Exploring the strong interaction in three-body systems at the LHC

59th International Winter Meeting on Nuclear Physics January 23 to 27, 2023 Bormio, Italy

Bhawani Singh

Technische Universität München

bhawani.singh@tum.de

on behalf of the **ALICE Collaboration**

Motivation

Proton-deuteron (p – d) interaction

- p-d interaction is well constrained from the scattering experiments

 \Rightarrow p-d correlations in pp collisions at the LHC provide a new way to explore the interaction of a three-body system at short distances

- Production mechanism of light nuclei not understood:

Pointlike and distinguishable particles

59th International Winter Meeting: p-d femtoscopy

What can final-state interaction studies say about the formation of deuterons (antideuterons)?

Deuteron as a composite object interacting with the proton

Introduction: Femtoscopy

- **Main observable:** correlation in the relative momentum k^* of a particle pair
 - Emitting source: hypersurface of kinematic freeze-out for final-state particles, in pp collision the source size ~ 1 fm (Gaussian profile)
 - Two-particle relative wave function: expresses the interaction between particles
- Study the emission source if the interaction among the particle pair is known
- Or study the interaction among the particles if emission source is known

Introduction: Femtoscopy

Correlation rises above 1 for attractive potentials

S.E. Koonin PLB 70 43 (1977)

Introduction: Femtoscopy

Repulsive interaction brings correlation below 1

- General purpose heavy-ion experiment
 - Excellent particle identification (PID)
 - Most suited LHC experiment for studying femtoscopic correlations
- Run 2 pp high-multiplicity (HM 0-17%) centrality) data
- Number of events: ~1 x10⁹
- Particle selection with TPC +TOF
 - p(anti-p) : **98.30% (98.76%)**
 - d(anti-d) : ~**100%**

ALICE

Time Projection Chamber (TPC) Time of Flight (TOF)

The first measurement p–d correlations from ALICE

- $p d \oplus \overline{p} \overline{d}$ correlation
 - Measured p-d correlation not flat, shows depletion at low k^*
 - Repulsive type of interaction
 - Accessing spin-isospin dependence of NNN
- Pairs below $k^* < 200 \text{ MeV/}c$

- **p** - d: 1250

ALI-PREL-486400

59th International Winter Meeting: p-d femtoscopy

7

- Short distances in pp collisions
- Particle emission from Gaussian core source
- Well constrained theoretical p-p correlation with **AV18** interaction with Fermi-Dirac statistics, Coulomb and strong interaction
- Extract: the source size as fit parameter in transverse mass (m_T) ranges of pp pairs

Include short-lived strongly decaying resonances ($c\tau \approx 1$ fm) e.g. Δ -resonances in case of protons

- Short distances in pp collisions
- Particle emission from Gaussian core source
- Well constrained theoretical p-p correlation with **AV18** interaction with Fermi-Dirac statistics, Coulomb and strong interaction
- Extract: the source size as fit parameter in transerves mass ranges of pp pairs

bhawani.singh@tum.de

• p-d Gaussian core source(r_{core}): using the m_T -scalling

Source size	mean value:pd
r _{core}	0.99±0.05 fm

ALICE Coll. PLB 811 135849 (2020)

- p-d Gaussian core source(r_{core}): using the m_T -scalling
- The source radius is effectively increased by short-lived strongly decaying resonances (ct \approx *r*_{core}) e.g. Δ -resonances in case of protons

Source size	mean value:pd
r _{core}	0.99±0.05 fm
r _{eff}	1.08±0.06 fm

ALICE Coll. PLB 811 135849 (2020)

59th International Winter Meeting: p-d femtoscopy

11

bhawani.singh@tum.de

59th International Winter Meeting: p-d femtoscopy

R. Lednický, Phys. Part. Nuclei 40, 307–352 (2009)

• For distinguishable pointlike particles

- Starting from the scattering parameters \Rightarrow define the s-wave two-particle relative wave function
- Considers Coulomb effects
- Assumption: p and d are pointlike particles!

\Rightarrow **p**-**d** scattering parameters from fits to p-d scattering data

S =	1/2	S = 3/2		References
$f_0(\mathrm{fm})$	<i>r</i> ₀ (fm)	$f_0(\mathrm{fm})$	<i>r</i> ₀ (fm)	
$-1.30^{+0.20}_{-0.20}$		$-11.40^{+1.80}_{-1.20}$	$2.05^{+0.25}_{-0.25}$	Van Oers et al. [15]
$-2.73_{-0.10}^{+0.10}$	$2.27^{+0.12}_{-0.12}$	$-11.88_{-0.10}^{+0.40}$	$2.63^{+0.01}_{-0.02}$	Arvieux et al. [16]
-4.0		-11.1		Huttel et al. [17]
-0.024		-13.7		Kievsky et al. [18]
$0.13^{+0.04}_{-0.04}$		$-14.70^{+2.30}_{-2.30}$		Black et al. [19]

Convention sign: In this presentation positive (negative) f_0 means attractive (repulsive) interaction R. Lednicky, Phys. Part. Nuclei 40, 307–352 (2009)

bhawani.singh@tum.de

Lednický model: pointlike deuterons

Lednický model vs ALICE data

bhawani.singh@tum.de

59th International Winter Meeting: p-d femtoscopy

pd data not described

 \Rightarrow p-d can't be treated as effective two-body system

Considering protons and deuterons as distinguishable pointlike particles leads to huge discrepancy!

> Van Oers, Brockmann et al. Nucl. Phys. A 561-583 (1967) J.Arvieux et al. Nucl. Phys. A 221 253-268 (1973) E.Huttel et al. Nucl. Phys. A 406 443-455 (1983) A.Kievsky et al. PLB 406 292-296 (1997) T.C.Black et al. PLB 471 103-107 (1999)

Pisa model: p-d as three-body system

Calculation done by PISA theory group: Michele Viviani, Alejandro Kievsky and Laura Marcucci

bhawani.singh@tum.de

59th International Winter Meeting: p-d femtoscopy

Kievsky et al, Phys. Rev. C 64 (2001) 024002 Kievsky et al, Phys. Rev. C 69 (2004) 014002 Deltuva et al, Phys. Rev. C71 (2005) 064003

p-d correlation with d as composite object

distances goes to a p-d state.

The three body wave function with proper treatment of 2N and 3N interaction at very short

p-d correlation with d as composite object

distances goes to a p-d state.

• Three-body wavefunction for p-d: $\Psi_{m_2, m_1}(x, y)$ describing three-body dynamics, anchored to p-d scattering

observables.

- x = distance of p-n system within the deuteron
- -y = p d distance
- m₂ and m₁ deuteron and proton spin

The three body wave function with proper treatment of 2N and 3N interaction at very short

59th International Winter Meeting: p-d femtoscopy

17

p-d correlation with d as composite object

distances goes to a p-d state.

• Three-body wavefunction for p-d: $\Psi_{m_2, m_1}(x, y)$ describing three-body dynamics, anchored to p-d scattering

observables.

- x = distance of p-n system within the deuteron
- -y = p d distance
- m₂ and m₁ deuteron and proton spin
- $\Psi_{m_2,m_1}(x,y)$ three-nucleon wave function asymptotically behaves as p-d state:

$$\Psi_{m_2,m_1}(\boldsymbol{x},\boldsymbol{y}) = \Psi_{m_2,m_1}^{(\text{free})} + \sum_{LSJ}^{J \leq \overline{J}} \sqrt{4\pi} i^L \sqrt{2L+1} e^{i\sigma_L} (1m_2 \frac{1}{2}m_1 | SJ_z) (LOSJ_z | JJ_z) \widetilde{\Psi}_{LSJJ_z}.$$
Asymptotic form Strong three-body interaction

 $\Rightarrow \tilde{\Psi}_{LSJJ_z}$ describe the configurations where the three particles are close to each other $\Rightarrow \Psi_{m_1,m_2}^{(\text{free})}$ an asymptotic form of p-d wave function

The three body wave function with proper treatment of 2N and 3N interaction at very short

Strong three-body interaction

Kievsky et al, Phys. Rev. C 64 (2001) 024002 *Kievsky et al, Phys. Rev. C* 69 (2004) 014002 Deltuva et al, Phys. Rev. C71 (2005) 064003

The correlation function

• Starting with the PPN state that goes into pd state:

- Nucleons with the Gaussian sources distributions

$$A_d C_{pd}(k) = \frac{1}{6} \sum_{m_2,m_1} \int d^3 r_1 d^3 r_$$

Mrówczyński et al Eur. Phys. J. Special Topics 229, 3559 (2020)

The correlation function

• Starting with the PPN state that goes into pd state:

- Nucleons with the Gaussian sources distributions

$$A_d C_{pd}(k) = \frac{1}{6} \sum_{m_2,m_1} \int d^3 r_1 d^3 r_$$

- Where A_d is the deuteron formation probability using deuteron wavefunction ϕ_{m_2}

$$A_d = \frac{1}{3} \sum_{m_2} \int d^3 r$$

 $r_1 d^3 r_2 S_1(r_1) S_1(r_2) |\phi_{m_2}|^2$,

Mrówczyński et al Eur. Phys. J. Special Topics 229, 3559 (2020)

The correlation function

• Starting with the PPN state that goes into pd state:

- Nucleons with the Gaussian sources distributions

$$A_d C_{pd}(k) = \frac{1}{6} \sum_{m_2,m_1} \int d^3 r_1 d^3 r_$$

- Where A_d is the deuteron formation probability using deuteron wavefunction ϕ_{m_a}

$$A_{d} = \frac{1}{3} \sum_{m_{2}} \int d^{3}r_{1}d^{3}r_{2} S_{1}(r_{1})S_{1}(r_{2})|\phi_{m_{2}}|^{2} ,$$

tion with p-p source size R_{M} :
$$A_{d}C_{pd}(k) = \frac{1}{6} \sum_{m_{2},m_{1}} \int \rho^{5}d\rho d\Omega \frac{e^{-\rho^{2}/4R_{M}^{2}}}{(4\pi R_{M}^{2})^{3}}|\Psi_{m_{2},m_{1}}|^{2} .$$

- Final definition of the correlation

$$A_{d} = \frac{1}{3} \sum_{m_{2}} \int d^{3}r_{1} d^{3}r_{2} S_{1}(r_{1}) S_{1}(r_{2}) |\phi_{m_{2}}|^{2} ,$$

ion with p-p source size R_{M} :
$$A_{d}C_{pd}(k) = \frac{1}{6} \sum_{m_{2},m_{1}} \int \rho^{5} d\rho d\Omega \frac{e^{-\rho^{2}/4R_{M}^{2}}}{(4\pi R_{M}^{2})^{3}} |\Psi_{m_{2},m_{1}}|^{2} .$$

Mrówczyński et al Eur. Phys. J. Special Topics 229, 3559 (2020)

PISA model: theoretical p-d correlation

Calculation by Michele Viviani

Model including NN and NNN interactions in s+d-wave

Coulomb interaction not enough

• Coulomb +s+p+d wave:

Source size = 1.08 ± 0.06 fm \Rightarrow **1.42±0.12 fm** of pp

source size

PISA model: theoretical p-d correlation

Model calculation qualitatively reproduces the data The p-d correlation is affected by two + three-body p-p-n interactions!

bhawani.singh@tum.de

Conclusions

Summary:

- Assumption of pointlike and distinguishable particles does not work! - Model considering p(pn) three-body dynamics reproduces the data for source size of pp/pn
- extracted from the 'universal' m_T scaling
- Nucleons composing the deuteron are present at the same time as all other unbound nucleons

Outlook:

- Perform a fit using the calculation based on two+three-body interaction
- Deuterons can be combined to other hadrons to study many-body interaction
- Future m_T differential analysis would allow to reach lower values: possibility of preparing a three body system with controlled density distributions to investigate the NN and NNN forces.

Summary:

- Assumption of pointlike and distinguishable particles does not work! - Model considering p(pn) three-body dynamics reproduces the data for source size of pp/pn
- extracted from the 'universal' m_T scaling
- Nucleons composing the deuteron are present at the same time as all other unbound nucleons

Outlook:

- Perform a fit using the calculation based on two+three-body interaction
- Deuterons can be combined to other hadrons to study many-body interaction
- Future m_T differential analysis would allow to reach lower values: possibility of preparing a three body system with controlled density distributions to investigate the NN and NNN forces.

Thanks for your attention!

additional slides

bhawani.singh@tum.de

The source for pd and K+d

- Short distances in pp and p—Pb collisions
- Particle emission from Gaussian core source
- The source radius is effectively increased by short-lived strongly decaying resonances (ct $\approx r_{core}$) e.g. Δ -resonances in case of protons

Source size	mean value:pd	mean value:k+d
r _{core}	0.99±0.05 fm	1.04±0.04 fm
r _{eff}	1.08±0.06 fm	$1.41^{+0.03}_{-0.09}$ fm

Lednicky Model

- For distinguishable particles considers Coulomb effects

$$\psi_{-k^*}(r^*) = e^{i\delta_c} \sqrt{A_c(\eta)} \left[e^{-ik^*r^*} F\left(-i\eta, 1, i\zeta\right) + f_c(k^*) \frac{\tilde{G}(\rho, \eta)}{r^*} \right]$$

- f_c : Coulomb normalised scattering amplitude for strong interaction
- $F(-i\eta, 1, i\zeta)$: confluent hypergeometric function
- $\tilde{G}(\rho,\eta)$: combination of singular and regular Coulomb function, describes asymptotic behaviour of wavefunction

 \Rightarrow to obtain two-particle correlation we can use Koonin-Pratt formula

 \circ starting from the scattering parameters \Rightarrow define the s-wave two-particle relative wave function

Coulomb-corrected wave function for final-state interactions (Lednicky): <u>arxiv.org/abs/nucl-th/0501065</u>

How accurate is the theory ?

- **Benchmark:** compare correlations with Lednicky model with calculations using
 - pp from AV18 potential
 - K+p from Jülich model

System	$f_0(\mathrm{fm})$	<i>r</i> ₀ (fm)	References
p-p (S=0)	7.806	2.788	R. Wiringa et al. 6
K^+-p (S=1/2)	-0.316	0.373	M. Hoffmann et al.

 Correlations are well reproduced by Lednicky approach

Convention sign: In this presentation positive (negative) fo means attractive (repulsive) interaction

bhawani.singh@tum.de

Femtoscopic correlation

- The femtoscopic correlation may have background/contributions from
 - Particles from weak decays
 - Particles from material knock-outs
 - Misidentifications

Contributions from:

- - Purity of the individual particles (\mathscr{P}_i)
 - Feed-down fractions (f_i)

$C_{femto}(k^*) = \lambda_0 C_0 \oplus \lambda_1 C_1 \oplus \lambda_2 C_2 \oplus \dots$

feed-down misidentifications genuine

• Quantification of the contributions to the pairs done by the lambda parameters $\lambda_{ii} = \mathcal{P}_i \cdot f_i \times \mathcal{P}_i \cdot f_i$

proton-deuteron correlation measurement so far

Status:

- p-d correlation function from 2006
- GANIL(Grand Accélérateur National d'Ions Lourds):
 - ⁴⁰Ar-⁵⁸Ni reaction at 77 MeV/u
 - Show a clear depletion
 - Only unto 100 MeV/c in relative momentum

[1] Wosińska, K., Pluta, J., Hanappe, F. *et al. Eur. Phys. J. A* 32, 55–59 (2007)

Another calculation at hand

- Hadron-Deuteron Correlations and Production of Light Nuclei in Relativistic Heavy-Ion Collisions: <u>arxiv.org/abs/1904.08320</u>
 - hadron-deuteron correlation function which carries information about the source of the deuterons
 - Allows one to determine whether a deuteron is directly emitted from the fireball or if it is formed afterwards
 - Conclusion:
 - The theoretical p-d correlation function is strongly dependent on the source size

Fig. 2. p-D correlation function

