sm β-	¹⁵⁷ Sm β-	¹⁵⁸ Sm β-	¹⁵⁹ Sm β-	¹⁶⁰ Sm β-	¹⁶¹ Sm β-	Estima	ved₃Sm ted _{β-}	Unknown ß-

11 The Colourful Nuclear Chart: https://people.physics.anu.edu.au/~ecs103/chart/

Isotopes effectively used

✓^{223,224}Ra

- ✓ Xofigo® for the treatment of bone metastasis in castration resistant prostate cancer
- 102+17 clinical trials

✓²²⁵Ac

- 14 clinical trials
- Mostly about prostate cancer

✓ 227Th

• 4 clinical trials

	e-capture	u	p+	p+	p≁	p≁	p≁	e-capture	e-capture	
J	²²⁷ U a	²²⁸ U α	²²⁹ U β+	23 X	²³¹ U e- capture	²³² U α	²³³ U α	²³⁴ U α	²³⁵ U α	23
a	²²⁶ Pa ª	2 2 00	²²⁸ Ρa _{β+}	²²⁹ Pa e- capture	²³⁰ Ρa _{β+}	²³¹ Ρa α	²³² Ρа β-	²³³ Ρa β-	²³⁴ Ρa β-	23
h	²²⁵ Th م	22 X h	²²⁷ Th ª	²²⁸ Th a	²²⁹ Th ª	²³⁰ Th a	²³¹ Th β-	²³² Th a	²³³ Th β-	23,
с	²²⁴ Ac _{β+}	²²⁵ Αс α	²²⁶ Ас _{β-}	²²⁷ Αс _β -	²²⁸ Αс _{β-}	²²⁹ Αс β-	²³⁰ Αс β-	²³¹ Αс _{β-}	²³² Αс β-	23:
a	²²³ Ra ª	²²⁴ Ra ª	²²⁵ Ra β-	²²⁶ Ra ª	²²⁷ Ra β-	²²⁸ Ra β-	²²⁹ Ra β-	²³⁰ Ra β-	²³¹ Ra β-	23:

0 1	1		$M/hy P_2 P_2 P_2$											2				
'	Н	$_2$ vvily Λa · $\Lambda a G_2$											13	14	15	16	17	Не
~	3	4											5	6	7	8	9	10
2	Li	Ве											В	C	Ν	0	F	Ne
~	11	12											13	14	15	16	17	18
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	P	S	CI	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
_	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
~	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
_	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

lanthanoid series 6

actinoid series 7

58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Sm Er Pr Nd Pm Eu Gd Dy Ho Yb Tb Tm Lu 90 91 92 93 94 95 96 97 98 99 100 102 103 101 Bk Np Cf Es Th Pa U Pu Cm Fm Md No Am Lr

- From a single ²²⁵Ac isotope, 4 α particles are emitted in a short time, resulting in the highest possible dose to short distance.
- ²²⁵Ac may also be used as a long-lived generator for ²¹³Bi, which yields 1 α for each decay but with a half-life of 45 min only, perfectly fit to fast-acting medicine.
- Coordination chemistry appropriate for all sorts of vector molecules, and can be paired with PET-imaging using ⁶⁸Ga or ¹³⁵La.

Where does ²²⁵Ac come from?

Alternative sustainable routes to produce ²²⁵Ac

From ²²⁶Ra

- ²²⁶Ra(p,2n)²²⁵Ac
- ²²⁶Ra(γ,n)²²⁵Ra→²²⁵Ac
- Challenge with radioactive target
- Waste management issues: ²²²Rn

From ²³²Th

- ²³²Th(p,xpyn)²²⁵Ra/Ac
- Requires high-energy driver
- Co-production of many impurities and in particular ²²⁷Ac

ISOL

The Isotope Separation On-Line technique

20

 the collection of edical research ins from CERN or I sources

KU LEUVEN

NUCLEAR AND RADIATION PHYSICS

Tb-IRMA-V: towards a sustainable supply

Interdisciplinary Research Group Institute for Nuclear and Radiation Physics Department of Physics & Astronomy

ISOL@MYRRHA: a new facility

- Up to 600 MeV protons, 4 mA
- Phase 1 with 100 MeV, 0.5 mA
- Fundamental and applied programmer

Power(MEDICIS) = 2.8 kW Power (MYRRHA) = 50 kW

Tb-IRMA-V

Tb-IRMA-V: ISOL Production

- Investigate the necessary developments towards the ISOL@MYRRHA facility
 - High-power target systems
 - Ion sources to handle highintensity radioactive ion beam production
 - New laser ionization scheme for Tb

30 kV

< 7 V

PhD work Benji Leenders, UGent & SCK CEN.
23 PhD work Sophie Hurier, KU Leuven & SCK CEN.
PhD work Kristof Dockx & Wiktoria Wojtaczka, KU Leuven.

ISOL

Tb-IRMA-V: Purification

Concentrating on the Tb/Gd separation

Purification

24

- ¹⁶¹Tb production in the BR2 reactor at SCK, already delivering radioisotopes
- Developed the oxidization of Tb(III) to Tb(IV) to go beyond the existing state-of-the-art with α-HIBA and establish a novel purification protocol.

Interdisciplinary Research Group Institute for Nuclear and Radiation Physics Department of Physics & Astronomy

Tb-IRMA-V: Distribution

- Limited international regulation on the transport of Tb radioisotopes
 - Basic regulations are very stringent and impractical for medical practice
 - New regulations from IAEA since 2019 on ^{149,161}Tb
 - Calculations submitted to the Federal Agency for Nuclear Control for ^{152,155}Tb
- All values compatible for
 Distribution medical use

Isotope	IAEA	New A2
¹⁴⁹ Tb	800 GBq	800 GBq
¹⁵² Tb	(20 GBq)	800 GBq
¹⁵⁵ Tb	(20 GBq)	2 000 GBq
¹⁶¹ Tb	700 GBq	700 GBq

LEMER

KU LEUVEN

Interdisciplinary Research Group Institute for Nuclear and Radiation Physics Department of Physics & Astronomy

Tb-IRMA-V: Radiopharma

- Devising new radiopharmaceuticals
 - How to use the samples after the new radiochemistry
 - Producing peptides-based radiopharma that are heat sensitive (max 40°C), starting with Human Serum Albumin
 - Demonstrating the process with cold isotopes, then in-vitro, and finally in-vivo in mice models

Radiopharma & pre-clinic

Interdisciplinary Research Group Institute for Nuclear and Radiation Physics Department of Physics & Astronomy

KU LEUVEN

JCLEAR AND RADIATION PHYSIC

Tb nuclear data

- Imprecise, inaccurate half-lives lead to 'paper losses' of radioactivity and poorly known injected radioactivity.
- Hospitals require secondary standards that they can readily used, determined by metrology institutes.

- Limited or contradictory knowledge of production cross sections lead to too high uncertainties in the production protocol and thus, too high uncertainty for the industry.
- A large effort is put into remeasuring the cross sections of isotopes of interest and possible contaminants.

S. Collins et al., Applied Radiation and Isotopes **182** (2022) 110140. S. Collins et al., Applied Radiation and Isotopes **190** (2022) 110480. C. Duchemin et al., Frontiers in Medicine **8** (2021) 625561.

KU LEUVEN

Building on our wins: ¹⁵³Sm

- Produced readily from ¹⁵²Sm(n,γ)¹⁵³Sm, however with too small specific activity (~2%) for nuclear medicine application.
- CERN MEDICIS offers the possibility to efficiently separate the ¹⁵³Sm to 99% enrichment. With a half-life below 2 days, the logistics is a challenge!
- Performed full development: production, radiochemistry, radiolabelling, in vitro AND in vivo studies within 18 months from proposal to publication.

ISOLDE-produced ²²⁵Ac

- At ISOLDE, the target materials are ²³⁸UC_x and ²³²ThO2 with 1.4 GeV protons.
- ²²⁵Fr (alkali metal) is very easily extracted online and ionized.
- ²²⁵Ra (alkali earth) is also well extracted and its ionization can be enhanced with lasers (x4).
- ²²⁵Ac (actinide) is harder to separate from the target matrix but has the highest production cross section.
- ISOLDE has reached 1% extraction from UCx and MEDICIS 10% from ThO₂.
- ²²⁷Ac activity fraction of 6x10⁻⁷.

T. Day Goodacre et al., Radium ionization scheme development..., Spectrochemica Acta B 150 (2018) 99-104
29 S. Raeder et al., In-source laser spectroscopy developments at TRILIS..., Hyperfine Interactions 216 (2013) 33-39 PhD work Jake Johnson (KU Leuven)

Interdisciplinary Research Group Instituut voor Kern- en Stralingsfysica Department of Physics & Astronomy

KU LEUVEN

JCLEAR AND RADIATION PHYSIC

Cell Irradiations

- A new setup has been designed for cell irradiation tests.
- Biophysics group has developed a protocol to suspend cells at the surface of a hydrogel.
- Staining with different fluorescent dyes allows to count surviving (green) from dead (red) cells.
- ²²⁵Ac collection sample from MEDICIS was used to irradiate the cells [until it got damaged].
- Investigation of single or isolated cells and direct effects of the radiation.
- ²⁴¹Am sources with different activities to explore dose escalation and dose rate escalation.

PRISMAP

The European Medical Radionuclide Programme... ...and what it means for Belgian Medical Physicists!

PRISMAP

- European infrastructure programme
- Provides transnational access to novel radioisotopes for medical research, as well as access to facilities for biological research with those isotopes.
- Excellence-based selection by a User Selection Panel. Two calls for project per year.
- Open User Forum to stay informed about our programme and to contribute to its future.

https://www.prismap.eu/radionuclides/user-forum/

PRISMAP

PRISMAP portfolio

- 27 EU PRISMAP Medical Radionuclides
- PRISMAP third call under preparation
- Many isotopes require high-energy projectiles and/or mass separation to reach the necessary quality
 - Mass separation currently only available at CERN MEDICIS

• PRISMAP only offers transnational access for research purpose towards first-in-human trials

New facilities will be needed across Europe to supply medical institutions for patient care

> Interdisciplinary Research Group Institute for Nuclear and Radiation Physics Department of Physics & Astronomy

First two calls: overview

- 15 accepted projects so far
- Covers logistics, in vitro, and in vivo research
- Half of the proposals involve the Tb quadruplet
- Biomedical facilities are undersubscribed
- Deliveries have begun

Radiopharmaceutical Cancer Research Dresden (/CZ) Pharmaceutical Radiochemistry TU Munich In vivo cellular & molecular imaging lab (ICMI) VU Brussels Imaging and Pathology KU Leuven Molecular Imaging Center Antwerp Biomedical Engineering and Imaging Science London UGA – Inserm La Tronche Radiopharmacy Bordeaux CEMHTI Radiochemistry Orleans Radiochemistry Hopital Frederic Joliot Orsay Inserm Montpellier (/PT) Radiochemistry unit, Hospital Gregorio Marañón Madrid Fondazione IRCCS Istituto Nazionale dei Tumori Milano Dep Molecular Biotechnology Health Sciences Torino

Interdisciplinary Research Group Instituut voor Kern- en Stralingsfysica Department of Physics & Astronomy

EU

Medical Radionuclides

36 <u>https://www.prismap.eu/</u>

Nuclear medicine is undergoing an important transformation from routine operation with a handful of radioisotopes to new opportunities with innovative radioisotopes and theranostics applications.

Europe is playing a major role in this transformation, driven by an active research community and guided by European interests (ERVI).

CERN MEDICIS is the only mass separator for medical radioisotopes today and new facilities are needed: ISOLPHARM (IT), ISOL@MYRRHA (BE), SMILE (FR), TATTOOS (CH) are on the books for the next 5-10 years.

Existing initiatives and strong pan-European partnerships such as PRISMAP and Tb-IRMA-V are paving the way towards realizing this objective.

>The community must be ready with the logistic and regulatory challenge!

Interdisciplinary Research Group Institute for Nuclear and Radiation Physics Department of Physics & Astronomy

This work is supported by funding from the European Commission under Horizon 2020, Marie Sklodowska Curie Actions, ITN contract No. 861198 (LISA) and Horizon Europe research and innovation programme contract No. 101008571 (PRISMAP).

These activities are further supported by the Research Foundation – Flanders FWO contracts No. S005019N (Tb-IRMA-V) and No. I002619N (ISOLDE).

Interdisciplinary Research Group Institute for Nuclear and Radiation Physics Department of Physics & Astronomy

Extra slides ISOLDE

ISOLDE @ CERN

Step 1: Production

- 1.4 GeV protons from the PS Booster
- 2 µA on average
- Pulsed beam delivery
- Targets ranging from Li to U!

Isotope release

Diffusion: $D = D_0 \cdot e^{-\frac{E}{RT}}$ (Arrhenius eq.)

- D: Diffusion coefficient
- μ : Diffusion time
- $\lambda: \text{ Decay constant}$
- G: Grain size

Control microstructure to enhance release properties

Interdisciplinary Research Group Instituut voor Kern- en Stralingsfysica Department of Physics & Astronomy

KU LEUVEN

UCLEAR AND RADIATION PHYSICS

Step 2: Chemical selection

- Choice of target material:
 - Thick targets catch all isotopes; recoils diffuse under high temperature condition (2000°C)
 - Volatility dependence: refractory elements are trapped
 - Thin targets allow all recoils out and have a lesser chemical sensitivity but yields suffer linearly with number of target atoms.

Step 2: Ion sourcery

- Choice of ion source :
 - Low-IP elements (alkali, alkali-earth, some rare-earth) ionize in contact with a hot surface;
 - High-IP elements (noble gases, halogens, light volatile elements) require highly energetic electron bombardment;
 - Transition metals are not appropriate with either and require a case-by-case laser ionization approach.

1								I	on source	:								2
H								+	Surface	-								He
3 Li	4 Be							hot	FEBIAD Laser	cool			5 B	6 C	7 N	8 O	9 F	10 Ne
11 Ia	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
87 8 b	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 C S	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
37 F r	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	¹⁰⁷ Bh	108 Hs	109 Mt	110 Ds	111 Rg							
		*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
		**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

RILIS

Interdisciplinary Research Group Instituut voor Kern- en Stralingsfysica Department of Physics & Astronomy

KU LEUVEN

Step 3: mass separation

- A mono-energetic beam at energy 30-60 keV is extracted, shaped, and transported to a dipole magnet.
- The magnetic rigidity (bending radius) of each element is dependent upon the magnetic field and the mass-to-charge ratio m/q.
- Tuning the magnetic field allows to select a given m/q, though beams typically have q = 1, resulting in mass separation.
- Resolution varies from $R = {m/_{\Delta m}} 500$ to 20,000 for the most ambitious. 500 corresponds to single mass separation, while 20,000 is enough to separate molecules from single-element ions.

The Isotope Separator OnLine DEvice

- Approved by the CERN Council in **1964**; received its first beam in **1967**
 - Initially using 600 MeV protons from the SC
 - Moved to the PS Booster in 1992 where it received 1.0 GeV protons – now 1.4 GeV
- ~0.1% of the CERN budget
 ~7% of the CERN scientists
 >60% of the CERN protons
- ~50 staff/students/fellows
 ~500 active users

- The ISOLDE Collaboration includes CERN and 15 countries: BE, DE, DK, FI, FR, GR, IT, NO, PL, RO, SK, ZA, ES, SE, UK
- Other international collaborators participate in experiments (e.g. MIT, ORNL)

Extra slides MEDICIS

The MEDICIS Collaboration

- Born from ISOLDE but separate entity.
 - Approved in 2013
 - Commissioned in 2017
 - Operated in 2019-2020 in spite of LS2
- 2 annual Collaboration Boards to report on progress and discuss scientific proposals.
- 31 approved projects (4 completed)

- The MEDICIS Collaboration includes CERN and 12 institutes from BE, DE, FR, LV, PK, PR, ES, CH, UK
- The European Association of Nuclear Medicine acts as an advisory member

2018 achievements

- 26 target irradiations over the 2018 campaign.
- Separation of radioisotopes produced with the nuclear reactor from Institut Laue-Langevin (Grenoble, France).
- Activities up to 75 MBq for ¹⁵⁵Tb and 100 MBq for ¹⁴⁹TbO & 120 MBq for ¹⁶⁵Tm.
 1 GBq extracted in total.
- 5% surface ionization reached
- Radiochemistry performed at NPL
- Samples distributed to HUG, CHUV, IST, ...

MEDICIS Direct

2019 achievements

- 100% operation with imported sources from ILL and from the ARRONAX cyclotron (Nantes, France) [30-70 MeV, ¹H, ²H, ⁴He]
- Installation of the MELISSA laser laboratory for laser ionization and of a dedicated fume hood for samples
- Tb/Gd radiochemistry pre-separation and new laser ionization scheme
- 15 collections of ¹⁵⁵Tb, ¹⁶⁹Er, ¹⁷⁵Yb over 15 weeks for a total of 870 MBq delivered to KUL, HUG, NPL, PSI

2020 achievements

- 100% operation with imported sources again, from ARRONAX, from the Proton Injector 2 cyclotron at PSI (Villigen, Switzerland), from the Belgian Reactor 2 (Mol, Belgium), and the European Commission's Joint Research Centre (Karlsruhe, Germany)
- Adding a CZT gamma-ray detector at the collection point to monitor the growth of activity; developing on-site radiochemistry for radiolanthanides
- 17 collections of ¹⁵³Sm, ¹⁵⁵Tb, ¹⁶⁷Tm, and ²²⁵Ac, for 540 MBq for KUL, NPL, PSI

Status update MED024

Instituut voor kern en stralingsfysica MEDICIS Board 27/04/22

54 PhD work Jake Johnson, KU Leuven.

Status of data from MED024

 $\varepsilon = \varepsilon_{ion} \varepsilon_{sep} \varepsilon_{trans}$ 10.0(2)% $\varepsilon_{ion} = 12.8(2)\%$

 $\varepsilon = \varepsilon_{eff} \varepsilon_{ion} \varepsilon_{sep} \varepsilon_{trans} \quad 9.8(1)\%$

 $T_{rel} = 1890^{\circ}C$

KU LEUVEN

10-1 [hO_: n(Ac[g]):/ n(Ac[g;l,s] In ThO₂: n(Ac[g]) /:n(Ac[g,I,s]) 10^{-2} (n(Acla+sl)+2n(Ac-O Relative concentration In ThO₂: 2n(Ac₂O₂) / (n(Ac[g,I,s]) + 2n(Ac₂O₂) 10-3 10-4 10-10-6 10-7 1600 1800 2200 2300 2400 1500 1700 1900 2000 2100 2500 Temperature [° C]

Conclusions:

225Ac extraction is not effusion limited.

 $T_{rel} = 2260^{\circ}C$

- A high target temperature (~2260 is required, probably due to formation of Ac2O3 in target.
- The ionization efficiency was the • main limiting factor in collection efficiency. Expected to worsen for irradiated target conditions

Decay spectroscopy of 2020 ²²⁵Ac collections

Instituut voor kern en stralingsfysica

Suitability of resonance ionization and mass separation of heavy elements for medicine

- High ionization efficiency of other Actinides
- High ionization efficiencies achieved at CERN MEDICIS
- Laser ionization and mass separation is a viable method to collect heavy elements from irradiation targets for medical purposes.
- But are other unwanted species collected too?

57

Element	lon current (nA)	lonization efficiency	Facility
<mark>²³²Th</mark>	<mark>50</mark>	<mark>38.6%</mark>	ORNL[1]
²⁴² Pu	<mark>10</mark>	<mark>51.1%</mark>	ORNL[2]
¹⁶⁷ Tm	50	55%	MEDICIS[3]
¹⁵³ Sm		12.7%	MEDICIS[4]
¹⁷⁷ Lu	40	52%	RISIKO[5] (Mainz)
225 <mark>Ac</mark>	<mark>0.01</mark>	<mark>12.8%</mark>	MEDICIS[*]

[4]Van de Voorde, M.et al.Production of sm-153 with very high specific activity for targeted radionuclide therapy.Front.Medicine8, 1153(2021).
[3]Talip, Z.et al.Efficient production of high specific activity 167tm at psi and cern-medicis.Lab. Radiochem.52 (2020).
[2]Galindo-Uribarri, A., Liu, Y., Romero Romero, E. & Stracener, D. W. High efficiency laser resonance ionization of plutonium.Sci. Reports11, 1–11 (2021).
[1].Liu, Y. & Stracener, D. High efficiency resonance ionization of thorium. Nucl. Instruments Methods Phys. Res. Sect. B, 95–101(2020)
[5] Gadelshin, V. M.et al.Measurement of the laser resonance ionization efficiency for lutetium.Radiochimica Acta107,653–661 (2019) Instituut voor kern en stralingsfysica Scientific seminar 16/03/22

MED030: Characterising ²²⁵Ac collected from irradiated target

End of Collection Activity

Gamma gamma coincide ice spectroscopy Alpha spectroscopy 227Ac contamination

residual recoil method

Instituut voor kern en stralingsfysica MEDICIS Board 27/04/22

MED030: End of collection activity

Preliminary 225Ac activity:140 kBq Preliminary 225Ra activity: 17kBq

Alpha spectroscopy analysis ongoing to supplement this information.

FLUKA simulation to verify in-target production

Information on amount shipped to colleagues in Pakistan and for radiochemistry tests needed

KU LEUVEN

MED030: Characterising ²²⁵Ac collected from irradiated target

End of Collection Activity

- Gamma gamma coincidence spectroscopy
- Alpha spectroscopy

residual recoil method

Instituut voor kern en stralingsfysica MEDICIS Board 27/04/22

²²⁵Ac purity determination by residual recoil method

UCLEAR AND RADIATION PHYSICS

KU LEUVEN

UCLEAR AND RADIATION PHYSIC

Preliminary purity results

- Using ²¹⁵Po peak: 2 x 10⁻³ counts per second at t=t_r
- Using ²¹³Po peak: 79 counts per second at t=t_r.
- $r(t_r)/A(t_r) = \epsilon_{geo} = 3.1\%$.
- ε_{sat}≈ 80%
- Estimate of A(²²⁷Ac): 0.002/0.031/0.8/0.986 Bq = 0.083 Bq

KU LEUVEN

- ²²⁵Ac activity at end of collection = 140kBq
- A(²²⁷Ac)/ A(²²⁵Ac) = 5.9 x 10⁻⁷

Developing Project: CELLRAD

Instituut voor kern en stralingsfysica MEDICIS Board 27/04/22

⁶⁵ Pouget, Jean-Pierre, and Julie Constanzo. "Revisiting the radiobiology of targeted alpha therapy." Frontiers in Medicine (2021): 1125 Instituut voor kern en stralingsfysica MEDICIS Board 27/04/22

