Pixelised Resistive Micromegas for high rates environment

Mauro Iodice – INFN Roma Tre On behalf of the RHUM R&D group (INFN - Italy)

M. ALVIGGI, M. BIGLIETTI, M.T. CAMERLINGO, M. DELLA PIETRA, R. DI NARDO, P. IENGO, M. IODICE, F. PETRUCCI, G.SEKHNIAIDZE, M. SESSA

59th

International Winter Meeting on Nuclear Physics January 23 to 27, 2023 Bormio, Italy

Resistive Micromegas (a Micro Pattern Gaseous Detector)

- A breakthrough in the Micromegas technology was the implementation of a resistive layout to suppress
 discharges intensity (a dedicated R&D for ATLAS)
- ATLAS New Small Wheel endcap MUON detector implements Micromegas with resistive strips:
 - resistive anode strips on the top of the readout strips (with insulator in between)
 - The signal is capacitively induced to the readout strips

- A metallic micro mesh separates the drift volume (~5 mm) from the amplification volume (~100 μm);
- electrons and ions produced in the amplification volume are collected in 1 ns and ~100 ns respectively;

Resistive Micromegas (a Micro Pattern Gaseous Detector)

- A breakthrough in the Micromegas technology was the implementation of a resistive layout to suppress discharges intensity (a dedicated R&D for ATLAS)
- ATLAS New Small Wheel endcap MUON detector implements Micromegas with resistive strips:
 - resistive anode strips on the top of the readout strips (with insulator in between)
 - The signal is capacitively induced to the readout strips
 - $\circ~$ NOW the NSW is in operation in ATLAS
 - $\circ~$ Large area: total surface of ~1200 m^2 of Micromegas active area
 - Will operate at moderate hit rate up to ~15 kHz/cm² during the phase of High-Luminosity-LHC

It's a mature technology for HEP experiments

New R&D to improve Micromegas performance

Main Purpose of the project

- Consolidation of resistive Micromegas, for measurements at rates of the order of 10 MHz/cm² (3 orders of magnitude higher than in ATLAS NSW)
- High-granularity low occupancy readout on pads of the order of mm², capable of withstanding high radiation.
- Demonstration of the scalability of detectors on large surfaces
- Stability of operation at high gains
- simplification of the **construction technique** for industrial production

Outline of the talk

- Detector concept and prototypes description
- Small size pixelised detectors
 - State of the art
 (rate capability, spatial resolution, efficiency)
 - New studies on time resolution
- Ongoing work:
 - \circ Larger area detector \rightarrow preliminary tests
- Summary and Outlook

The Small Size Prototypes

Several Prototypes built and tested with a common readout layout but different spark protection systems

4.8 x 4.8 cm² active region 768 pads, 0.8 x 2.8 mm² each 48 pads - 1 mm pitch ("x") 16 pads - 3 mm pitch ("y")

Signals routed to six Panasonic connectors

The Small Size Prototypes

Several Prototypes built and tested with a common readout layout but different spark protection systems

4.8 x 4.8 cm² active region 768 pads, 0.8 x 2.8 mm² each 48 pads - 1 mm pitch ("x") 16 pads - 3 mm pitch ("y")

Signals routed to six Panasonic connectors

two main categories: Pad-patterned and uniform DLC layers^(*)

PAD-P

CONFIGURATIONS of the resistive layers

- EMBEDDED RESISTORS between resistive and readout copper pads
- Each pad completely independent form neighbours

^(*) **D**iamond Like **C**arbon coating on Kapton (by sputtering)

The Small Size Prototypes

Several Prototypes built and tested with a common readout layout but different spark protection systems

Signals routed to six Panasonic connectors

^(*) **D**iamond Like **C**arbon coating on Kapton (by sputtering)

State of the art - High-Rate Capability (relative GAIN Vs rate)

 Measured using 8 keV X-rays peak from a Cu target with different intensities (~4 order of magnitude) @ CERN GDD lab

PAD-P resistive scheme

- Relatively fast gain loss for rates < 0.1MHz/cm² due to charging-up effect
- Slower ohmic voltage drop through the individual pads at higher rates (Resistive-to-copper pad R ~10 MΩ)

DLC and SBU prototypes

- Gain essentially stable up to ~1-2 MHz /cm²
- At higher rates gain loss is fully accounted by ohmic gain drop
- At 10 MHz /cm² ~20% Gain drop

Performance at Test-Beams – Spatial resolution

Position resolution:

- Cluster residual from position extrapolated from external tracking chambers.
- Statistical uncertainty is negligible
- Systematic uncertainty (fit procedure) ~5%

- Different resolutions measured for chambers with very similar layout, gain and cluster size, BUT with different RC
- Investigate the impact of the different contributions to the cluster size: direct induction, capacitive coupling AND resistive charge spread (dependent on RC)

 \rightarrow Under investigation and ongoing work for the optimization of the charge centroid algorithms

Performance at Test-Beams - Efficiency

Tracking efficiency:

1.5 mm fiducial range wrt extrapolated position from external tracking chambers

LOCAL INEFFICIENCIES from Circular pillars:

- 0.3 mm for DLC20
- 0.7 mm for SBU3

Outside the pillars region

Timing studies

GOAL: Measurement of the time resolution as a function of the drift velocity (of e^{-} in the drift gap)

We used 2 different gas mixtures, varying the Drift Voltage:

Scan in E_{drift}: [200: 800] V/cm

- With Ar/CO₂/iC₄H₁₀ (93/5/2) range in drift velocity: v_{drift} : 2 4.5 cm/µs
- With Ar/CF₄/iC₄H₁₀ (88/10/2) range in drift velocity: v_{drift} : 3.5 10.5 cm/µs

Time Resolution – dependence on the drift velocity

R&D: achievements and ongoing work

In the last years different spark protection resistive layouts have been implemented on several

Small Pads Micromegas prototypes.

From tests and comparison among them we reached:

- stable operation up to 20 MHz/cm2 with gain >10k;
- detector efficiency >98 % ; position resolution < 100 μ m.
- Time resolution ~8 ns (ongoing effort to achieve 5 ns)

DLC (SBU) (double layer) detectors resulted in:

- better energy and spatial resolutions;
- negligible charging up effects;

It fits in the new stream of resistive MPGD production exploiting DLC and new sputtering facilities

A new sputtering facility is now available at CERN

NOW, moving towards LARGER AREA DETECTORS...

(co-funded CERN-INFN)

Towards Large Area – PADDY400 the 20x20 cm² Prototype

- Active area: 200x192 mm²
- Pads 1x8 mm² Total Number of Pads: 4800
- Double DLC layer (30-40 MOhm/sq) with grounding vias every 8 mm
- Panasonic connectors on the back of the detector
- Partially readout: 1920/4800 connected pads

Paddy400 – rate capability and dependence on the irradiated area

Dependence on the irradiated area

Fixed rate: 3 MHz/cm² (Equivalent to > 10 MHz/cm2 for MIPs)

- Logarithmic dependence
- G/G0 ~72% extrapolated to 40x40 cm² with >10 MHz/cm² MIPs
 - \odot Can be compensated with +10 V

APPLICATIONS of large area pixelized MM for high rates

- Potential candidate for upgrades for very forward muon detection at LHC (e.g. ATLAS Large Eta Muon tagger)
- Sampling Hadron Calorimetry for the Muon Collider (dedicated ongoing R&D)
- Currently under consideration:
 - Muon Veto for SHADOWS (proposal for proton dump physics at CERN)
 - Replacement of Muon detectors for AMBER (successor of Compass)
- Detectors for high energy (tens/hundreds TeV scale) and very high intensity new particle accelerators (FCC-ee/hh) or for the Electron-Ion-Collider (EIC)
- Readout layer of a Time Projection Chamber
- More "exotic" applications, e.g. detection of External Neutral Atoms (ENA) in Space Weather research program

Summary and Outlook

- Several Small Pad Micromegas prototypes were built using different resistive layout solutions: based on embedded resistors or using uniform DLC resistive foils
- Performance achieved:
 - stable operation up to 20 MHz/cm² with gain $>10^4$
 - detector efficiency > 98%
 - position resolution < 100 μ m
- New large(r) area prototype built
 - Preliminary results very promising
 - Rate capability well beyond 1 MHz/cm2 with large area irradiation
 - Energy Resolution <20% at 5.9 keV
- With the construction of even larger small-pad detectors THIS year, our R&D is reaching the goal of establishing the technology for future use under hard environment and high-rate in particle physics and other applications.

BACKUP

M. lodice – MPGD 2022 – December 16, 2022

High-Rate Capability and Gas Optimisation

Started using Ar:CO₂ 93:7 \rightarrow added 2% isobutane Ar:CO₂:iC₄H₁₀ 93:5:2 to improve the stability and extend the dynamic range

Gain >2x10⁴ reached at very high rates (>10 MHz/cm²) in stable conditions \rightarrow remarkable results!

N_{primaries} ~300

 \rightarrow N_{electrons} ~6x10⁶ close to the Raether limit

20

Latest Test Beam Measurements (October 2022)

Test Beam at CERN (H4) with high energy muons and pions.

MAIN Goals:

 Spatial resolution and efficiency of new detectors

 \rightarrow Focus on PADDY400

• Timing resolution, also exploiting faster gas mixture

• Pion and multi-tracking

Spatial Resolution

- Cluster residual wrt extrapolated position from external tracking chambers.
- Extrapolation error is subtracted (50 μ m).
- Statistical uncertainty is negligible
- Systematic uncertainty (fit procedure) ~5%

Ar:CO₂:iC₄H₁₀ 93:5:2 gas mixture

1 mm pitch - precision coordinate

Efficiency

Tracking efficiency:

1.5 mm fiducial range wrt extrapolated position from external tracking chambers

Ar:CO₂:iC₄H₁₀ 93:5:2 gas mixture

M. lodice – MPGD 2022 – December 16, 2022