Flavour Puzzles and the LHCb Experiment Marcel Merk, Bormio 2023

Marcel Merk, Bormio 2023

Why three generations of particles?

Why is there no antimatter?

Why this particle mass hierarchy?

enros

H

U

Μ

Nik hef

- 1) Three generations and the origin of CP violation
- 2) The amount of CP violation in CKM
- 3) Measurements of CP violation with LHCb
- 4) B-decays anc
- 5) Outlook/con

- 1) Three generations and the origin of CP violation
- 2) The amount of CP violation in CKM
- 3) Measurements of CP violation with LHCb
- 4) B-decays anc
- 5) Outlook/con

3 Generations of fundamental particles – How do we know?3/51

1) <u>LEP:</u> The heavy Z boson decays into 3 light neutrino types.

3 Generations of fundamental particles – How do we know?4/51

1) <u>LEP:</u> The heavy Z boson decays into 3 light neutrino types.

• No additional weakly interacting light fermion generations.

3 Generations of fundamental particles – How do we know?5/51

2) <u>LHC:</u> Higgs production:

Loop diagram is proportional to the mass of the heaviest fermion.

Top is the *heaviest fermion* flavour.
▶3 Flavour generations

Flavour Universality in the Standard Model

- Quark and lepton generations interact identically
 - No difference between particles of different generation
 - No matter antimatter asymmetry (CP Violation) by construction

- Universality violation: masses \rightarrow Higgs !
 - Higgs coupling is not universal, and mixes generations $(i \leftrightarrow j)$
 - Complex couplings: allows for CP Violation!

Flavour Universality \rightarrow Symmetry Breaking

Flavour Universality \rightarrow Symmetry Breaking

Flavour Universality \rightarrow Symmetry Breaking \rightarrow Flavour Mixing/51

• Weak charged current interaction: $(i \leftrightarrow j)$

Flavour Universality \rightarrow Sy

• Weak charged current interaction:

- Weak interactions mixes the generations of mass eigenstates.
- Complex couplings V_{ij} allow for CP violating phenomena.

I / I +

• At least 3 generations required!

 b^m

lixing 51

Flavour Structure: Interactions vs Higgs

- Forces are flavour universal
- Higgs interaction almost purely 3rd generation

Flavour Structure: Interactions vs Higgs

- Forces are flavour universal
- Higgs interaction almost purely 3rd generation

- 1) Three generations and the origin of CP violation
- 2) The amount of CP violation in CKM
- 3) Measurements of CP violation with LHCb
- 4) B-decays and Flavour Anomalies
- 5) Outlook/conclusion

Flavour ne Quark Playors of the Standard Add Model

10/51

 W^{-}

Flavour ne Ottaker and the Standard Model

10/51

 W^{-}

Flavour, he the factor of the standard of the Model

Flavour Chameiro Augura Anteraction Standarde Model

The CKM matrix V_{CKM} - 3 Generations

• Wolfenstein parametrization: V_{CKM} =

$$\begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

➔ 1 CP violating parameter

The CKM matrix V_{CKM} - 3 Generations vs 2 Generations 11/51

Wolfenstein parametrization: V_{CKM} =

 $\begin{pmatrix} 1 - \frac{1}{2}\lambda^{2} & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^{2} & A\lambda^{2} \\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix}$ $\rightarrow 1 \text{ CP violating parameter}$

• 3 generations is the minimal particle content to generate CP violation (In Standard Model).

The CKM matrix and unitarity triangle

- The CKM is a unitary mixing matrix • This implies: $V_{CKM}^{\dagger} V_{CKM} = 1$ $\begin{pmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{td}^{*} \\ V_{ub}^{*} & V_{cs}^{*} & V_{ts}^{*} \\ V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{pmatrix} V_{ud} V_{us} & V_{ub} \\ V_{cd}^{*} & V_{cs}^{*} & V_{cb} \\ V_{td}^{*} & V_{cs}^{*} & V_{tb}^{*} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} V_{ub}^{*} V_{ud}^{*} V_{ud} \\ A\lambda^{3}(\rho + i\eta) \\ A\lambda^{3}(\rho + i\eta) \end{pmatrix}$ • Orthonormality: $V_{cb}^{*} V_{cd} + V_{tb}^{*} V_{td} + V_{ub}^{*} V_{ud} = 0$ $\longrightarrow + X + \chi = 0$ (0,0) $V_{cb}^{*} V_{cd} \\ (0,0) V_{cb}^{*} V_{cd} \\ A\lambda^{2} \cdot -\lambda \end{pmatrix}$ (1,0)
 - Wolfenstein parametrization:

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

The CKM matrix and unitarity triangle

Triangle in the complex plane: • The CKM is a unitary mixing matrix **(***ρ*, η**)** • This implies: $V_{CKM}^{\dagger} V_{CKM} = 1$ $\alpha = \pi - \beta - \gamma$ $\begin{pmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{td}^{*} \\ V_{us}^{*} & V_{cs}^{*} & V_{ts}^{*} \\ V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} V_{ub}^{*} V_{ud} \\ A\lambda^{3}(\rho + i\eta) \end{pmatrix} \begin{pmatrix} \alpha & \alpha = \pi - \beta - \gamma \\ V_{tb}^{*} V_{td} \\ A\lambda^{3}(1 - \rho - i\eta) \\ A\lambda^{3}(\rho + i\eta) \end{pmatrix}$ Orthonormality: $V_{cb}^*V_{cd} + V_{tb}^*V_{td} + V_{ub}^*V_{ud} = 0$)) $V_{cb}^* V_{cd}$ $A\lambda^2 \cdot -\lambda$ \rightarrow + \checkmark + \checkmark = 0 (0,0) (1,0) $\gamma \Delta m_d \& \Delta m_s$ CKM fitter 0.6 • Wolfenstein parametrization: 0.5 sin 2B $V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \quad = \quad$ 0.4 0.3 0.2 0.1 no $B \rightarrow \tau v$ 0.0 -0.2 0.0 0.2 0.4 0.6 -0.4 0.8 1.0

δ

The CKM matrix and unitarity triangle

- The CKM is a unitary mixing matrix
 - This implies: $V_{CKM}^{\dagger} V_{CKM} = 1$

$$\begin{pmatrix} V_{ud}^* & V_{cd}^* & V_{td}^* \\ V_{us}^* & V_{cs}^* & V_{ts}^* \\ V_{ub}^* & V_{cb}^* & V_{tb}^* \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} A\lambda$$

Ē

• Orthonormality: $V_{cb}^* V_{cd} + V_{tb}^* V_{td} + V_{ub}^* V_{ud} = 0$ $\longrightarrow + + + = 0$

- The phases are observable in different quark transitions
- The phases should be consistent with one single CP violating freedom → test the SM

Triangle in the complex plane:

How large is CP violation?

0.6

0.5

sin 2B

• To explain the absence of antimatter in the universe *requires* a primordial baryon asymmetry of: $\frac{\Delta n_B}{\sim} \approx 10^{-10}$ n_{ν} Δm_d & Δn CKIV fitter

ε_k

- Large CP violation requires *large mixing* and *large phases* in the CKM matrix.
 - Surface of unitarity triangle

• Jarlskog criterion (1987) for amount of CP violation: det $[M_u M_u^{\dagger}, M_d M_d^{\dagger}] = 2 i J (m_t^2 - m_c^2) (m_c^2 - m_u^2) (m_u^2 - m_t^2)$ $\times (m_b^2 - m_s^2)(m_s^2 - m_d^2)(m_d^2 - m_b^2)$ From CKM: $A_{CP}/T_c^{12} \approx (10^{-20}) \rightarrow \underline{\text{Too small}}$

• Explanation requires existence of **new massive** particles.

How to search for new massive particles?

1. <u>Direct searches</u>: produce particles on-shell in collisions; 'energy frontier':

2. <u>Indirect searches</u>: using quantum fluctuations; 'precision frontier':

Note to students

- 1) Three generations and the origin of CP violation
- 2) The amount of CP violation in CKM
- 3) Measurements of CP violation with LHCb
- 4) B-decays and Flavour Anomalies
- 5) Outlook/conclusion

Measurement CP Violation: e.g. B-meson decays

Measurement CP Violation: e.g. B-meson decays

A deeper connection?

• Feynman: "In the end all quantum phenomena manifestations of the double slit experiment."

istates v

lass and

• A thought: assuming CPT symmetry: CP violation 3-6 June 2013 Quantum interference $\leftarrow \rightarrow$ arrow of time?

The LHCb experiment: *B*-decay precision measurements 18/51

Strengths: resolutions: vertex + momentum ; PID: electron, muon, gamma, pion, kaon ; Trigge

Reconstruction: muons, pions, kaons: excellent , electrons, photons: more difficult , taus: challenging

Meson mixing: does the experiment wor

MeV)

v. 5000

1000

0.4

0.2

-0.2

-0.4

Raw asymmetry

0 5000

Meson mixing: does the experiment work?

Three types of observable CP violation

A Bormio induced analogy: Three types of Flavour Violation21/51

1. "In Mixing"

2. "Direct"

3. "Mixing induced" (interference of 1. and 2.)

→ Interference experiments lead to interesting effects! (Constructive or destructive??)

<u>Type-1</u>: CP violation in mixing: $A_{SL}(B_d)$ en $A_{SL}(B_s)$

• Interfere dispersive and absorptive:

Produce equal amounts of B_s and \overline{B}_s . Decays: $B_s \rightarrow D_s^- \mu^+$; $\overline{B}_s \rightarrow D_s^+ \mu^-$ If $\mathcal{A}_{meas} \neq 0$, then: Rates: $B \rightarrow \overline{B} \neq \overline{B} \rightarrow B$

22/51

→ CPV violation in mixing *does not happen* in B_d^0 and B_s^0 mesons:

- $B \to \overline{B}$ goes at same rate as $\overline{B} \to B$
- Contrary to ϵ in kaons.

<u>LHCb:</u> B_d^0 : PRL 114 (2015) 041601 B_s^0 : PRL 117 (2016) 061803

• Measurement of gamma using *many B* decays

B decay	D decay	Ref.	Dataset	Status since
				Ref. $[24]$
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow h^+ h^-$	[27]	Run 1&2	Updated
$B^{\pm} \to Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[28]	Run 1	As before
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow h^+ h^- \pi^0$	[29]	$\operatorname{Run} 1$	As before
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow K_{ m S}^0 h^+ h^-$	[26]	Run $1\&2$	Updated
$B^{\pm} \to Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	[30]	Run $1\&2$	Updated
$B^{\pm} \rightarrow D^* h^{\pm}$	$D ightarrow h^{+}h^{-}$	[27]	Run 1&2	Updated
$B^{\pm} \to DK^{*\pm}$	$D \rightarrow h^+ h^-$	[31]	Run $1\&2(*)$	As before
$B^{\pm} \to DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[31]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow D h^{\pm} \pi^+ \pi^-$	$D \rightarrow h^+ h^-$	[32]	Run 1	As before
$B^0 \to DK^{*0}$	$D \rightarrow h^+ h^-$	[33]	Run $1\&2(*)$	Updated
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[33]	Run $1\&2(*)$	\mathbf{New}
$B^0 \to DK^{*0}$	$D \to K_{\rm S}^0 \pi^+ \pi^-$	[34]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to \tilde{K}^- \pi^+ \pi^+$	[35]	$\operatorname{Run} 1$	As before
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \to h^+ h^- \pi^+$	[36]	Run 1	As before
$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[37]	Run 1&2	\mathbf{New}

• Measurement of gamma using *many B* decays

B decay	D decay	Ref.	Dataset	Status since
				Ref. $[24]$
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow h^+ h^-$	[27]	Run 1&2	Updated
$B^{\pm} \to Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[28]	Run 1	As before
$B^{\pm} \to Dh^{\pm}$	$D ightarrow h^+ h^- \pi^0$	[29]	Run 1	As before
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[26]	Run 1&2	Updated
$B^{\pm} \to Dh^{\pm}$	$D o K_{\rm S}^{\bar{0}} K^{\pm} \pi^{\mp}$	[30]	Run 1&2	Updated
$B^{\pm} \rightarrow D^* h^{\pm}$	$D ightarrow h^{+}h^{-}$	[27]	Run 1&2	Updated
$B^{\pm} \to DK^{*\pm}$	$D \rightarrow h^+ h^-$	[31]	Run $1\&2(*)$	As before
$B^{\pm} \to DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[31]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow D h^{\pm} \pi^+ \pi^-$	$D \rightarrow h^+ h^-$	[32]	Run 1	As before
$B^0 \to DK^{*0}$	$D \rightarrow h^+ h^-$	[33]	Run $1\&2(*)$	Updated
$B^0 \to DK^{*0}$	$D ightarrow h^+ \pi^- \pi^+ \pi^-$	[33]	Run $1\&2(*)$	New
$B^0 \to DK^{*0}$	$D \to K_{\rm S}^0 \pi^+ \pi^-$	[34]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to \tilde{K}^- \pi^+ \pi^+$	$\overline{[35]}$	Run 1	As before
$B^0_s \to D^{\mp}_s K^{\pm}$	$D_s^+ \to h^+ h^- \pi^+$	[36]	Run 1	As before
$B^0_s \to D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[37]	Run 1&2	New

<u>Type-2</u>: *Direct* CP violation Charm? $D^0 \rightarrow KK$ and $D^0 \rightarrow \pi \pi^{24/51}$

<u>Type-3</u>: CP violation in *interference of mixing and decay* 27/51

• more similar asymmetry measurements

CKM triangle: bringing all together

(My) conclusion on CP observables

LHCb makes many CP violation measurements. The CKM triangle becomes a precision measurement.

Although some puzzles are open, the CKM prescription sofar survives confrontations with more and more precise data.

Flavour Puzzles and the LHCb Experiment

- 1) Three generations and the origin of CP violation
- 2) The amount of CP violation in CKM
- 3) Measurements of CP violation with LHCb
- 4) B-decays and Flavour Anomalies
- 5) Outlook/conclusion

B decays and Flave

• CKM: Flavour changing *charged* currents

• Neutral currents are possible via higher order processes:

 SM does not have Flavour changing neutral currents

B decays and Flavour anomalies

a) <u>Semileptonics</u>: R_D and R_{D^*} .

32/51

R(D)

$R(D^*)$ LHCb2015: $\tau \rightarrow \mu \, \overline{v}_{\mu} \, \overline{v}_{\tau}$, LHCb2018: $\tau \rightarrow 3\pi \, \overline{v}_{\tau}$

Challenging reconstruction:

- missing neutrinos
- underlying event
- muonic tau only
- → backgrounds!

Internal fit uncertainties

Statistical uncertainty

First combined R_D and R_{D^*} LHCb measurement.

 $\sigma_{\mathcal{R}(D^*)}(\times 10^{-1})$

 $\sigma_{\mathcal{R}(D)}(\times 10^{-1})$

6.0

Extensive systematic checks:

 3ν

R_{D^*} and R_D : LHCb 2022 Result

Run-1 hadronic taus and Run-2 data analysis ongoing \rightarrow much more to come.

New average: slightly lower $R(D^*)$, slightly higher R(D), reduced correlation. agreement/tension with the SM: $3.3\sigma \rightarrow 3.2\sigma$

^{Pe}ansition: suppressed neutral current/51

 $\bar{\nu}_e$

b) i. Differential decay rates of Rare Decays: $b \rightarrow s \ \mu^+ \mu^-$ 37/51

b) i. Differential decay rates of Rare Decays: $b \rightarrow s \ \mu^+ \mu^-$ 37/51

Situation Spring 2022

Together with the P5' and branching ratios: "cautious excitement"

<u>Update Dec 2022 " R_X "</u>: simultaneous R_K and R_{K^*} ...

hat changed: electrons 46/51

 $\frac{1}{4800} \frac{1}{5000} \frac{1}{5200} \frac{1}{5400} \frac{1}{5600} \frac{1}{5800} \frac{1}{5800$

• R_K March 2022: $m(K^+e^+e^-)$

4800 5000 5200 5400 5600 5800 6000

 $m_{\rm K^+e^+e^-} \, [{\rm MeV}/c^2]$

) Mis-ID rate from $D^{*-} \rightarrow (K\pi)\pi$: electron mode reduced -0.1

Anomaly situation

- Excitement about muons
 - Branching ratios low \rightarrow theory uncertainty?
 - Angular observables deviate \rightarrow cc-bar loop?
 - Universality ratio \rightarrow electrons changed

[PRD 86 (2012) 032012], [PRL 103 (2009) 171801], [PRL 107 (2011) 201802], [JHEP 06 (2014) 133], [arXiv:2212.09153], [Parrot, Bouchard, Davies]

Overal anomaly statues Muons did not change $\bar{\nu}_e$ • Ball partly back $\bar{\mathcal{V}}$ to theory community More to come on taus Suppressed _ Depressed penguin penguin THISISMY Oh my gosh.... so FREAKING excited!!!

Me: March 2022

Me: Dec 2022

Flavour Puzzles and the LHCb Experiment

- 1) Three generations and the origin of CP violation
- 2) The amount of CP violation in CKM
- 3) Measurements of CP violation with LHCb
- 4) B-decays and Flavour Anomalies
- 5) Outlook/conclusion

"Mr. Osborne, may I be excused? My brain is full."

LHCb in Run-3 is a largely new detector

49/51

Conclusions

- Flavour puzzle:
 - Origin of generation structure and matter anti-matter asymmetry is still unknown.
- The CKM paradigm for CP violation still stands
 - Experimental tests getting more and more precise
- B-decays are a sensitive tool for searches for BSM quantum fluctuations
 - Semileptonics with taus are intruiging: more to come
 - Rare decays show deviations from theory for muons; but electron/muon universality ratio is consistent with unity.
- Looking forward to more results, in particular run-3

Extra Slides