

Peter G. Thirolf, LMU München

- Intro: Thorium Nuclear Clock & Applications
- Knowledge on ^{229m}Th
 - experimental approach & setup
 - IC decay, t_{1/2}, HFS, E*
 - first observation of radiative decay
- Perspectives

^{229m}Th properties:

lowest E* of all ~186000 presently known nuclear excited states

 $\Delta E/E \sim 10^{-20}$ ~ 0.1 mHz nat. linewidth

Applications of Nuclear Clocks

- Beyond Timekeeping: Quantum Sensor due to different operation principle compared to atomic clocks:
 - Coulomb + weak + strong interaction contribute to clock frequency
 - small nuclear moments: less sensitivity to perturbations by external fields
 - sensitivity to new physics searches: enhanced by 10⁴-10⁶ compared to present clocks

M.S. Safronova et al., Rev. Mod. Phys 90, 025008 (2018)

 \rightarrow unique opportunity for new physics discoveries which cannot be accomplished with any other technology:

E. Peik, PT et al., Quant. Sci. Tech. 6, 034002 (2021)

Temporal variation of fundamental constants

 $\alpha/\alpha = (1.0 \pm 1.1) \cdot 10^{-18} \text{ yr}^{-1}$

- theoretical suggestion: temporal (spatial) variations of fundamental "constants"

J.P. Uzan, Living Rev. Relativ. 14, 2 (2011)

R. Lange et al., PRL 126, 011102 (2021)

- enhanced sensitivity by $(10^5 - 10^6)$ of ^{229m}Th expected

V.V. Flambaum, PRL 97, 092502 (2006)

- measurements involve monitoring the ratio of nuclear/atomic clock over time

PT et al., Annalen d. Physik 531, 1800391 (2019) 59th International Winter Meeting on Nuclear Physics, Bormio (Italy), January 23-27, 2023

Applications of Nuclear Clocks

- Test coupling of fundamental constants on changing gravitational potential tests the local position invariance hypothesis and thus Einstein's Equivalence Principle
- Search for Dark Matter
 - *ultralight scalar fields:* searches for oscillatory variation of fundamental constants

Arvanitaki et al., PRD 91, 015015 (2015), Van Tilburg et al., PRL 115, 011802 (2015), Hees et al., PRL 117, 061301 (2016)

- topological dark matter: monopoles, 1D strings, 2D 'domain walls' use networks of ultra-precise synchronized clocks
- Improved precision of satellite-based navigation (GPS, Galileo..): m → cm (mm ?)
 - autonomous driving
 - freight-/ component tracking ...
- 3D gravity sensor: 'relativistic geodesy'
 - clock precision of 10^{-18} : detect gravitational shifts of ± 1 cm
 - precise, fast measurements of nuclear clock network: monitor volcanic magma chambers, tectonic plate movements

V. V. Flambaum, PRL 117, 072501 (2016)

f: clock frequency U: gravitat. potential

PT et al., Annalen d. Physik 531, 1800391 (2019)

Derevianko & Pospelov,

Nat. Phys. 10, 933 (2014)

Experimental Approach @ LMU

concept:

- populate the isomeric state via 2% decay branch in the α decay of ^{233}U
- spatially decouple ^{229(m)}Th recoils from the ²³³U source
- detect the subsequently occurring isomeric decay

- initial fluorescence search unsuccessful
- \rightarrow search in IC decay channel
- → accumulate ^{229(m)}Th ions directly onto MCP surface

5

P.G. Thirolf, LMU München

Isomer Detection Process

extracted ^{229(m)}Th³⁺ ions: -

229mTh3+

- ons: impinging directly onto MCP surface behind triode exit
 - 'soft landing' on MCP surface: avoid ionic impact signal
 - neutralization of Th ions
 - isomer decay by Internal Conversion: electron emission
 - electron cascade generated, accelerated towards phosphor screen
 - visible light imaged by CCD camera

internal conversion (IC) energetically allowed for neutral thorium:

I(Th⁺, 6.31 eV) < E^{*}(^{229m}Th, 7.8 eV)

- isomer lifetime expected to be reduced by ca. 10^{-9} (from ~ 10^4 s \rightarrow ~ 10 μ s)
- Th^{q+} ions: IC is energetically forbidden, radiative decay branch may dominate
- 6 P.G. Thirolf, LMU München

Direct Signal of IC Decay from 229mTh

L. v.d. Wense, PT et al., Nature 533, 47-53 (2016)

7 P.G. Thirolf, LMU München

Halflife of (neutral) 229mTh

- operate segmented RFQ as linear Paul trap: pulsed ion extraction
- ion bunches: width ca. 10 $\mu s,$ ~ 400 $~^{229(m)}Th^{2+,3+}$ ions/bunch

- charged ^{229m}Th²⁺: $t_{1/2} > 1$ min. (limited by ion storage time in RFQ, i.e vacuum quality)
- after neutralization on MCP surface:

→ in agreement with expected α_{IC} = N_e/N_y ~ 10⁹

B. Seiferle, L. v.d. Wense, PT, PRL 118, 042501 (2017)

8 P.G. Thirolf, LMU München

Collinear Laser Spectroscopy of 229mTh

• collaboration with PTB Braunschweig: (E. Peik, M. Okhapkin et al.):

isomer beam (LMU) + laser system (PTB) \rightarrow resolve hyperfine structure of ^{229m}Th²⁺

- laser excitation of ^{229(m)}Th²⁺ ions behind QMS:
 - \rightarrow 3 external-cavity diode lasers
 - ightarrow co- and counter-propagating laser beams

- preparatory experiments on ²²⁹Th at PTB Paul trap

2-photon laser excitation (J=2 → 1 → 0): i) 484.3 nm: excitation of ions from thermal distribution into intermediate state - 35 steps across frequency profile ii) 1164.3 nm: excitation from intermediate state with variable excitation into final state - for each step of i): continuous frequency scan

 \rightarrow sensitive detection of deexcitation photons (fluorescence), 3rd laser beam for normalization

11 P.G. Thirolf, LMU München

LML

UNIVERSITÄT

MLL

12

Hyperfine Structure of ^{229m}Th

J. Thielking,.., PT et al., Nature 556, 321-325 (2018)

MLL 2 examples from ca. 70 spectra:

Insights from HFS of 229mTh

Excitation Energy Measurement

^{229m}Th Excitation Energy

Missing: Radiative Decay

**** **** THORIUM NUCLEAR CLOCK

- (prerequisite for solid-state nuclear clock)
- Photon spectroscopy of radioactive decay chains:
 - Isomer population in radioactive decay
 - Implantation in (VUV transparent) large-bandgap crystals to ensure suitable chemical environment
 - Vacuum-ultraviolet spectroscopy of ~150 nm photons from radiative decay
- So far: experimental efforts using the alpha-decay of ²³³U

 \rightarrow observation of radiative decay to-date unsuccessful

• **new approach:** using short-lived ²²⁹Ac produced using ISOL technique (Isotope Production On-Line)

Exploit ²²⁹Ac β decay

• Efficient population of ^{229m}Th:

	²³³ U	²²⁹ Ac
BR	2%	14%
Decay	α	β-
Recoil	84keV	<6eV
Production	stockpile	ISOL
Technique	doping	implantation

And a side of the second state of the second s

	α 6.258	e-	547)	of ~900 10	
	U 230 20.23 d α 5.888, 5.818 γ (72, 154	U 231 4.2 d ^ε γ 26, 84, 102, e ⁻ α 5.456, 5.471	U 232 68.9 a α 5.320, 5.263 γ (58, 129), e ⁻	U 233 1.592·10 ⁵ a α 4.824, 4.783 γ (42, 97), e ⁻ g γ	
	230), e , Ne22 σf~25	5.404 σ _f ~250	ne24, st σ 73, σf 74	sf, Ne24, Mg28 sf σ 47, σ _f 530 σ	
	Pa 229 1.50 d ε, α 5.580 5.670, 5.615 γ (119, 40 146), e ⁻	Pa 230 17.4 d ε, β ⁻ 0.5 α 5.345, 5.326 γ 952, 919, 455, 899 444 α 1500	Pa 231 3.276·10 ⁴ a α 5.014, 4.951 5.028, 5.059 γ 27, 300, 303, e ⁻ Ne24, F23? σ 200, σ(0.020	Pa 232 1.31 d β ⁻ 0.3, 1.3 β γ 969, 894, 150 e e ⁻ σ σ 460, σf 1500 σ	
	Th 228 1.9125 a α 5.423, 5.340	Th 229 7.0 μs 7920 a α4.845, 4.901	Th 230 7.54·10 ⁴ a α 4.687, 4.621	Th 231 25.52 h	
	γ 84, (216), e O20 σ 120, σf < 0.3	(0.008) <mark>γ 194, 86</mark> e ⁻ 211, 31, e ⁻ α? σ 62.8, σf 30.8	γ (68, 144), e Ne24, sf? σ 23.4, σf < 5E-4	β ⁻ 0.3, 0.4 γ γ 26, 84, e ⁻ σ	5
	Ac 227 21.772 a β ⁻ 0.04 γ (38), e ⁻ α 4.953, 4.941 γ (100, 160), e ⁻ α 880, σ _f < 3.5E-4	Ac 228 6.15 h β ⁻ 1.2, 2.1 γ 911, 969, 338 965	Ac 229 62.7 m β ⁻ 1.1 γ 165, 569, 262 146, 135	Ac 230 122 s β ⁻ 2.9 γ γ 455, 508 β 1244 γ βsf 1	3
Ľ	D- 00/	D- 007	D- 000	D- 000	

²³³U (α-)decay:

17

²²⁹Ac (β-)decay:

VUV spectroscopy at ISOLDE / CERN

Exp. collaboration led by KU Leuven group

Production: 1.4 GeV protons on UC_x

Beam composition: ²²⁹Fr, ²²⁹Ra ²²⁹Fr \rightarrow ²²⁹Ra \rightarrow ²²⁹Ac \rightarrow ²²⁹mTh/²²⁹Th **18** P.G. Thirolf, LMU München Beamline: ionization, mass separation, delivery

VUV spectroscopy at ISOLDE / CERN

VUV spectrometer:

VUV Spectroscopy Results

3 mm spectrometer entrance slit

VUV Spectroscopy Results

THORIUI NUCLEAR CLOCK

excitation energy/ emission wavelength:

8.338 ± 0.003(stat.) ± 0.023(syst.) eV 148.71 ± 0.06(stat.) ± 0.41(syst.) nm

 $E^{*}(^{229m}Th) = 8.338(24) eV$ $\lambda = 148.71(42) nm$

 \rightarrow important for ongoing VUV laser developments

time evolution (after 1 hr. implantation): MgF₂ (5 mm), 2 mm entrance slit, 5 s/grating pos.

→ $t_{1/2}$ = 670(102) s

- for decay of ^{229m}Th embedded in MgF₂ crystal
- direct t_{1/2} measurement in cryo-Paultrap in preparation (LMU)

S. Kraemer et al., arXiv 2209.10276 (accepted in Nature)

Perspectives for the Nuclear Clock

• still to bridge: 10-11 orders of magnitude:

" from eV to (k)Hz"

- already feasible with existing laser technology concept: L. v.d. Wense, PT et al, PRL 119 (2017)
- (4-wave mixing) laser setups at PTB
 (E. Peik et al.), UCLA (E. Hudson et al.),
 JILA/NIST (J. Ye et al.)
- (VUV frequency comb) laser under development (ILT Aachen + LMU)

Ionic Lifetime Measurement

- MLL needs longer storage time (= better vacuum)
- setup of a cryogenic Paul trap
- platform for laser manipulation
- ionic lifetime measurement: via HFS spectroscopy of ^{229m}Th³⁺

- sympathetic laser cooling with ⁸⁸Sr⁺ set up and ready
- ready for commissioning of fluorescence detection

59th International Winter Meeting on Nuclear Physics, Bormio (Italy), January 23-27, 2023

VUV laser source for the

^{229m}Thorium - Nuclear Clock transition

VUV frequency comb: use 7th harmonic of amplified IR frequency comb:

laser under development at Fraunhofer ILT (Aachen)

operational: early 2024

J. Weitenberg, ILT Fraunhofer/ RWTH Aachen & MPQ Garching

Exp. achievements in last 5 years:

- identification & characterization of the thorium isomer: direct IC decay, neutral t_{1/2}, hyperfine structure, E*
- first observation of radiative decay mode: E* (^{229m}Th) = 8.338 (24) eV, λ = 148.71(42) nm , t_{1/2} (in MgF₂) = 670(102) s

Ongoing activities & next steps

- directly determine ^{229m}Th ionic lifetime: cryogenic Paul trap, sympathetic (Sr⁺) laser cooling, HFS spectroscopy
 → commissioning ongoing at LMU
- identify nuclear resonance with laser spectroscopic precision:
 - \rightarrow broadband (4-wave-mixing) lasers operational
 - \rightarrow narrowband laser (VUV frequency comb) under development
- determine sensitivity enhancement for $\dot{\alpha}$
- doped-crystal approach: radiative, IC branches

Ambitious goals lie ahead:

- excite for the first time a nuclear transition by laser
- drastically improve sensitivity to new physics ($\dot{\alpha}$, DM candidates)
- 26 P.G. Thirolf, LMU München

LMU Munich: L. v.d. Wense, B. Seiferle, K. Scharl, D. Moritz, S. Ding, L. Löbell, I. Hussain, F. Zacherl PTB Braunschweig: J. Thielking, P. Glowacki, D.M. Meier, M. Okhapkin, *E. Peik* Helmholtz-Institut Mainz & Johannes Gutenberg-Univ. Mainz: C. Mokry, J. Runke, K. Eberhardt, N.G. Trautmann, C.E. Düllmann TU Wien: *T. Schumm*, S. Stellmer, K. Beeks, C. Lemell, F. Libisch MPQ: J. Weitenberg MPIK-HD: A. Pàlffy, P. Bilous, N. Minkov, J. Crespo NIST: S. Nam, G. O'Neil UCLA: E. Hudson, C. Schneider, J. Jeet U Delaware: M. Safronova

Thank you for your attention !

59th International Winter Meeting on Nuclear Physics, Bormio (Italy), January 23-27, 2023

Verification Measurements

 ionic impact signal decreases with lower acceleration towards MCP

- ²³³U²⁺ signal drops to zero

²²⁹Th²⁺ signal remains, cutoff at E_{kin}=0

- for strong acceleration towards MCP: comparable signals for ²²⁹Th²⁺, ²³³U²⁺
- for 'soft landing' ²³³U²⁺ signal vanishes
- ²²⁹Th²⁺ signal remains

→ all potential background contributions could be excluded

20 P.G. Thirolf, LMU München

^{229m}Th and time dependence of

fundamental constants

Theories unifying gravity with other interactions suggest temporal and spatial variations of the
fundamental "constants" in an expanding universeUzan, Rev. Mod. Phys. 75, 403 (2003)

temporal variation in transition energy of ^{229m}Th may provide enhanced sensitivity by $(10^2 - 10^5)$ for fine structure constant $\frac{1}{\alpha}/\alpha$ and strong interaction parameter (m_q/Λ_{QCD})

- Flambaum, PRL 97 (2006)
- He, Ren, NP A 806 (2008)
- Litvinova, Feldmeier et al., PRC 79 (2009)
- Flambaum, Wiringa, PRC 79 (2009)
- Rellergert et al, PRL 104 (2010)

- Hayes, Friar, PL B 650 (2007)

R. Godun et al., PRL 113, 210801 (2014)

- Berengut, Flambaum et al., PRL 102 (2009)
- Flambaum et al., Europhys. Lett. 85 (2009)
- Flambaum, Porsev, PRA 80 (2010)

- almost degenerate doublet ^{229,229m}Th:
 - \rightarrow from cancellation between large contributions from Coulomb energy V_C ~10⁹ eV
- dependency of V_{C} on fundamental constants:
 - \rightarrow any variation would be enhanced in the ^{229m}Th transition frequency
- current (theor.) limit of potential time variation:

 $\dot{\alpha}/\alpha$ = (-0.7 ± 2.1) · 10⁻¹⁷ yr⁻¹

Sensitivity to variations of α

 sensitivity of ^{229m}Th transition frequency ω to temporal variation of α= e²/hc:

$$\delta\omega = \Delta \mathbf{V}_{\mathrm{C}} \frac{\delta\alpha}{\alpha}, \qquad \frac{\delta\omega}{\omega} = K \frac{\delta\alpha}{\alpha}$$

 ΔV_{C} : Coulomb energy difference between $^{229}\text{Th},\,^{229\text{m}}\text{Th}$

enhancement factor:

$$\frac{K = \frac{\Delta \mathbf{V}_{\mathbf{C}}}{\omega}}{\omega}$$

- problem: Coulomb energy cannot be directly measured
 - V_{C} needs to be calculated in nuclear models
 - insufficient accuracy in present nuclear models

system	K	λ [nm]
Sr	0.06	699
Yb⁺E2	0.91	436
Yb⁺E3	-6	467
Hg+	-2.9	281.5
Al+	0.01	267
Ir ¹⁷⁺ T1	-20.6	ca. 267
lr ¹⁷⁺ T2	32.2	ca. 470
Cf ^{16+*} T1	75	ca. 520
Cf ^{16+*} T2	-46	ca. 653
Th [*] (nuclear)	8000	ca. 160

Schmidt & Crespo, Phys. Jour. Oct. 2016

Electron Spectrometer

Magnetic-bottle spectrometer:

spectrometer: ∆E ~ 3% (0.03-0.05 eV)

Calibration: gas discharge excitation:

model: - small isomeric transition energy results from cancellation of change in Coulomb energy of ²²⁹Th, ^{229m}Th:

 $\Delta E_{C} = E_{C}^{m} - E_{C}$

- by strong force via proton polarization by modified neutron distribution
- → cancellation: sensitive to (changes of) coupling constants of electromagnetic and strong interaction
- **assumption:** nucleus = uniform, hard-edged, prolate ellipsoid

Berengut et al., PRL 102, 210801 (2009) (with updated Q_0):

Paradigm:

- direct laser excitation of ^{229m}Th needs improved knowledge on E* and dedicated laser
- since: i) 8.28(17) eV requires at least 0.34 eV to be scanned
 ii) long radiative isomeric lifetime (hours) → long detection times

But:

- probing the laser excitation by exploiting the (fast) <u>Internal Conversion</u> decay channel (τ~10 µs) allows for using existing (VUV) laser technology
- \rightarrow direct nuclear laser spectroscopy by optical excitation of ^{229m}Th is in reach

Experimental approach:

- trigger the decay electron detection with the laser pulse
- achieve a high signal-to-background ratio
- → corresponding experiment is in preparation (in collaboration with UCLA (USA) & Univ./Laserzentrum Hannover)

L. v.d. Wense et al., PRL 119, 132503 (2017)

Proposed experimental setup and procedure:

LMU

assumed (tunable and pulsed VUV) laser source*. pulse energy: $E_L = 10 \ \mu J \ @$ ca. 160 nm bandwidth: $\Delta v_{L} = 10 \text{ GHz}$ pulse length: $T_L = 5$ ns repetition rate $R_L = 10 Hz$

²²⁹Th layer:

thickness 2.5 nm, area 1 mm² \rightarrow ca. 4200 ²²⁹Th excited/pulse, total electron detection efficiency at MCP ~ 12.5%

IC electron detection: - ²²⁹Th coated sample in magnetic bottle (could be curved) - detection time: 10 µs High signal-background: S/B ~ 7 x 10⁴

```
Short scan time:
   < 3 days for 1 eV
```

* S.J. Hanna et al., Int. J. Mass Spectr. 279, 134 (2009)

Eiso: Complementary approach

Superconducting Single Photon Nanowire Detectors (SNSPDs):

- **SNSPD**: meander-shaped sc wire with bias current
- implant ^{229m}Th on the sc nanowire
- deposited decay energy breaks superconductivity
- measure current
- decay energy spectrum via scanning of bias current
- expected resolution ~ 0.1 eV

measurements are ongoing with first promising results

collaboration with UCLA, NIST/Boulder, TU Wien

Ion Extraction from Buffer Gas Cell

CLOCK

mass scan of extracted ion species:

element

Th

Fr

Rn

At

Po

Bi

Pb

11 P.G. Thirolf, LMU München

Towards the Nuclear Clock

still to bridge: 11-12 orders of magnitude: " from eV to (k)Hz"

- already feasible with existing laser technology
 L. v.d. Wense, PT et al, PRL 119 (2017)
- (4-wave mixing) laser set up at PTB (E. Peik et al.)

VUV frequency comb laser under development (Fraunhofer + LMU)

Achievements in

<u>"Search & Characterization Phase"</u>

- Existence of ^{229m}Th: first direct detection via IC decay
- Half-life of neutral ^{229m}Th: $t_{1/2} = 7 \ \mu s \rightarrow \alpha_{IC} \sim 10^9$
- Hyperfine structure of ^{229m}Th
 - \rightarrow via collinear laser spectroscopy
 - → nuclear moments, charge radius
- isomeric excitation energy:

Nature 533 (2016) PRL 118 (2017)

Nature 556 (2018)

method: EPJ A53 (2017)

first direct measurement: Nature 575 (2019)

"ThoriumNuclearClock"

- E. Peik, T. Schumm, M.S. Safronova, A. Pálffy, J. Weitenberg, P.G. Thirolf, Quantum Sci. Technol. 6, 034002 (2021)
- ERC Synergy project: 2020-2026 https://thoriumclock.eu
- Team: PI: PTB (E. Peik et al.), TU Wien (T. Schumm et al.), LMU Munich (P. Thirolf et al.), U Delaware (M. Safronova et al.) + A. Pálffy (U Würzburg), J. Weitenberg (Fraunhofer ILT/RWTH Aachen)

Fundamental and technology goals

Precisely determine ²²⁹Th nuclear structure parameters

Development of a < kHz-level linewidth VUV laser

Quantify the sensitivity to fundamental constants

Measure isomer energy to > 12 digits

Demonstrate nuclear clock with Th³⁺ ions

Demonstrate completely new solid-state clock scheme

Test fundamental concepts of physics

Search for dark matter

Scientific advances in many fields

30 P.G. Thirolf, LMU München

Laser-based diagnostics of isomer excitation

use closed 2-level system in electron shell:

 α : nuclear, β : electronic

double resonance method Dehmelt's 'electron shelving'

after nuclear transition (via ω_2):

- \rightarrow change of nuclear moments, spin
- → change of hyperfine splitting, total angular momenta
- $\rightarrow \omega_1$ out of resonance (~GHz)
- \rightarrow drop in resonance fluorescence

Peik, Tamm, Eur. Phys. Lett. 61 (2003) 181

<u>Summary</u>

look back: huge progress in last 5 years:

identification & characterization of the thorium isomer

look ahead: ongoing consolidation & next steps

- excitation energy from complementary techniques
- cryogenic Paul trap, sympathetic (Sr⁺) laser cooling
- ^{229m}Th ionic lifetime
- determine sensitivity enhancement for α
- doped-crystal approach: radiative, IC branches
- Iaser spectroscopy: resonance search
- ambitious, exciting, important research topic:
- excite for the first time ever the nuclear transition by laser
- build clocks based on completely new principles
- ability to drastically improve sensitivity to new physics
- ability to search for dark matter candidates not accessible by any other means

Experimental Approach @ LMU

- concept:
- populate the isomeric state via 2% decay branch in the α decay of ^{233}U
- spatially decouple ^{229(m)}Th recoils from the ²³³U source
- detect the subsequently occurring isomeric decay

→ VUV-optical detection system designed, built, commissioned, operated

- Expectation: VUV photonic signal, well separated from background
- But: no UV photons observed from collection surface
- **Suspicion:** deexcitation occurs predominantly radiationless alternative decay branch ?

Internal Conversion ? \rightarrow search for electrons instead for photons

7 P.G. Thirolf, LMU München

Experimental Setup

· located at Maier-Leibnitz Laboratory, Garching: (recently moved to dedicated (laser-)laboratory)

59th International Winter Meeting on Nuclear Physics, Bormio (Italy), January 23-27, 2023