Oxygen photo-disintegration as a tool for studying ${ }^{12} \mathrm{C}(\alpha, \gamma)$ at astrophysical
energies

Chiara Mazzocchi for the Warsaw active-target TPC collaboration University of Warsaw

Bormio, January 23rd, 2023

Overview

- Physics motivations and goals
- Methodology

- Measurements and preliminary results

- Summary and outlook

Physics motivations and goals

Physics motivations

- Abundance of the elements in the Universe
- in weight: H-74\%, He-24\%, O-0.85\%, C-0.39\%, ...
- Abundance of the elements in the human body:
- in weight: O-65\%, C-18\%, H-10\%, N - 3\%, other 4\%

Physics motivations

- Synthesis of He in H -burning reactions
- pp-chain, CNO cycle, hot-CNO, NeNa cycle, MgAl cycle, ...
- $4 \mathrm{p} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{e}^{+}+2 v$

- Synthesis of $\mathrm{C}, \mathrm{O}, \mathrm{Ne}$ in He-burning
- $3 \alpha \rightarrow{ }^{12} \mathrm{C} ;{ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O} ;{ }^{16} \mathrm{O}(\alpha, \gamma){ }^{20} \mathrm{Ne}$

Cross-section measurement of (α, γ) and (p, γ) at astrophysical energies

Nature's challenges: the issue of the Coulomb barrier

- The issue of the Coulomb barrier: at typical He-burning temperatures of $\mathrm{T}_{6} \sim 300, \mathrm{kT} \sim 200 \mathrm{keV} \ll \mathrm{E}_{\text {Coul }}(2-8 \mathrm{MeV})$

Astrophysical factor

Nuclear reactions that generate energy and synthesise elements take place inside the stars in a relatively narrow energy window: the Gamow peak

Gamow Energy for He-burning reactions: few hundreds keV

Science goals

- Accurate measurements of (very small) cross sections of (α, γ) and (p, γ) nuclear reactions
\rightarrow fundamental observable to determine reaction rates
\rightarrow to be determined at the relevant energies (Gamow peak)
\rightarrow reaction rates as a function of the temperature/environmental condition are input for star evolution models
- Flagship reaction: ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$ at low energies

The flagship ${ }^{12} \mathrm{C}+\alpha$--> ${ }^{16} \mathrm{O}+\gamma$: status of the experimental knowledge

Total cross-section for ${ }^{12} \mathrm{C}\left(\alpha, \gamma_{0}\right)^{16} \mathrm{O}$

Physics motivations: the flagship ${ }^{12} \mathrm{C}+\alpha-->{ }^{16} \mathrm{O}+\gamma$

Survival of ${ }^{12} \mathrm{C}$

- α-burning in the flagship ${ }^{12} \mathrm{C}+\alpha$--> ${ }^{16} \mathrm{O}+\gamma$
- nuclear structure properties of ${ }^{16} \mathrm{O}$

Two reaction mechanisms available

- non-resonant direct-capture
- non-resonant capture into the tails of nearby resonances

The flagship ${ }^{12} \mathrm{C}+\alpha$--> ${ }^{16} \mathrm{O}+\gamma$: status of the experimental knowledge

Extrapolated S-factor for p-wave (E1) \& d-wave (E2) ${ }^{12} \mathrm{C}+\alpha$ capture for Gamow peak in red giants (300 MK)

$S(E)=\sigma(E) \cdot E \cdot e^{2 \pi \eta}$
Center of Mass Energy (MeV) $2 \pi \eta=31.29 \cdot Z_{1} \cdot Z_{2} \sqrt{\mu / E_{c m}}$

The flagship ${ }^{12} \mathrm{C}+\alpha-->{ }^{16} \mathrm{O}+\gamma$: status of the experimental knowledge

Uncertainties: R.J. deBoer et al., Rev. Mod. Phys. 89, 2017, 035007

Uncertainty in the S factor (model+MC analysis). Data from Schürmann et al. (2005)

Uncertainties relative to the best fit value for the Monte Carlo analysis
Uncertainties derived from the model
Total uncertainty

$$
\begin{aligned}
& \mathrm{S}(\mathrm{E})=\sigma(\mathrm{E}) \cdot \mathrm{E} \cdot \mathrm{e}^{2 \pi \eta} \\
& 2 \pi \eta=31.29 \cdot Z_{1} \cdot Z_{2} \sqrt{\mu / E_{c m}}
\end{aligned}
$$

Methodology of choice

Low-pressure Active-Target TPC coupled to monochromatic γ-ray beams

Experimental challenges

- Measurement of ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$ cross section at the Gamow peak beyond the current experimental reach
- R-matrix fits to extrapolate at Gamow energy
- cross sections need to be measured at as-low-as-possible c.o.m. energies to constrain the fit
- measurements are challenging below 2 MeV in c.o.m.:
* Limited beam intensity and target thickness
* Beam-induced background from contaminant reactions ($\left.{ }^{13} \mathrm{C}(\alpha, \mathrm{n})^{16} \mathrm{O}\right)$

Experimental challenges : how to meet the challenge and improve the accuracy

- Measuring the cross section for the p - and α-capture reactions by means of the inverse photo-disintegration reaction
- Strong and e.m. interactions invariant with respect to time reversal
- photo-disintegration vs capture reaction

$$
\mathrm{B}(\mathrm{~b}, \gamma) \mathrm{A} \rightleftharpoons \mathrm{~A}(\gamma, \mathrm{~b}) \mathrm{B}
$$

- principle of detailed balance in nuclear reactions:

$$
\begin{gathered}
\sigma_{\mathrm{br}} \cdot \mathrm{~g}_{\mathrm{b} \gamma} \cdot \mathrm{p}_{\mathrm{b} \gamma}{ }^{2}=\sigma_{\gamma \mathrm{b}} \cdot \mathrm{~g}_{\gamma \mathrm{b}} \cdot \mathrm{p}_{\gamma \mathrm{b}}{ }^{2} \\
\sigma_{b \gamma}=\sigma_{\gamma b} \cdot \frac{g_{\gamma b}}{g_{b \gamma}} \cdot \frac{p_{\gamma b}^{2}}{p_{b \gamma}^{2}}=\sigma_{\gamma b} \frac{2 J_{C N}+1}{\left(2 J_{b}+1\right)\left(2 J_{B}+1\right)} \cdot \frac{E_{\gamma}^{2}}{E_{C M}} \cdot \frac{1}{\mu_{b B} c^{2}}
\end{gathered}
$$

$$
\mathrm{g}_{b \gamma}, \mathrm{~g}_{\gamma \mathrm{b}}=
$$

spin factors

Experimental challenges : how to meet the challenge and improve the accuracy

- Measuring the cross section for the p - and α-capture reactions by means of the inverse photodisintegration reaction
- Advantages
- direct capture vs photo-disintegration reaction (at Ecm =1.0 MeV):

$$
\begin{aligned}
& { }^{12} \mathrm{C}+\alpha-->{ }^{16} \mathrm{O}+\gamma \Rightarrow \sigma=50 \mathrm{pb} \\
& { }^{16} \mathrm{O}+\gamma-->{ }^{12} \mathrm{C}+\alpha \Longrightarrow \sigma=2000 \mathrm{pb}
\end{aligned}
$$

- inherently low background measurements
- different systematic uncertainty w.r.t. charged-particle induced reactions at low energies
* target and its deterioration
* (effective) beam energy definition
- only ground-state branch measured
- intense monochromatic and focussed γ-ray beams

Warsaw active target TPC

\checkmark An active-target TPC to study reaction cross-sections of astrophysical interest where the reaction products are charged particles
-> full unambiguous reconstruction of multiple-particle events is possible

- active volume: $33 \mathrm{~cm} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}$
- under-pressured (100-250 mbar of CO_{2}): low-energy particles!
- charge amplification: 3 GEM structures

Warsaw active target TPC: detector concept

- Read-out:
- 3-coordinate, planar, redundant electronic readout: 3 independent linear sets of strips (u-v-w): 1.5 mm pitch
- needs only ~1000 channels \rightarrow moderate cost of electronics
- u-v-w strip arrays for hit disambiguation in 2D \rightarrow virtual pixels
- z-coordinate from timing information
- aimed for relatively simple event topologies $\rightarrow>$ few tracks per event
- General Electronics for TPCs (GET) for signal amplification \& digitization:
- flexible sampling frequency: 1-100 MHz
- adjustable gain \& filtering per channel
- both external- and self-trigger possible

Measurements and preliminary results

HI γ S facility: monochromatic γ-ray beams

HI γ S facility (TUNL, Durham, NC)

- quasi-monoenergetic γ beams
- energies: 1 to 100 MeV with ~3\% FWHM
- linear and circular polarisation

\mathbf{E}_{γ}
- Production of monochromatic γ-ray beams:
- Compton Back Scattering of photons on ultra-relativistic electrons (the most efficient frequency amp.)
- FEL: $\lambda=400 \mathrm{~nm}-193 \mathrm{~nm}$

${ }^{16} \mathrm{O}$ photo-disintegration experiment

- Measurement conducted in April and August/September 2022 at the HI γ S facility (TUNL, Durham, NC)
- Monochromatic γ-ray beams produced with
- $\mathrm{E}_{\gamma}=8.51$ to 13.9 MeV)
- $I_{\gamma}=1.5-4 \cdot 10^{8} \gamma / \mathrm{s}$
- $\mathrm{FWHM}=350 \mathrm{keV}$ at 10.7 MeV

${ }^{16} \mathrm{O}$ photo-disintegration experiment: beam monitoring

- Beam monitoring:
- energy determined by HPGe detector
- intensity as a function of time monitored by means of scintillation counters
- absolute calibration of the scintillation detectors event rate:
(γ, n) activation measurements on ${ }^{197} \mathrm{Au}$ targets synchronous with data taking
- beam alignment:
- laser beam collinear with γ beam + collimator 10.5 mm
- Attenuated beam and gamma-camera

${ }^{16} \mathrm{O}$ photo-disintegration experiment: Warsaw active-target TPC

- Active gas: CO_{2}
- 130 mbar for $\mathrm{E}_{\gamma}<10 \mathrm{MeV}$
- 190 mbar for $11 \mathrm{MeV}<\mathrm{E}_{\gamma} \leq 13.1 \mathrm{MeV}$
- 250 mbar for $\mathrm{E}_{\gamma} \geq 13.1 \mathrm{MeV}$
- Charged reaction-products detected

${ }^{16} \mathrm{O}$ photo-disintegration experiment: background

- CO_{2} gas: natural isotopic composition
\rightarrow reactions on ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ - goal of the experiment
discriminant: topology
\rightarrow reactions on ${ }^{17,18} \mathrm{O}$ and ${ }^{13} \mathrm{C}$ - beam-induced background discriminant: Q-value

Preliminary(!) results: ${ }^{16} \mathrm{O}(\gamma, \alpha)$

$$
\mathrm{E}_{\gamma}=13.9 \mathrm{MeV}
$$

Preliminary(!) results: ${ }^{12} \mathrm{C}(\gamma, 3 \alpha)$

$$
\mathrm{E}_{\gamma}=13.9 \mathrm{MeV}
$$

Event 5114: UZ projection

Event 5114: WZ projection

Event 5114: VZ projection

Preliminary(!) results: ${ }^{16} \mathrm{O}(\gamma, \alpha)$

time

Preliminary(!) results: ${ }^{16} \mathrm{O}(\gamma, \alpha)$

	Next event
Previous event	
Reset event	
Exit	
\square Set Z logscale	
F Set auto zoom	
\checkmark Set reco mode	
\ulcorner Display rate	
-Go to event id.	
	29
-Go to frame.	
	0

Event type \square Noise
 \square Noise

- Multi-vertex
- Fractured track
\square Pretty event
\square Weird event
- Spare cat. 1
- Spare cat. 2
\square Spare cat. 3

${ }^{16} O(\gamma, \alpha)$

time

Event identification

$\mathrm{E}_{\gamma}=8.66 \mathrm{MeV}$

Topology:
2-particle events

Preliminary!

LAB ref. system

Angular distribution (polar, θ)--> multipolarity

$\mathrm{E}_{\gamma}=11.5 \mathrm{MeV}$

$$
{ }^{16} \mathrm{O}-->{ }^{12} \mathrm{C}+\alpha
$$

Topology:
2-particle events

LAB ref. system

Angular distribution (polar, θ) --> multipolarity

Topology:
2-particle events

$$
\mathrm{E}_{\gamma}=12.3 \mathrm{MeV}
$$

$$
{ }^{16} \mathrm{O}-->{ }^{12} \mathrm{C}+\alpha
$$

2-particle events
LAB ref. system

Angular distribution (azimuthal, ϕ) --> beam characterization

$$
\begin{aligned}
& \text { Polarization --> Stokes vector } \\
& \vec{S}=\left(1, S_{1}, S_{2}, S_{3}\right)^{T} \\
& W(\phi)=1+f \cdot \cos \left(\phi-\phi_{0}\right) \\
& s_{1}=\frac{W\left(0^{\circ}\right)-W(\pi / 2)}{W\left(0^{\circ}\right)+W(\pi / 2)} \\
& s_{2}=\frac{W(\pi / 4)-W(-\pi / 4)}{W(\pi / 4)+W(-\pi / 4)} \\
& s_{3}=\sqrt{1-s_{1}^{2}-s_{2}^{2}}
\end{aligned}
$$

$\mathrm{E}_{\boldsymbol{\gamma}}=11.5 \mathrm{MeV}$

Degree of circular polarization

- direct measurment of γ beam polariz.

$$
S_{3}=0.9374
$$

- direct measurement of linear polariz. of laser beam (Y.K. Wu, 2021, priv. comm.), values in very good agreement

Preliminary!

Summary and Outlook

- First experiments with the Warsaw active target TPC to measure ${ }^{16} \mathrm{O}(\gamma, \alpha)$ and ${ }^{12} \mathrm{C}(\gamma, 3 \alpha)$ at $\mathrm{E}_{\gamma}=8.51-13.9 \mathrm{MeV}$ in April and Aug./Sep. 2022 at HI γ S@TUNL
- Data under analysis, more to come...
... Stay Tuned!

Acknowledgements

M. Ćwiok, W. Dominik, A. Fijałkowska, M. Fila, Z. Janas, A. Kalinowski, K. Kieszkowski, M. Kuich, W. Okliński, M. Zaremba

Faculty of Physics, University of Warsaw, Warsaw, Poland
M. Gai, D. Schweitzer, S. Stern

University of Connecticut, CT, USA
S. Finch, U. Friman-Gayer

Duke University and Triangle Universities Nuclear Laboratory, Durham, NC, USA

S. Johnson, T. Kowalewski
University of North Carolina-Chapel Hill and TUNL, NC, USA

D.L. Balabanski, C. Matei, A.Rotaru
IFIN-HH / ELI-NP, Bucharest-Magurele, Romania

K. Haverson, R. Smith
Sheffield Hallam University, UK

R. Allen, M.R. Griffiths, S. Pirrie, P. Santa Rita Alcibia University of Birmingham, School of Physics and Astronomy, UK

