Perturbative EFT model of core excitations in one-neutron halo nuclei

Live-Palm Kubushishi

Supervisor: Pierre Capel

Johannes Gutenberg-Universität Mainz

January 24, 2023

Live-Palm Kubushishi

Bormio 2023

January 24, 2023

1/17

Halo nuclei

2 Breakup reactions involving halo nuclei

- Single-particle description of the projectile
- Halo-EFT & core excitations

Coupled-channels calculations of ¹¹Be's bound states

- $\frac{1}{2}^+$ state
- $\frac{1}{2}^{-}$ state

2/17

- Light, neutron-rich nuclei
- Low S_n or S_{2n} : one or two loosely-bound neutrons \rightarrow large **rms** radius
- Clusterised structure:

neutrons can tunnel far from the core to form a halo \rightarrow halo-nucleus \equiv a compact core + valence neutron(s)

• Halos when low centrifugal barrier (low ℓ)

 \Rightarrow Halo-nuclei appear to be fascinating nuclear objects to study !

Where to find them ? How to study them ?

• Exotic nuclear structures found far from stability

 $\rightarrow \exists$ one-neutron, two-neutron and proton halos [less probable]

- Short-lived $[au_{1/2}(^{11}{
 m Be}) = 13 \ {
 m s}]
 ightarrow$ study via reactions [e.g. breakup]
- Our case study : ${}^{11}Be \equiv {}^{10}Be + n$
- Breakup of ${}^{11}Be \equiv$ dissociation of halo (n) from the core (${}^{10}Be$) by interaction with target

Halo-EFT description of ¹¹Be

- Halo-EFT : separation of scales [in distance/energy]
 - ightarrow expansion parameter $\eta = rac{R_{core}}{R_{halo}}$ or $\sqrt{rac{S_{1n}}{E_{2^+}}} \simeq 0.4$
 - \rightarrow no explicit inclusion of 2⁺ state of ¹⁰Be core [E₂₊=3.4 MeV]
 - \rightarrow expansion along η of low-energy behaviour (long-range physics) [C. Bertulani, et al. NPA 712, 37 (2002)] [Hammer, Ji, Phillips, JPG 44, 103002 (2017)]
- Effective potentials in each partial wave Ij narrow Gaussians @NLO

$$V_{cn}(r) = V_{lj}^{(0)} e^{-rac{r^2}{2\sigma^2}} + V_{lj}^{(2)} r^2 e^{-rac{r^2}{2\sigma^2}}$$

 $V_{lj}^{(0)}$ and $V_{lj}^{(2)}$ fitted to reproduce [for bound states]: $\rightarrow \epsilon_{nlj}$ and ANC (@ NLO) $\rightarrow \epsilon_{nlj}$ (@ LO) σ := unfitted parameter \rightarrow evaluates sensitivity to short-range physics [Capel, Phillips, Hammer, PRC 98, 034610 (2018)]

¹¹Be: resonant breakup reactions & core excitations (1)

- Assumption: ¹¹Be \equiv ¹⁰Be(0⁺) + n \Rightarrow single-particle description \rightarrow one-body Hamiltonian: $H_0(\mathbf{r}) = T_{\mathbf{r}} + V_{cn}(\mathbf{r})$
 - \rightarrow single-particle description enough to fully describe breakup ? e.g. $^{11}\text{Be+C} \rightarrow ^{10}\text{Be+n+C}$

Figure: Capel, Philips & Hammer, PRC 98, 034610 (2018)

• Missing strength at $\frac{5}{2}^+$ and $\frac{3}{2}^+$ resonances \Rightarrow significant influence of core excitations \rightarrow **s.p** not enough !

¹¹Be: resonant breakup reactions & core excitations (2)

- \bullet Resonant breakup: $^{11}\text{Be}{+}\text{C} \rightarrow ^{10}\text{Be}{+}\text{n}{+}\text{C}$
 - $\Rightarrow \exists$ missing degrees of freedom [¹⁰Be(2⁺)] in models
 - \Rightarrow **DWBA extension**: Moro & Lay, PRL 109, 232502 (2012)

To better understand structure effects on reaction calculations
 → we develop a Halo-EFT that includes core excitations

Extension of halo-EFT to core excitations

- Aim:= include explicitly core excitations in Halo-EFT
 → allowing ¹⁰Be core to be excited to its 2⁺ state
- Two-body Hamiltonian of the projectile:

 $H_0(\mathbf{r},\xi) = T_{\mathbf{r}} + V_{cn}(\mathbf{r},\xi) + h_c(\xi)$

- Particle-rotor model [Bohr and Mottelson (1975)]:
 - \rightarrow core with a permanent quadrupole deformation
 - \rightarrow multipolar expansion of V_{cn} assuming small deformation lengths
 - \rightarrow **perturbative** coupling interaction:

$$V_{cn}(\mathbf{r},\xi) \simeq V_{cn}(r;\sigma_0) + \beta_2 \sigma_c Y_2^0(\hat{r}) \frac{d}{d\sigma_c} V_{cn}(r;\sigma_c)$$

Coupled-channels eqs. with R-Matrix method on a Lagrange mesh

$$(\epsilon_{\mathrm{J}^{\pi}}^{^{11}\mathrm{Be}} - \epsilon_{\alpha}^{^{10}\mathrm{Be}})\psi_{\alpha}(r) = [T_{r}^{\ell} + V_{\alpha\alpha}(r)]\psi_{\alpha}(r) + \sum_{\alpha'\neq\alpha} V_{\alpha\alpha'}(r)\psi_{\alpha'}(r)$$

$\Rightarrow \epsilon_{\mathrm{J}^{\pi}}^{^{\mathrm{11}\mathrm{Be}}}$, ANC, δ_{lpha}	
--	--

$\frac{1}{2}^+$: bound state - coupled-channels - 11 Be

- s₁: β_2 , @NLO potentials **fitted to** reproduce *ab initio* predictions: \rightarrow [Calci et al., PRL 117, 242501 (2016)] $\rightarrow \epsilon_{1^+}$ =-0.503 MeV and ANC = 0.786 fm^{-1/2}
- ∀ β₂, ≠ interiors, same asymptotics as *ab initio* → σ_c ~ σ₀: no effects
- $\exists \beta_2$ (=0.5) which gives really good agreement with *ab initio* (SF,...) \rightarrow e.g.: $\sigma_0 = 1.2$ fm, $\sigma_c = 2.2$ fm $\sim {}^{10}$ Be rms radius

$\frac{1}{2}^+$: phaseshift - coupled-channels - 11 Be

- $s_{\frac{1}{2}}$: β_2 , @NLO potentials **fitted to** reproduce *ab initio* predictions \rightarrow [Calci et al., PRL 117, 242501 (2016)]
- $\sigma_c \gg \sigma_0 \rightarrow \text{significative improvement of } \delta_{\frac{1}{2}^+} \text{ wrt } ab \text{ initio results}$ $\Rightarrow \exists \beta_2 (=0.5) \text{ reproducing } ab \text{ initio } \mathbf{up to 4MeV} \& \beta_{best} : \beta_{wf} = \beta_{\delta}$

$\frac{1}{2}^{-}$: a state with a completely different structure ?

- $p_{\frac{1}{2}}$: @NLO potentials **fitted to** reproduce *ab initio* predictions $\rightarrow \epsilon_{\frac{1}{2}}$ =-0.184 MeV and ANC = 0.129 fm^{-1/2}
- Single-particle description (β₂=0)[without deformation]
- $\sigma_0 = 1.8$ fm: reproduces *ab initio* predictions up to 3 MeV !
 - \rightarrow $\sigma\text{-}\mathbf{dependency}$ \rightarrow no need of deformation to reproduce ab initio
 - ightarrow Would core excitations actually improve something here ?

$rac{1}{2}^-$ state: core excitations (1)

- $p_{\frac{1}{2}}$: @NLO potentials
- Core excitations do improve phaseshifts if: 1.8fm $\leq \sigma_0 \ll \sigma_c$ $\Rightarrow \sigma_0 \leq 1.8$ fm \rightarrow it does not work

e.g.: $\sigma_0 = 1.5 {
m fm}, \, \sigma_c = 2.2 {
m fm} \sim {}^{10} {
m Be}$ rms radius

$\frac{1}{2}^{-}$ state: core excitations (2)

• p₁: @NLO potentials

• Core excitations do improve phaseshifts if: $1.8 \text{fm} \leq \sigma_0 \ll \sigma_c$ \Rightarrow new structure effect: coupling has to act further wrt to $\frac{1}{2}^+$ state \rightarrow e.g.: $\sigma_0 = 2.0 \text{fm}, \sigma_c = 2.7 \text{fm}$

• $\sigma_c >^{10}$ Be radius \rightarrow coupling acts outside of the nucleus [**unphysical**] \Rightarrow coupling = artefact \rightarrow not needed $\rightarrow \frac{1}{2}^{-}$:=shell model state

• Q: Would working @N2LO in Halo-EFT solve this problem ?

 \rightarrow Halo nuclei are fascinating nuclear objects:

- found far from stability, low S_n, large rms radius,...
- with a short lifetime → study via reactions (e.g.breakup)
 → need of a realistic few-body model for reaction calculations
 → Halo-EFT

 \rightarrow $\mathbf{Our}\ \mathbf{model}$ of one-neutron halo nuclei provides:

- perturbative inclusion of core excitations in Halo-EFT
- $\frac{1}{2}^+$ state: $\sigma_0 \ll \sigma_c$

 \rightarrow can improve *ab initio* wave functions and phaseshifts

• $\frac{1}{2}$ state: 1.8fm $\leq \sigma_0 \ll \sigma_c$

 \rightarrow can improve *ab initio* phaseshifts

but s.p. description seems sufficient for that state with $\sigma_0 = 1.8 {
m fm}$

 \rightarrow Would working @N2LO in Halo-EFT solve this problem ?

End goal: using our model for breakup calculations

Thank you for your attention !

э

Backup (1)

 $rac{1}{2}^-$: wavefunctions with $\sigma_0=1.5$ fm, $\sigma_c=2.2$ fm \sim 10 Be rms radius

э

Backup (2)

-January 24, 2023

< 行

< ∃⇒

э